2007-12-01 00:00:00 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2000-2002 Sun Microsystems, Inc. All Rights Reserved.
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
// This class provides the interface between a barrier implementation and
|
|
|
|
// the rest of the system.
|
|
|
|
|
|
|
|
class BarrierSet: public CHeapObj {
|
|
|
|
friend class VMStructs;
|
|
|
|
public:
|
|
|
|
enum Name {
|
|
|
|
ModRef,
|
|
|
|
CardTableModRef,
|
|
|
|
CardTableExtension,
|
2008-06-05 15:57:56 -07:00
|
|
|
G1SATBCT,
|
|
|
|
G1SATBCTLogging,
|
2007-12-01 00:00:00 +00:00
|
|
|
Other,
|
|
|
|
Uninit
|
|
|
|
};
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int _max_covered_regions;
|
|
|
|
Name _kind;
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
BarrierSet() { _kind = Uninit; }
|
2007-12-01 00:00:00 +00:00
|
|
|
// To get around prohibition on RTTI.
|
2008-06-05 15:57:56 -07:00
|
|
|
BarrierSet::Name kind() { return _kind; }
|
2007-12-01 00:00:00 +00:00
|
|
|
virtual bool is_a(BarrierSet::Name bsn) = 0;
|
|
|
|
|
|
|
|
// These operations indicate what kind of barriers the BarrierSet has.
|
|
|
|
virtual bool has_read_ref_barrier() = 0;
|
|
|
|
virtual bool has_read_prim_barrier() = 0;
|
|
|
|
virtual bool has_write_ref_barrier() = 0;
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual bool has_write_ref_pre_barrier() = 0;
|
2007-12-01 00:00:00 +00:00
|
|
|
virtual bool has_write_prim_barrier() = 0;
|
|
|
|
|
|
|
|
// These functions indicate whether a particular access of the given
|
|
|
|
// kinds requires a barrier.
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
virtual bool read_ref_needs_barrier(void* field) = 0;
|
2007-12-01 00:00:00 +00:00
|
|
|
virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
virtual bool write_ref_needs_barrier(void* field, oop new_val) = 0;
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
|
|
|
|
juint val1, juint val2) = 0;
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
// The first four operations provide a direct implementation of the
|
|
|
|
// barrier set. An interpreter loop, for example, could call these
|
|
|
|
// directly, as appropriate.
|
|
|
|
|
|
|
|
// Invoke the barrier, if any, necessary when reading the given ref field.
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
virtual void read_ref_field(void* field) = 0;
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
// Invoke the barrier, if any, necessary when reading the given primitive
|
|
|
|
// "field" of "bytes" bytes in "obj".
|
|
|
|
virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
|
|
|
|
|
|
|
|
// Invoke the barrier, if any, necessary when writing "new_val" into the
|
|
|
|
// ref field at "offset" in "obj".
|
|
|
|
// (For efficiency reasons, this operation is specialized for certain
|
|
|
|
// barrier types. Semantically, it should be thought of as a call to the
|
|
|
|
// virtual "_work" function below, which must implement the barrier.)
|
2008-06-05 15:57:56 -07:00
|
|
|
// First the pre-write versions...
|
|
|
|
inline void write_ref_field_pre(void* field, oop new_val);
|
|
|
|
protected:
|
|
|
|
virtual void write_ref_field_pre_work(void* field, oop new_val) {};
|
|
|
|
public:
|
|
|
|
|
|
|
|
// ...then the post-write version.
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
inline void write_ref_field(void* field, oop new_val);
|
2007-12-01 00:00:00 +00:00
|
|
|
protected:
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
virtual void write_ref_field_work(void* field, oop new_val) = 0;
|
2007-12-01 00:00:00 +00:00
|
|
|
public:
|
|
|
|
|
|
|
|
// Invoke the barrier, if any, necessary when writing the "bytes"-byte
|
|
|
|
// value(s) "val1" (and "val2") into the primitive "field".
|
|
|
|
virtual void write_prim_field(HeapWord* field, size_t bytes,
|
|
|
|
juint val1, juint val2) = 0;
|
|
|
|
|
|
|
|
// Operations on arrays, or general regions (e.g., for "clone") may be
|
|
|
|
// optimized by some barriers.
|
|
|
|
|
|
|
|
// The first six operations tell whether such an optimization exists for
|
|
|
|
// the particular barrier.
|
|
|
|
virtual bool has_read_ref_array_opt() = 0;
|
|
|
|
virtual bool has_read_prim_array_opt() = 0;
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual bool has_write_ref_array_pre_opt() { return true; }
|
2007-12-01 00:00:00 +00:00
|
|
|
virtual bool has_write_ref_array_opt() = 0;
|
|
|
|
virtual bool has_write_prim_array_opt() = 0;
|
|
|
|
|
|
|
|
virtual bool has_read_region_opt() = 0;
|
|
|
|
virtual bool has_write_region_opt() = 0;
|
|
|
|
|
|
|
|
// These operations should assert false unless the correponding operation
|
|
|
|
// above returns true. Otherwise, they should perform an appropriate
|
|
|
|
// barrier for an array whose elements are all in the given memory region.
|
|
|
|
virtual void read_ref_array(MemRegion mr) = 0;
|
|
|
|
virtual void read_prim_array(MemRegion mr) = 0;
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual void write_ref_array_pre(MemRegion mr) {}
|
2007-12-01 00:00:00 +00:00
|
|
|
inline void write_ref_array(MemRegion mr);
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Static versions, suitable for calling from generated code.
|
|
|
|
static void static_write_ref_array_pre(HeapWord* start, size_t count);
|
|
|
|
static void static_write_ref_array_post(HeapWord* start, size_t count);
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
protected:
|
|
|
|
virtual void write_ref_array_work(MemRegion mr) = 0;
|
|
|
|
public:
|
|
|
|
virtual void write_prim_array(MemRegion mr) = 0;
|
|
|
|
|
|
|
|
virtual void read_region(MemRegion mr) = 0;
|
|
|
|
|
|
|
|
// (For efficiency reasons, this operation is specialized for certain
|
|
|
|
// barrier types. Semantically, it should be thought of as a call to the
|
|
|
|
// virtual "_work" function below, which must implement the barrier.)
|
|
|
|
inline void write_region(MemRegion mr);
|
|
|
|
protected:
|
|
|
|
virtual void write_region_work(MemRegion mr) = 0;
|
|
|
|
public:
|
|
|
|
|
|
|
|
// Some barrier sets create tables whose elements correspond to parts of
|
|
|
|
// the heap; the CardTableModRefBS is an example. Such barrier sets will
|
|
|
|
// normally reserve space for such tables, and commit parts of the table
|
|
|
|
// "covering" parts of the heap that are committed. The constructor is
|
|
|
|
// passed the maximum number of independently committable subregions to
|
|
|
|
// be covered, and the "resize_covoered_region" function allows the
|
|
|
|
// sub-parts of the heap to inform the barrier set of changes of their
|
|
|
|
// sizes.
|
|
|
|
BarrierSet(int max_covered_regions) :
|
|
|
|
_max_covered_regions(max_covered_regions) {}
|
|
|
|
|
|
|
|
// Inform the BarrierSet that the the covered heap region that starts
|
|
|
|
// with "base" has been changed to have the given size (possibly from 0,
|
|
|
|
// for initialization.)
|
|
|
|
virtual void resize_covered_region(MemRegion new_region) = 0;
|
|
|
|
|
|
|
|
// If the barrier set imposes any alignment restrictions on boundaries
|
|
|
|
// within the heap, this function tells whether they are met.
|
|
|
|
virtual bool is_aligned(HeapWord* addr) = 0;
|
|
|
|
|
|
|
|
};
|