jdk-24/test/hotspot/gtest/memory/test_metaspace_allocation.cpp

274 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, SAP.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/metaspace.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/ostream.hpp"
#include "unittest.hpp"
#define NUM_PARALLEL_METASPACES 50
#define MAX_PER_METASPACE_ALLOCATION_WORDSIZE (512 * K)
//#define DEBUG_VERBOSE true
#ifdef DEBUG_VERBOSE
struct chunkmanager_statistics_t {
int num_specialized_chunks;
int num_small_chunks;
int num_medium_chunks;
int num_humongous_chunks;
};
extern void test_metaspace_retrieve_chunkmanager_statistics(Metaspace::MetadataType mdType, chunkmanager_statistics_t* out);
static void print_chunkmanager_statistics(outputStream* st, Metaspace::MetadataType mdType) {
chunkmanager_statistics_t stat;
test_metaspace_retrieve_chunkmanager_statistics(mdType, &stat);
st->print_cr("free chunks: %d / %d / %d / %d", stat.num_specialized_chunks, stat.num_small_chunks,
stat.num_medium_chunks, stat.num_humongous_chunks);
}
#endif
struct chunk_geometry_t {
size_t specialized_chunk_word_size;
size_t small_chunk_word_size;
size_t medium_chunk_word_size;
};
extern void test_metaspace_retrieve_chunk_geometry(Metaspace::MetadataType mdType, chunk_geometry_t* out);
class MetaspaceAllocationTest : public ::testing::Test {
protected:
struct {
size_t allocated;
Mutex* lock;
ClassLoaderMetaspace* space;
bool is_empty() const { return allocated == 0; }
bool is_full() const { return allocated >= MAX_PER_METASPACE_ALLOCATION_WORDSIZE; }
} _spaces[NUM_PARALLEL_METASPACES];
chunk_geometry_t _chunk_geometry;
virtual void SetUp() {
::memset(_spaces, 0, sizeof(_spaces));
test_metaspace_retrieve_chunk_geometry(Metaspace::NonClassType, &_chunk_geometry);
}
virtual void TearDown() {
for (int i = 0; i < NUM_PARALLEL_METASPACES; i ++) {
if (_spaces[i].space != NULL) {
delete _spaces[i].space;
delete _spaces[i].lock;
}
}
}
void create_space(int i) {
assert(i >= 0 && i < NUM_PARALLEL_METASPACES, "Sanity");
assert(_spaces[i].space == NULL && _spaces[i].allocated == 0, "Sanity");
if (_spaces[i].lock == NULL) {
_spaces[i].lock = new Mutex(Monitor::native, "gtest-MetaspaceAllocationTest-lock", false, Monitor::_safepoint_check_never);
ASSERT_TRUE(_spaces[i].lock != NULL);
}
// Let every ~10th space be an unsafe anonymous one to test different allocation patterns.
const Metaspace::MetaspaceType msType = (os::random() % 100 < 10) ?
Metaspace::UnsafeAnonymousMetaspaceType : Metaspace::StandardMetaspaceType;
{
// Pull lock during space creation, since this is what happens in the VM too
// (see ClassLoaderData::metaspace_non_null(), which we mimick here).
MutexLockerEx ml(_spaces[i].lock, Mutex::_no_safepoint_check_flag);
_spaces[i].space = new ClassLoaderMetaspace(_spaces[i].lock, msType);
}
_spaces[i].allocated = 0;
ASSERT_TRUE(_spaces[i].space != NULL);
}
// Returns the index of a random space where index is [0..metaspaces) and which is
// empty, non-empty or full.
// Returns -1 if no matching space exists.
enum fillgrade { fg_empty, fg_non_empty, fg_full };
int get_random_matching_space(int metaspaces, fillgrade fg) {
const int start_index = os::random() % metaspaces;
int i = start_index;
do {
if (fg == fg_empty && _spaces[i].is_empty()) {
return i;
} else if ((fg == fg_full && _spaces[i].is_full()) ||
(fg == fg_non_empty && !_spaces[i].is_full() && !_spaces[i].is_empty())) {
return i;
}
i ++;
if (i == metaspaces) {
i = 0;
}
} while (i != start_index);
return -1;
}
int get_random_emtpy_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_empty); }
int get_random_non_emtpy_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_non_empty); }
int get_random_full_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_full); }
void do_test(Metaspace::MetadataType mdType, int metaspaces, int phases, int allocs_per_phase,
float probability_for_large_allocations // 0.0-1.0
) {
// Alternate between breathing in (allocating n blocks for a random Metaspace) and
// breathing out (deleting a random Metaspace). The intent is to stress the coalescation
// and splitting of free chunks.
int phases_done = 0;
bool allocating = true;
while (phases_done < phases) {
bool force_switch = false;
if (allocating) {
// Allocate space from metaspace, with a preference for completely empty spaces. This
// should provide a good mixture of metaspaces in the virtual space.
int index = get_random_emtpy_space(metaspaces);
if (index == -1) {
index = get_random_non_emtpy_space(metaspaces);
}
if (index == -1) {
// All spaces are full, switch to freeing.
force_switch = true;
} else {
// create space if it does not yet exist.
if (_spaces[index].space == NULL) {
create_space(index);
}
// Allocate a bunch of blocks from it. Mostly small stuff but mix in large allocations
// to force humongous chunk allocations.
int allocs_done = 0;
while (allocs_done < allocs_per_phase && !_spaces[index].is_full()) {
size_t size = 0;
int r = os::random() % 1000;
if ((float)r < probability_for_large_allocations * 1000.0) {
size = (os::random() % _chunk_geometry.medium_chunk_word_size) + _chunk_geometry.medium_chunk_word_size;
} else {
size = os::random() % 64;
}
// Note: In contrast to space creation, no need to lock here. ClassLoaderMetaspace::allocate() will lock itself.
MetaWord* const p = _spaces[index].space->allocate(size, mdType);
if (p == NULL) {
// We very probably did hit the metaspace "until-gc" limit.
#ifdef DEBUG_VERBOSE
tty->print_cr("OOM for " SIZE_FORMAT " words. ", size);
#endif
// Just switch to deallocation and resume tests.
force_switch = true;
break;
} else {
_spaces[index].allocated += size;
allocs_done ++;
}
}
}
} else {
// freeing: find a metaspace and delete it, with preference for completely filled spaces.
int index = get_random_full_space(metaspaces);
if (index == -1) {
index = get_random_non_emtpy_space(metaspaces);
}
if (index == -1) {
force_switch = true;
} else {
assert(_spaces[index].space != NULL && _spaces[index].allocated > 0, "Sanity");
// Note: do not lock here. In the "wild" (the VM), we do not so either (see ~ClassLoaderData()).
delete _spaces[index].space;
_spaces[index].space = NULL;
_spaces[index].allocated = 0;
}
}
if (force_switch) {
allocating = !allocating;
} else {
// periodically switch between allocating and freeing, but prefer allocation because
// we want to intermingle allocations of multiple metaspaces.
allocating = os::random() % 5 < 4;
}
phases_done ++;
#ifdef DEBUG_VERBOSE
int metaspaces_in_use = 0;
size_t total_allocated = 0;
for (int i = 0; i < metaspaces; i ++) {
if (_spaces[i].allocated > 0) {
total_allocated += _spaces[i].allocated;
metaspaces_in_use ++;
}
}
tty->print("%u:\tspaces: %d total words: " SIZE_FORMAT "\t\t\t", phases_done, metaspaces_in_use, total_allocated);
print_chunkmanager_statistics(tty, mdType);
#endif
}
#ifdef DEBUG_VERBOSE
tty->print_cr("Test finished. ");
MetaspaceUtils::print_metaspace_map(tty, mdType);
print_chunkmanager_statistics(tty, mdType);
#endif
}
};
TEST_F(MetaspaceAllocationTest, chunk_geometry) {
ASSERT_GT(_chunk_geometry.specialized_chunk_word_size, (size_t) 0);
ASSERT_GT(_chunk_geometry.small_chunk_word_size, _chunk_geometry.specialized_chunk_word_size);
ASSERT_EQ(_chunk_geometry.small_chunk_word_size % _chunk_geometry.specialized_chunk_word_size, (size_t)0);
ASSERT_GT(_chunk_geometry.medium_chunk_word_size, _chunk_geometry.small_chunk_word_size);
ASSERT_EQ(_chunk_geometry.medium_chunk_word_size % _chunk_geometry.small_chunk_word_size, (size_t)0);
}
TEST_VM_F(MetaspaceAllocationTest, single_space_nonclass) {
do_test(Metaspace::NonClassType, 1, 1000, 100, 0);
}
TEST_VM_F(MetaspaceAllocationTest, single_space_class) {
do_test(Metaspace::ClassType, 1, 1000, 100, 0);
}
TEST_VM_F(MetaspaceAllocationTest, multi_space_nonclass) {
do_test(Metaspace::NonClassType, NUM_PARALLEL_METASPACES, 100, 1000, 0.0);
}
TEST_VM_F(MetaspaceAllocationTest, multi_space_class) {
do_test(Metaspace::ClassType, NUM_PARALLEL_METASPACES, 100, 1000, 0.0);
}
TEST_VM_F(MetaspaceAllocationTest, multi_space_nonclass_2) {
// many metaspaces, with humongous chunks mixed in.
do_test(Metaspace::NonClassType, NUM_PARALLEL_METASPACES, 100, 1000, .006f);
}