2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2010-06-23 08:35:31 -07:00
|
|
|
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
2010-05-27 19:08:38 -07:00
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
2007-12-01 00:00:00 +00:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2010-11-23 13:22:55 -08:00
|
|
|
#include "precompiled.hpp"
|
|
|
|
#include "memory/allocation.inline.hpp"
|
|
|
|
#include "memory/cardTableModRefBS.hpp"
|
|
|
|
#include "memory/cardTableRS.hpp"
|
|
|
|
#include "memory/sharedHeap.hpp"
|
|
|
|
#include "memory/space.hpp"
|
|
|
|
#include "memory/space.inline.hpp"
|
|
|
|
#include "memory/universe.hpp"
|
|
|
|
#include "runtime/java.hpp"
|
|
|
|
#include "runtime/mutexLocker.hpp"
|
|
|
|
#include "runtime/virtualspace.hpp"
|
|
|
|
#ifdef COMPILER1
|
|
|
|
#include "c1/c1_LIR.hpp"
|
|
|
|
#include "c1/c1_LIRGenerator.hpp"
|
|
|
|
#endif
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
|
|
|
|
// enumerate ref fields that have been modified (since the last
|
|
|
|
// enumeration.)
|
|
|
|
|
|
|
|
size_t CardTableModRefBS::cards_required(size_t covered_words)
|
|
|
|
{
|
|
|
|
// Add one for a guard card, used to detect errors.
|
|
|
|
const size_t words = align_size_up(covered_words, card_size_in_words);
|
|
|
|
return words / card_size_in_words + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t CardTableModRefBS::compute_byte_map_size()
|
|
|
|
{
|
|
|
|
assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
|
|
|
|
"unitialized, check declaration order");
|
|
|
|
assert(_page_size != 0, "unitialized, check declaration order");
|
|
|
|
const size_t granularity = os::vm_allocation_granularity();
|
|
|
|
return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
|
|
|
|
}
|
|
|
|
|
|
|
|
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
|
|
|
|
int max_covered_regions):
|
|
|
|
ModRefBarrierSet(max_covered_regions),
|
|
|
|
_whole_heap(whole_heap),
|
|
|
|
_guard_index(cards_required(whole_heap.word_size()) - 1),
|
|
|
|
_last_valid_index(_guard_index - 1),
|
2007-12-06 13:59:28 -08:00
|
|
|
_page_size(os::vm_page_size()),
|
2007-12-01 00:00:00 +00:00
|
|
|
_byte_map_size(compute_byte_map_size())
|
|
|
|
{
|
|
|
|
_kind = BarrierSet::CardTableModRef;
|
|
|
|
|
|
|
|
HeapWord* low_bound = _whole_heap.start();
|
|
|
|
HeapWord* high_bound = _whole_heap.end();
|
|
|
|
assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
|
|
|
|
assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
|
|
|
|
|
|
|
|
assert(card_size <= 512, "card_size must be less than 512"); // why?
|
|
|
|
|
|
|
|
_covered = new MemRegion[max_covered_regions];
|
|
|
|
_committed = new MemRegion[max_covered_regions];
|
|
|
|
if (_covered == NULL || _committed == NULL)
|
|
|
|
vm_exit_during_initialization("couldn't alloc card table covered region set.");
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < max_covered_regions; i++) {
|
|
|
|
_covered[i].set_word_size(0);
|
|
|
|
_committed[i].set_word_size(0);
|
|
|
|
}
|
|
|
|
_cur_covered_regions = 0;
|
|
|
|
|
|
|
|
const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
|
|
|
|
MAX2(_page_size, (size_t) os::vm_allocation_granularity());
|
|
|
|
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
|
|
|
|
os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
|
|
|
|
_page_size, heap_rs.base(), heap_rs.size());
|
|
|
|
if (!heap_rs.is_reserved()) {
|
|
|
|
vm_exit_during_initialization("Could not reserve enough space for the "
|
|
|
|
"card marking array");
|
|
|
|
}
|
|
|
|
|
|
|
|
// The assember store_check code will do an unsigned shift of the oop,
|
|
|
|
// then add it to byte_map_base, i.e.
|
|
|
|
//
|
|
|
|
// _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
|
|
|
|
_byte_map = (jbyte*) heap_rs.base();
|
|
|
|
byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
|
|
|
|
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
|
|
|
|
assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
|
|
|
|
|
|
|
|
jbyte* guard_card = &_byte_map[_guard_index];
|
|
|
|
uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
|
|
|
|
_guard_region = MemRegion((HeapWord*)guard_page, _page_size);
|
|
|
|
if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
|
|
|
|
// Do better than this for Merlin
|
|
|
|
vm_exit_out_of_memory(_page_size, "card table last card");
|
|
|
|
}
|
|
|
|
*guard_card = last_card;
|
|
|
|
|
|
|
|
_lowest_non_clean =
|
|
|
|
NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
|
|
|
|
_lowest_non_clean_chunk_size =
|
|
|
|
NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
|
|
|
|
_lowest_non_clean_base_chunk_index =
|
|
|
|
NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
|
|
|
|
_last_LNC_resizing_collection =
|
|
|
|
NEW_C_HEAP_ARRAY(int, max_covered_regions);
|
|
|
|
if (_lowest_non_clean == NULL
|
|
|
|
|| _lowest_non_clean_chunk_size == NULL
|
|
|
|
|| _lowest_non_clean_base_chunk_index == NULL
|
|
|
|
|| _last_LNC_resizing_collection == NULL)
|
|
|
|
vm_exit_during_initialization("couldn't allocate an LNC array.");
|
|
|
|
for (i = 0; i < max_covered_regions; i++) {
|
|
|
|
_lowest_non_clean[i] = NULL;
|
|
|
|
_lowest_non_clean_chunk_size[i] = 0;
|
|
|
|
_last_LNC_resizing_collection[i] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (TraceCardTableModRefBS) {
|
|
|
|
gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" &_byte_map[0]: " INTPTR_FORMAT
|
|
|
|
" &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
|
|
|
|
&_byte_map[0],
|
|
|
|
&_byte_map[_last_valid_index]);
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" byte_map_base: " INTPTR_FORMAT,
|
|
|
|
byte_map_base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
if (_covered[i].start() == base) return i;
|
|
|
|
if (_covered[i].start() > base) break;
|
|
|
|
}
|
|
|
|
// If we didn't find it, create a new one.
|
|
|
|
assert(_cur_covered_regions < _max_covered_regions,
|
|
|
|
"too many covered regions");
|
|
|
|
// Move the ones above up, to maintain sorted order.
|
|
|
|
for (int j = _cur_covered_regions; j > i; j--) {
|
|
|
|
_covered[j] = _covered[j-1];
|
|
|
|
_committed[j] = _committed[j-1];
|
|
|
|
}
|
|
|
|
int res = i;
|
|
|
|
_cur_covered_regions++;
|
|
|
|
_covered[res].set_start(base);
|
|
|
|
_covered[res].set_word_size(0);
|
|
|
|
jbyte* ct_start = byte_for(base);
|
|
|
|
uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
|
|
|
|
_committed[res].set_start((HeapWord*)ct_start_aligned);
|
|
|
|
_committed[res].set_word_size(0);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
if (_covered[i].contains(addr)) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(0, "address outside of heap?");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
|
|
|
|
HeapWord* max_end = NULL;
|
|
|
|
for (int j = 0; j < ind; j++) {
|
|
|
|
HeapWord* this_end = _committed[j].end();
|
|
|
|
if (this_end > max_end) max_end = this_end;
|
|
|
|
}
|
|
|
|
return max_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
MemRegion CardTableModRefBS::committed_unique_to_self(int self,
|
|
|
|
MemRegion mr) const {
|
|
|
|
MemRegion result = mr;
|
|
|
|
for (int r = 0; r < _cur_covered_regions; r += 1) {
|
|
|
|
if (r != self) {
|
|
|
|
result = result.minus(_committed[r]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Never include the guard page.
|
|
|
|
result = result.minus(_guard_region);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
|
|
|
|
// We don't change the start of a region, only the end.
|
|
|
|
assert(_whole_heap.contains(new_region),
|
|
|
|
"attempt to cover area not in reserved area");
|
|
|
|
debug_only(verify_guard();)
|
2008-06-10 07:26:42 -07:00
|
|
|
// collided is true if the expansion would push into another committed region
|
|
|
|
debug_only(bool collided = false;)
|
2008-02-15 07:01:10 -08:00
|
|
|
int const ind = find_covering_region_by_base(new_region.start());
|
|
|
|
MemRegion const old_region = _covered[ind];
|
2007-12-01 00:00:00 +00:00
|
|
|
assert(old_region.start() == new_region.start(), "just checking");
|
|
|
|
if (new_region.word_size() != old_region.word_size()) {
|
|
|
|
// Commit new or uncommit old pages, if necessary.
|
|
|
|
MemRegion cur_committed = _committed[ind];
|
|
|
|
// Extend the end of this _commited region
|
|
|
|
// to cover the end of any lower _committed regions.
|
|
|
|
// This forms overlapping regions, but never interior regions.
|
2008-02-15 07:01:10 -08:00
|
|
|
HeapWord* const max_prev_end = largest_prev_committed_end(ind);
|
2007-12-01 00:00:00 +00:00
|
|
|
if (max_prev_end > cur_committed.end()) {
|
|
|
|
cur_committed.set_end(max_prev_end);
|
|
|
|
}
|
|
|
|
// Align the end up to a page size (starts are already aligned).
|
2008-02-15 07:01:10 -08:00
|
|
|
jbyte* const new_end = byte_after(new_region.last());
|
2008-06-10 07:26:42 -07:00
|
|
|
HeapWord* new_end_aligned =
|
2008-02-15 07:01:10 -08:00
|
|
|
(HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
|
2007-12-01 00:00:00 +00:00
|
|
|
assert(new_end_aligned >= (HeapWord*) new_end,
|
|
|
|
"align up, but less");
|
2009-02-17 15:35:58 -08:00
|
|
|
// Check the other regions (excludes "ind") to ensure that
|
|
|
|
// the new_end_aligned does not intrude onto the committed
|
|
|
|
// space of another region.
|
2008-06-10 07:26:42 -07:00
|
|
|
int ri = 0;
|
|
|
|
for (ri = 0; ri < _cur_covered_regions; ri++) {
|
|
|
|
if (ri != ind) {
|
|
|
|
if (_committed[ri].contains(new_end_aligned)) {
|
2009-02-17 15:35:58 -08:00
|
|
|
// The prior check included in the assert
|
|
|
|
// (new_end_aligned >= _committed[ri].start())
|
|
|
|
// is redundant with the "contains" test.
|
|
|
|
// Any region containing the new end
|
|
|
|
// should start at or beyond the region found (ind)
|
|
|
|
// for the new end (committed regions are not expected to
|
|
|
|
// be proper subsets of other committed regions).
|
|
|
|
assert(_committed[ri].start() >= _committed[ind].start(),
|
2008-06-10 07:26:42 -07:00
|
|
|
"New end of committed region is inconsistent");
|
|
|
|
new_end_aligned = _committed[ri].start();
|
2009-02-17 15:35:58 -08:00
|
|
|
// new_end_aligned can be equal to the start of its
|
|
|
|
// committed region (i.e., of "ind") if a second
|
|
|
|
// region following "ind" also start at the same location
|
|
|
|
// as "ind".
|
|
|
|
assert(new_end_aligned >= _committed[ind].start(),
|
2008-06-10 07:26:42 -07:00
|
|
|
"New end of committed region is before start");
|
|
|
|
debug_only(collided = true;)
|
|
|
|
// Should only collide with 1 region
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
|
|
for (++ri; ri < _cur_covered_regions; ri++) {
|
|
|
|
assert(!_committed[ri].contains(new_end_aligned),
|
|
|
|
"New end of committed region is in a second committed region");
|
|
|
|
}
|
|
|
|
#endif
|
2007-12-01 00:00:00 +00:00
|
|
|
// The guard page is always committed and should not be committed over.
|
2009-08-02 19:10:31 -07:00
|
|
|
// "guarded" is used for assertion checking below and recalls the fact
|
|
|
|
// that the would-be end of the new committed region would have
|
|
|
|
// penetrated the guard page.
|
|
|
|
HeapWord* new_end_for_commit = new_end_aligned;
|
|
|
|
|
|
|
|
DEBUG_ONLY(bool guarded = false;)
|
|
|
|
if (new_end_for_commit > _guard_region.start()) {
|
|
|
|
new_end_for_commit = _guard_region.start();
|
|
|
|
DEBUG_ONLY(guarded = true;)
|
|
|
|
}
|
2008-06-10 07:26:42 -07:00
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
if (new_end_for_commit > cur_committed.end()) {
|
|
|
|
// Must commit new pages.
|
2008-02-15 07:01:10 -08:00
|
|
|
MemRegion const new_committed =
|
2007-12-01 00:00:00 +00:00
|
|
|
MemRegion(cur_committed.end(), new_end_for_commit);
|
|
|
|
|
|
|
|
assert(!new_committed.is_empty(), "Region should not be empty here");
|
|
|
|
if (!os::commit_memory((char*)new_committed.start(),
|
|
|
|
new_committed.byte_size(), _page_size)) {
|
|
|
|
// Do better than this for Merlin
|
|
|
|
vm_exit_out_of_memory(new_committed.byte_size(),
|
|
|
|
"card table expansion");
|
|
|
|
}
|
|
|
|
// Use new_end_aligned (as opposed to new_end_for_commit) because
|
|
|
|
// the cur_committed region may include the guard region.
|
|
|
|
} else if (new_end_aligned < cur_committed.end()) {
|
|
|
|
// Must uncommit pages.
|
2008-02-15 07:01:10 -08:00
|
|
|
MemRegion const uncommit_region =
|
2007-12-01 00:00:00 +00:00
|
|
|
committed_unique_to_self(ind, MemRegion(new_end_aligned,
|
|
|
|
cur_committed.end()));
|
|
|
|
if (!uncommit_region.is_empty()) {
|
2010-06-23 08:35:31 -07:00
|
|
|
// It is not safe to uncommit cards if the boundary between
|
|
|
|
// the generations is moving. A shrink can uncommit cards
|
|
|
|
// owned by generation A but being used by generation B.
|
|
|
|
if (!UseAdaptiveGCBoundary) {
|
|
|
|
if (!os::uncommit_memory((char*)uncommit_region.start(),
|
|
|
|
uncommit_region.byte_size())) {
|
|
|
|
assert(false, "Card table contraction failed");
|
|
|
|
// The call failed so don't change the end of the
|
|
|
|
// committed region. This is better than taking the
|
|
|
|
// VM down.
|
|
|
|
new_end_aligned = _committed[ind].end();
|
|
|
|
}
|
|
|
|
} else {
|
2008-06-10 07:26:42 -07:00
|
|
|
new_end_aligned = _committed[ind].end();
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// In any case, we can reset the end of the current committed entry.
|
|
|
|
_committed[ind].set_end(new_end_aligned);
|
|
|
|
|
2010-06-23 08:35:31 -07:00
|
|
|
#ifdef ASSERT
|
|
|
|
// Check that the last card in the new region is committed according
|
|
|
|
// to the tables.
|
|
|
|
bool covered = false;
|
|
|
|
for (int cr = 0; cr < _cur_covered_regions; cr++) {
|
|
|
|
if (_committed[cr].contains(new_end - 1)) {
|
|
|
|
covered = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(covered, "Card for end of new region not committed");
|
|
|
|
#endif
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
// The default of 0 is not necessarily clean cards.
|
|
|
|
jbyte* entry;
|
|
|
|
if (old_region.last() < _whole_heap.start()) {
|
|
|
|
entry = byte_for(_whole_heap.start());
|
|
|
|
} else {
|
|
|
|
entry = byte_after(old_region.last());
|
|
|
|
}
|
2008-12-15 13:58:57 -08:00
|
|
|
assert(index_for(new_region.last()) < _guard_index,
|
2007-12-01 00:00:00 +00:00
|
|
|
"The guard card will be overwritten");
|
2008-06-10 07:26:42 -07:00
|
|
|
// This line commented out cleans the newly expanded region and
|
|
|
|
// not the aligned up expanded region.
|
|
|
|
// jbyte* const end = byte_after(new_region.last());
|
|
|
|
jbyte* const end = (jbyte*) new_end_for_commit;
|
2009-08-02 19:10:31 -07:00
|
|
|
assert((end >= byte_after(new_region.last())) || collided || guarded,
|
2008-06-10 07:26:42 -07:00
|
|
|
"Expect to be beyond new region unless impacting another region");
|
2007-12-01 00:00:00 +00:00
|
|
|
// do nothing if we resized downward.
|
2008-06-10 07:26:42 -07:00
|
|
|
#ifdef ASSERT
|
|
|
|
for (int ri = 0; ri < _cur_covered_regions; ri++) {
|
|
|
|
if (ri != ind) {
|
|
|
|
// The end of the new committed region should not
|
|
|
|
// be in any existing region unless it matches
|
|
|
|
// the start of the next region.
|
|
|
|
assert(!_committed[ri].contains(end) ||
|
|
|
|
(_committed[ri].start() == (HeapWord*) end),
|
|
|
|
"Overlapping committed regions");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
2007-12-01 00:00:00 +00:00
|
|
|
if (entry < end) {
|
|
|
|
memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// In any case, the covered size changes.
|
|
|
|
_covered[ind].set_word_size(new_region.word_size());
|
|
|
|
if (TraceCardTableModRefBS) {
|
|
|
|
gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" _covered[%d].start(): " INTPTR_FORMAT
|
|
|
|
" _covered[%d].last(): " INTPTR_FORMAT,
|
|
|
|
ind, _covered[ind].start(),
|
|
|
|
ind, _covered[ind].last());
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" _committed[%d].start(): " INTPTR_FORMAT
|
|
|
|
" _committed[%d].last(): " INTPTR_FORMAT,
|
|
|
|
ind, _committed[ind].start(),
|
|
|
|
ind, _committed[ind].last());
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" byte_for(start): " INTPTR_FORMAT
|
|
|
|
" byte_for(last): " INTPTR_FORMAT,
|
|
|
|
byte_for(_covered[ind].start()),
|
|
|
|
byte_for(_covered[ind].last()));
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" addr_for(start): " INTPTR_FORMAT
|
|
|
|
" addr_for(last): " INTPTR_FORMAT,
|
|
|
|
addr_for((jbyte*) _committed[ind].start()),
|
|
|
|
addr_for((jbyte*) _committed[ind].last()));
|
|
|
|
}
|
2010-06-23 08:35:31 -07:00
|
|
|
// Touch the last card of the covered region to show that it
|
|
|
|
// is committed (or SEGV).
|
|
|
|
debug_only(*byte_for(_covered[ind].last());)
|
2007-12-01 00:00:00 +00:00
|
|
|
debug_only(verify_guard();)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note that these versions are precise! The scanning code has to handle the
|
|
|
|
// fact that the write barrier may be either precise or imprecise.
|
|
|
|
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
|
2007-12-01 00:00:00 +00:00
|
|
|
inline_write_ref_field(field, newVal);
|
|
|
|
}
|
|
|
|
|
2009-03-06 13:50:14 -08:00
|
|
|
/*
|
|
|
|
Claimed and deferred bits are used together in G1 during the evacuation
|
|
|
|
pause. These bits can have the following state transitions:
|
|
|
|
1. The claimed bit can be put over any other card state. Except that
|
|
|
|
the "dirty -> dirty and claimed" transition is checked for in
|
|
|
|
G1 code and is not used.
|
|
|
|
2. Deferred bit can be set only if the previous state of the card
|
|
|
|
was either clean or claimed. mark_card_deferred() is wait-free.
|
|
|
|
We do not care if the operation is be successful because if
|
|
|
|
it does not it will only result in duplicate entry in the update
|
|
|
|
buffer because of the "cache-miss". So it's not worth spinning.
|
|
|
|
*/
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
bool CardTableModRefBS::claim_card(size_t card_index) {
|
|
|
|
jbyte val = _byte_map[card_index];
|
2009-03-06 13:50:14 -08:00
|
|
|
assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
|
|
|
|
while (val == clean_card_val() ||
|
|
|
|
(val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
|
|
|
|
jbyte new_val = val;
|
|
|
|
if (val == clean_card_val()) {
|
|
|
|
new_val = (jbyte)claimed_card_val();
|
|
|
|
} else {
|
|
|
|
new_val = val | (jbyte)claimed_card_val();
|
|
|
|
}
|
|
|
|
jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
|
|
|
|
if (res == val) {
|
2008-06-05 15:57:56 -07:00
|
|
|
return true;
|
2009-03-06 13:50:14 -08:00
|
|
|
}
|
|
|
|
val = res;
|
2008-06-05 15:57:56 -07:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-03-06 13:50:14 -08:00
|
|
|
bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
|
|
|
|
jbyte val = _byte_map[card_index];
|
|
|
|
// It's already processed
|
|
|
|
if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// Cached bit can be installed either on a clean card or on a claimed card.
|
|
|
|
jbyte new_val = val;
|
|
|
|
if (val == clean_card_val()) {
|
|
|
|
new_val = (jbyte)deferred_card_val();
|
|
|
|
} else {
|
|
|
|
if (val & claimed_card_val()) {
|
|
|
|
new_val = val | (jbyte)deferred_card_val();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (new_val != val) {
|
|
|
|
Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
void CardTableModRefBS::non_clean_card_iterate(Space* sp,
|
|
|
|
MemRegion mr,
|
|
|
|
DirtyCardToOopClosure* dcto_cl,
|
|
|
|
MemRegionClosure* cl,
|
|
|
|
bool clear) {
|
|
|
|
if (!mr.is_empty()) {
|
|
|
|
int n_threads = SharedHeap::heap()->n_par_threads();
|
|
|
|
if (n_threads > 0) {
|
|
|
|
#ifndef SERIALGC
|
|
|
|
par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
|
|
|
|
#else // SERIALGC
|
|
|
|
fatal("Parallel gc not supported here.");
|
|
|
|
#endif // SERIALGC
|
|
|
|
} else {
|
|
|
|
non_clean_card_iterate_work(mr, cl, clear);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOTE: For this to work correctly, it is important that
|
|
|
|
// we look for non-clean cards below (so as to catch those
|
|
|
|
// marked precleaned), rather than look explicitly for dirty
|
|
|
|
// cards (and miss those marked precleaned). In that sense,
|
|
|
|
// the name precleaned is currently somewhat of a misnomer.
|
|
|
|
void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
|
|
|
|
MemRegionClosure* cl,
|
|
|
|
bool clear) {
|
|
|
|
// Figure out whether we have to worry about parallelism.
|
|
|
|
bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (mri.word_size() > 0) {
|
|
|
|
jbyte* cur_entry = byte_for(mri.last());
|
|
|
|
jbyte* limit = byte_for(mri.start());
|
|
|
|
while (cur_entry >= limit) {
|
|
|
|
jbyte* next_entry = cur_entry - 1;
|
|
|
|
if (*cur_entry != clean_card) {
|
|
|
|
size_t non_clean_cards = 1;
|
|
|
|
// Should the next card be included in this range of dirty cards.
|
|
|
|
while (next_entry >= limit && *next_entry != clean_card) {
|
|
|
|
non_clean_cards++;
|
|
|
|
cur_entry = next_entry;
|
|
|
|
next_entry--;
|
|
|
|
}
|
|
|
|
// The memory region may not be on a card boundary. So that
|
|
|
|
// objects beyond the end of the region are not processed, make
|
|
|
|
// cur_cards precise with regard to the end of the memory region.
|
|
|
|
MemRegion cur_cards(addr_for(cur_entry),
|
|
|
|
non_clean_cards * card_size_in_words);
|
|
|
|
MemRegion dirty_region = cur_cards.intersection(mri);
|
|
|
|
if (clear) {
|
|
|
|
for (size_t i = 0; i < non_clean_cards; i++) {
|
|
|
|
// Clean the dirty cards (but leave the other non-clean
|
|
|
|
// alone.) If parallel, do the cleaning atomically.
|
|
|
|
jbyte cur_entry_val = cur_entry[i];
|
|
|
|
if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
|
|
|
|
if (is_par) {
|
|
|
|
jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
|
|
|
|
assert(res != clean_card,
|
|
|
|
"Dirty card mysteriously cleaned");
|
|
|
|
} else {
|
|
|
|
cur_entry[i] = clean_card;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cl->do_MemRegion(dirty_region);
|
|
|
|
}
|
|
|
|
cur_entry = next_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
|
|
|
|
OopClosure* cl,
|
|
|
|
bool clear,
|
|
|
|
bool before_save_marks) {
|
|
|
|
// Note that dcto_cl is resource-allocated, so there is no
|
|
|
|
// corresponding "delete".
|
|
|
|
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
|
|
|
|
MemRegion used_mr;
|
|
|
|
if (before_save_marks) {
|
|
|
|
used_mr = sp->used_region_at_save_marks();
|
|
|
|
} else {
|
|
|
|
used_mr = sp->used_region();
|
|
|
|
}
|
|
|
|
non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
|
2009-12-03 15:01:57 -08:00
|
|
|
assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
|
|
|
|
assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
|
2007-12-01 00:00:00 +00:00
|
|
|
jbyte* cur = byte_for(mr.start());
|
|
|
|
jbyte* last = byte_after(mr.last());
|
|
|
|
while (cur < last) {
|
|
|
|
*cur = dirty_card;
|
|
|
|
cur++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
|
2009-12-03 15:01:57 -08:00
|
|
|
assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
|
|
|
|
assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
|
2007-12-01 00:00:00 +00:00
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (!mri.is_empty()) dirty_MemRegion(mri);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
|
|
|
|
// Be conservative: only clean cards entirely contained within the
|
|
|
|
// region.
|
|
|
|
jbyte* cur;
|
|
|
|
if (mr.start() == _whole_heap.start()) {
|
|
|
|
cur = byte_for(mr.start());
|
|
|
|
} else {
|
|
|
|
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
|
|
|
|
cur = byte_after(mr.start() - 1);
|
|
|
|
}
|
|
|
|
jbyte* last = byte_after(mr.last());
|
|
|
|
memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::clear(MemRegion mr) {
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (!mri.is_empty()) clear_MemRegion(mri);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
void CardTableModRefBS::dirty(MemRegion mr) {
|
|
|
|
jbyte* first = byte_for(mr.start());
|
|
|
|
jbyte* last = byte_after(mr.last());
|
|
|
|
memset(first, dirty_card, last-first);
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
// NOTES:
|
|
|
|
// (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
|
|
|
|
// iterates over dirty cards ranges in increasing address order.
|
|
|
|
void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
|
|
|
|
MemRegionClosure* cl) {
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (!mri.is_empty()) {
|
|
|
|
jbyte *cur_entry, *next_entry, *limit;
|
|
|
|
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
|
|
cur_entry <= limit;
|
|
|
|
cur_entry = next_entry) {
|
|
|
|
next_entry = cur_entry + 1;
|
|
|
|
if (*cur_entry == dirty_card) {
|
|
|
|
size_t dirty_cards;
|
|
|
|
// Accumulate maximal dirty card range, starting at cur_entry
|
|
|
|
for (dirty_cards = 1;
|
|
|
|
next_entry <= limit && *next_entry == dirty_card;
|
|
|
|
dirty_cards++, next_entry++);
|
|
|
|
MemRegion cur_cards(addr_for(cur_entry),
|
|
|
|
dirty_cards*card_size_in_words);
|
|
|
|
cl->do_MemRegion(cur_cards);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
|
|
|
|
bool reset,
|
|
|
|
int reset_val) {
|
2007-12-01 00:00:00 +00:00
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (!mri.is_empty()) {
|
|
|
|
jbyte* cur_entry, *next_entry, *limit;
|
|
|
|
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
|
|
cur_entry <= limit;
|
|
|
|
cur_entry = next_entry) {
|
|
|
|
next_entry = cur_entry + 1;
|
|
|
|
if (*cur_entry == dirty_card) {
|
|
|
|
size_t dirty_cards;
|
|
|
|
// Accumulate maximal dirty card range, starting at cur_entry
|
|
|
|
for (dirty_cards = 1;
|
|
|
|
next_entry <= limit && *next_entry == dirty_card;
|
|
|
|
dirty_cards++, next_entry++);
|
|
|
|
MemRegion cur_cards(addr_for(cur_entry),
|
|
|
|
dirty_cards*card_size_in_words);
|
2008-06-05 15:57:56 -07:00
|
|
|
if (reset) {
|
|
|
|
for (size_t i = 0; i < dirty_cards; i++) {
|
|
|
|
cur_entry[i] = reset_val;
|
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
return cur_cards;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return MemRegion(mr.end(), mr.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set all the dirty cards in the given region to "precleaned" state.
|
|
|
|
void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
MemRegion mri = mr.intersection(_covered[i]);
|
|
|
|
if (!mri.is_empty()) {
|
|
|
|
jbyte *cur_entry, *limit;
|
|
|
|
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
|
|
cur_entry <= limit;
|
|
|
|
cur_entry++) {
|
|
|
|
if (*cur_entry == dirty_card) {
|
|
|
|
*cur_entry = precleaned_card;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uintx CardTableModRefBS::ct_max_alignment_constraint() {
|
|
|
|
return card_size * os::vm_page_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::verify_guard() {
|
|
|
|
// For product build verification
|
|
|
|
guarantee(_byte_map[_guard_index] == last_card,
|
|
|
|
"card table guard has been modified");
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableModRefBS::verify() {
|
|
|
|
verify_guard();
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
class GuaranteeNotModClosure: public MemRegionClosure {
|
|
|
|
CardTableModRefBS* _ct;
|
|
|
|
public:
|
|
|
|
GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
|
|
|
|
void do_MemRegion(MemRegion mr) {
|
|
|
|
jbyte* entry = _ct->byte_for(mr.start());
|
|
|
|
guarantee(*entry != CardTableModRefBS::clean_card,
|
|
|
|
"Dirty card in region that should be clean");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
void CardTableModRefBS::verify_clean_region(MemRegion mr) {
|
|
|
|
GuaranteeNotModClosure blk(this);
|
|
|
|
non_clean_card_iterate_work(mr, &blk, false);
|
|
|
|
}
|
2009-08-31 05:27:29 -07:00
|
|
|
|
|
|
|
// To verify a MemRegion is entirely dirty this closure is passed to
|
|
|
|
// dirty_card_iterate. If the region is dirty do_MemRegion will be
|
|
|
|
// invoked only once with a MemRegion equal to the one being
|
|
|
|
// verified.
|
|
|
|
class GuaranteeDirtyClosure: public MemRegionClosure {
|
|
|
|
CardTableModRefBS* _ct;
|
|
|
|
MemRegion _mr;
|
|
|
|
bool _result;
|
|
|
|
public:
|
|
|
|
GuaranteeDirtyClosure(CardTableModRefBS* ct, MemRegion mr)
|
|
|
|
: _ct(ct), _mr(mr), _result(false) {}
|
|
|
|
void do_MemRegion(MemRegion mr) {
|
|
|
|
_result = _mr.equals(mr);
|
|
|
|
}
|
|
|
|
bool result() const { return _result; }
|
|
|
|
};
|
|
|
|
|
|
|
|
void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
|
|
|
|
GuaranteeDirtyClosure blk(this, mr);
|
|
|
|
dirty_card_iterate(mr, &blk);
|
|
|
|
guarantee(blk.result(), "Non-dirty cards in region that should be dirty");
|
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
|
|
|
|
return
|
|
|
|
CardTableModRefBS::card_will_be_scanned(cv) ||
|
|
|
|
_rs->is_prev_nonclean_card_val(cv);
|
|
|
|
};
|
|
|
|
|
|
|
|
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
|
|
|
|
return
|
|
|
|
cv != clean_card &&
|
|
|
|
(CardTableModRefBS::card_may_have_been_dirty(cv) ||
|
|
|
|
CardTableRS::youngergen_may_have_been_dirty(cv));
|
|
|
|
};
|