494 lines
16 KiB
Java
494 lines
16 KiB
Java
|
/*
|
||
|
* Copyright (c) 1996, 2011, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
package sun.misc;
|
||
|
|
||
|
/*
|
||
|
* A really, really simple bigint package
|
||
|
* tailored to the needs of floating base conversion.
|
||
|
*/
|
||
|
class FDBigInt {
|
||
|
int nWords; // number of words used
|
||
|
int data[]; // value: data[0] is least significant
|
||
|
|
||
|
|
||
|
public FDBigInt( int v ){
|
||
|
nWords = 1;
|
||
|
data = new int[1];
|
||
|
data[0] = v;
|
||
|
}
|
||
|
|
||
|
public FDBigInt( long v ){
|
||
|
data = new int[2];
|
||
|
data[0] = (int)v;
|
||
|
data[1] = (int)(v>>>32);
|
||
|
nWords = (data[1]==0) ? 1 : 2;
|
||
|
}
|
||
|
|
||
|
public FDBigInt( FDBigInt other ){
|
||
|
data = new int[nWords = other.nWords];
|
||
|
System.arraycopy( other.data, 0, data, 0, nWords );
|
||
|
}
|
||
|
|
||
|
private FDBigInt( int [] d, int n ){
|
||
|
data = d;
|
||
|
nWords = n;
|
||
|
}
|
||
|
|
||
|
public FDBigInt( long seed, char digit[], int nd0, int nd ){
|
||
|
int n= (nd+8)/9; // estimate size needed.
|
||
|
if ( n < 2 ) n = 2;
|
||
|
data = new int[n]; // allocate enough space
|
||
|
data[0] = (int)seed; // starting value
|
||
|
data[1] = (int)(seed>>>32);
|
||
|
nWords = (data[1]==0) ? 1 : 2;
|
||
|
int i = nd0;
|
||
|
int limit = nd-5; // slurp digits 5 at a time.
|
||
|
int v;
|
||
|
while ( i < limit ){
|
||
|
int ilim = i+5;
|
||
|
v = (int)digit[i++]-(int)'0';
|
||
|
while( i <ilim ){
|
||
|
v = 10*v + (int)digit[i++]-(int)'0';
|
||
|
}
|
||
|
multaddMe( 100000, v); // ... where 100000 is 10^5.
|
||
|
}
|
||
|
int factor = 1;
|
||
|
v = 0;
|
||
|
while ( i < nd ){
|
||
|
v = 10*v + (int)digit[i++]-(int)'0';
|
||
|
factor *= 10;
|
||
|
}
|
||
|
if ( factor != 1 ){
|
||
|
multaddMe( factor, v );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Left shift by c bits.
|
||
|
* Shifts this in place.
|
||
|
*/
|
||
|
public void
|
||
|
lshiftMe( int c )throws IllegalArgumentException {
|
||
|
if ( c <= 0 ){
|
||
|
if ( c == 0 )
|
||
|
return; // silly.
|
||
|
else
|
||
|
throw new IllegalArgumentException("negative shift count");
|
||
|
}
|
||
|
int wordcount = c>>5;
|
||
|
int bitcount = c & 0x1f;
|
||
|
int anticount = 32-bitcount;
|
||
|
int t[] = data;
|
||
|
int s[] = data;
|
||
|
if ( nWords+wordcount+1 > t.length ){
|
||
|
// reallocate.
|
||
|
t = new int[ nWords+wordcount+1 ];
|
||
|
}
|
||
|
int target = nWords+wordcount;
|
||
|
int src = nWords-1;
|
||
|
if ( bitcount == 0 ){
|
||
|
// special hack, since an anticount of 32 won't go!
|
||
|
System.arraycopy( s, 0, t, wordcount, nWords );
|
||
|
target = wordcount-1;
|
||
|
} else {
|
||
|
t[target--] = s[src]>>>anticount;
|
||
|
while ( src >= 1 ){
|
||
|
t[target--] = (s[src]<<bitcount) | (s[--src]>>>anticount);
|
||
|
}
|
||
|
t[target--] = s[src]<<bitcount;
|
||
|
}
|
||
|
while( target >= 0 ){
|
||
|
t[target--] = 0;
|
||
|
}
|
||
|
data = t;
|
||
|
nWords += wordcount + 1;
|
||
|
// may have constructed high-order word of 0.
|
||
|
// if so, trim it
|
||
|
while ( nWords > 1 && data[nWords-1] == 0 )
|
||
|
nWords--;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* normalize this number by shifting until
|
||
|
* the MSB of the number is at 0x08000000.
|
||
|
* This is in preparation for quoRemIteration, below.
|
||
|
* The idea is that, to make division easier, we want the
|
||
|
* divisor to be "normalized" -- usually this means shifting
|
||
|
* the MSB into the high words sign bit. But because we know that
|
||
|
* the quotient will be 0 < q < 10, we would like to arrange that
|
||
|
* the dividend not span up into another word of precision.
|
||
|
* (This needs to be explained more clearly!)
|
||
|
*/
|
||
|
public int
|
||
|
normalizeMe() throws IllegalArgumentException {
|
||
|
int src;
|
||
|
int wordcount = 0;
|
||
|
int bitcount = 0;
|
||
|
int v = 0;
|
||
|
for ( src= nWords-1 ; src >= 0 && (v=data[src]) == 0 ; src--){
|
||
|
wordcount += 1;
|
||
|
}
|
||
|
if ( src < 0 ){
|
||
|
// oops. Value is zero. Cannot normalize it!
|
||
|
throw new IllegalArgumentException("zero value");
|
||
|
}
|
||
|
/*
|
||
|
* In most cases, we assume that wordcount is zero. This only
|
||
|
* makes sense, as we try not to maintain any high-order
|
||
|
* words full of zeros. In fact, if there are zeros, we will
|
||
|
* simply SHORTEN our number at this point. Watch closely...
|
||
|
*/
|
||
|
nWords -= wordcount;
|
||
|
/*
|
||
|
* Compute how far left we have to shift v s.t. its highest-
|
||
|
* order bit is in the right place. Then call lshiftMe to
|
||
|
* do the work.
|
||
|
*/
|
||
|
if ( (v & 0xf0000000) != 0 ){
|
||
|
// will have to shift up into the next word.
|
||
|
// too bad.
|
||
|
for( bitcount = 32 ; (v & 0xf0000000) != 0 ; bitcount-- )
|
||
|
v >>>= 1;
|
||
|
} else {
|
||
|
while ( v <= 0x000fffff ){
|
||
|
// hack: byte-at-a-time shifting
|
||
|
v <<= 8;
|
||
|
bitcount += 8;
|
||
|
}
|
||
|
while ( v <= 0x07ffffff ){
|
||
|
v <<= 1;
|
||
|
bitcount += 1;
|
||
|
}
|
||
|
}
|
||
|
if ( bitcount != 0 )
|
||
|
lshiftMe( bitcount );
|
||
|
return bitcount;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Multiply a FDBigInt by an int.
|
||
|
* Result is a new FDBigInt.
|
||
|
*/
|
||
|
public FDBigInt
|
||
|
mult( int iv ) {
|
||
|
long v = iv;
|
||
|
int r[];
|
||
|
long p;
|
||
|
|
||
|
// guess adequate size of r.
|
||
|
r = new int[ ( v * ((long)data[nWords-1]&0xffffffffL) > 0xfffffffL ) ? nWords+1 : nWords ];
|
||
|
p = 0L;
|
||
|
for( int i=0; i < nWords; i++ ) {
|
||
|
p += v * ((long)data[i]&0xffffffffL);
|
||
|
r[i] = (int)p;
|
||
|
p >>>= 32;
|
||
|
}
|
||
|
if ( p == 0L){
|
||
|
return new FDBigInt( r, nWords );
|
||
|
} else {
|
||
|
r[nWords] = (int)p;
|
||
|
return new FDBigInt( r, nWords+1 );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Multiply a FDBigInt by an int and add another int.
|
||
|
* Result is computed in place.
|
||
|
* Hope it fits!
|
||
|
*/
|
||
|
public void
|
||
|
multaddMe( int iv, int addend ) {
|
||
|
long v = iv;
|
||
|
long p;
|
||
|
|
||
|
// unroll 0th iteration, doing addition.
|
||
|
p = v * ((long)data[0]&0xffffffffL) + ((long)addend&0xffffffffL);
|
||
|
data[0] = (int)p;
|
||
|
p >>>= 32;
|
||
|
for( int i=1; i < nWords; i++ ) {
|
||
|
p += v * ((long)data[i]&0xffffffffL);
|
||
|
data[i] = (int)p;
|
||
|
p >>>= 32;
|
||
|
}
|
||
|
if ( p != 0L){
|
||
|
data[nWords] = (int)p; // will fail noisily if illegal!
|
||
|
nWords++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Multiply a FDBigInt by another FDBigInt.
|
||
|
* Result is a new FDBigInt.
|
||
|
*/
|
||
|
public FDBigInt
|
||
|
mult( FDBigInt other ){
|
||
|
// crudely guess adequate size for r
|
||
|
int r[] = new int[ nWords + other.nWords ];
|
||
|
int i;
|
||
|
// I think I am promised zeros...
|
||
|
|
||
|
for( i = 0; i < this.nWords; i++ ){
|
||
|
long v = (long)this.data[i] & 0xffffffffL; // UNSIGNED CONVERSION
|
||
|
long p = 0L;
|
||
|
int j;
|
||
|
for( j = 0; j < other.nWords; j++ ){
|
||
|
p += ((long)r[i+j]&0xffffffffL) + v*((long)other.data[j]&0xffffffffL); // UNSIGNED CONVERSIONS ALL 'ROUND.
|
||
|
r[i+j] = (int)p;
|
||
|
p >>>= 32;
|
||
|
}
|
||
|
r[i+j] = (int)p;
|
||
|
}
|
||
|
// compute how much of r we actually needed for all that.
|
||
|
for ( i = r.length-1; i> 0; i--)
|
||
|
if ( r[i] != 0 )
|
||
|
break;
|
||
|
return new FDBigInt( r, i+1 );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add one FDBigInt to another. Return a FDBigInt
|
||
|
*/
|
||
|
public FDBigInt
|
||
|
add( FDBigInt other ){
|
||
|
int i;
|
||
|
int a[], b[];
|
||
|
int n, m;
|
||
|
long c = 0L;
|
||
|
// arrange such that a.nWords >= b.nWords;
|
||
|
// n = a.nWords, m = b.nWords
|
||
|
if ( this.nWords >= other.nWords ){
|
||
|
a = this.data;
|
||
|
n = this.nWords;
|
||
|
b = other.data;
|
||
|
m = other.nWords;
|
||
|
} else {
|
||
|
a = other.data;
|
||
|
n = other.nWords;
|
||
|
b = this.data;
|
||
|
m = this.nWords;
|
||
|
}
|
||
|
int r[] = new int[ n ];
|
||
|
for ( i = 0; i < n; i++ ){
|
||
|
c += (long)a[i] & 0xffffffffL;
|
||
|
if ( i < m ){
|
||
|
c += (long)b[i] & 0xffffffffL;
|
||
|
}
|
||
|
r[i] = (int) c;
|
||
|
c >>= 32; // signed shift.
|
||
|
}
|
||
|
if ( c != 0L ){
|
||
|
// oops -- carry out -- need longer result.
|
||
|
int s[] = new int[ r.length+1 ];
|
||
|
System.arraycopy( r, 0, s, 0, r.length );
|
||
|
s[i++] = (int)c;
|
||
|
return new FDBigInt( s, i );
|
||
|
}
|
||
|
return new FDBigInt( r, i );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Subtract one FDBigInt from another. Return a FDBigInt
|
||
|
* Assert that the result is positive.
|
||
|
*/
|
||
|
public FDBigInt
|
||
|
sub( FDBigInt other ){
|
||
|
int r[] = new int[ this.nWords ];
|
||
|
int i;
|
||
|
int n = this.nWords;
|
||
|
int m = other.nWords;
|
||
|
int nzeros = 0;
|
||
|
long c = 0L;
|
||
|
for ( i = 0; i < n; i++ ){
|
||
|
c += (long)this.data[i] & 0xffffffffL;
|
||
|
if ( i < m ){
|
||
|
c -= (long)other.data[i] & 0xffffffffL;
|
||
|
}
|
||
|
if ( ( r[i] = (int) c ) == 0 )
|
||
|
nzeros++;
|
||
|
else
|
||
|
nzeros = 0;
|
||
|
c >>= 32; // signed shift
|
||
|
}
|
||
|
assert c == 0L : c; // borrow out of subtract
|
||
|
assert dataInRangeIsZero(i, m, other); // negative result of subtract
|
||
|
return new FDBigInt( r, n-nzeros );
|
||
|
}
|
||
|
|
||
|
private static boolean dataInRangeIsZero(int i, int m, FDBigInt other) {
|
||
|
while ( i < m )
|
||
|
if (other.data[i++] != 0)
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compare FDBigInt with another FDBigInt. Return an integer
|
||
|
* >0: this > other
|
||
|
* 0: this == other
|
||
|
* <0: this < other
|
||
|
*/
|
||
|
public int
|
||
|
cmp( FDBigInt other ){
|
||
|
int i;
|
||
|
if ( this.nWords > other.nWords ){
|
||
|
// if any of my high-order words is non-zero,
|
||
|
// then the answer is evident
|
||
|
int j = other.nWords-1;
|
||
|
for ( i = this.nWords-1; i > j ; i-- )
|
||
|
if ( this.data[i] != 0 ) return 1;
|
||
|
}else if ( this.nWords < other.nWords ){
|
||
|
// if any of other's high-order words is non-zero,
|
||
|
// then the answer is evident
|
||
|
int j = this.nWords-1;
|
||
|
for ( i = other.nWords-1; i > j ; i-- )
|
||
|
if ( other.data[i] != 0 ) return -1;
|
||
|
} else{
|
||
|
i = this.nWords-1;
|
||
|
}
|
||
|
for ( ; i > 0 ; i-- )
|
||
|
if ( this.data[i] != other.data[i] )
|
||
|
break;
|
||
|
// careful! want unsigned compare!
|
||
|
// use brute force here.
|
||
|
int a = this.data[i];
|
||
|
int b = other.data[i];
|
||
|
if ( a < 0 ){
|
||
|
// a is really big, unsigned
|
||
|
if ( b < 0 ){
|
||
|
return a-b; // both big, negative
|
||
|
} else {
|
||
|
return 1; // b not big, answer is obvious;
|
||
|
}
|
||
|
} else {
|
||
|
// a is not really big
|
||
|
if ( b < 0 ) {
|
||
|
// but b is really big
|
||
|
return -1;
|
||
|
} else {
|
||
|
return a - b;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute
|
||
|
* q = (int)( this / S )
|
||
|
* this = 10 * ( this mod S )
|
||
|
* Return q.
|
||
|
* This is the iteration step of digit development for output.
|
||
|
* We assume that S has been normalized, as above, and that
|
||
|
* "this" has been lshift'ed accordingly.
|
||
|
* Also assume, of course, that the result, q, can be expressed
|
||
|
* as an integer, 0 <= q < 10.
|
||
|
*/
|
||
|
public int
|
||
|
quoRemIteration( FDBigInt S )throws IllegalArgumentException {
|
||
|
// ensure that this and S have the same number of
|
||
|
// digits. If S is properly normalized and q < 10 then
|
||
|
// this must be so.
|
||
|
if ( nWords != S.nWords ){
|
||
|
throw new IllegalArgumentException("disparate values");
|
||
|
}
|
||
|
// estimate q the obvious way. We will usually be
|
||
|
// right. If not, then we're only off by a little and
|
||
|
// will re-add.
|
||
|
int n = nWords-1;
|
||
|
long q = ((long)data[n]&0xffffffffL) / (long)S.data[n];
|
||
|
long diff = 0L;
|
||
|
for ( int i = 0; i <= n ; i++ ){
|
||
|
diff += ((long)data[i]&0xffffffffL) - q*((long)S.data[i]&0xffffffffL);
|
||
|
data[i] = (int)diff;
|
||
|
diff >>= 32; // N.B. SIGNED shift.
|
||
|
}
|
||
|
if ( diff != 0L ) {
|
||
|
// damn, damn, damn. q is too big.
|
||
|
// add S back in until this turns +. This should
|
||
|
// not be very many times!
|
||
|
long sum = 0L;
|
||
|
while ( sum == 0L ){
|
||
|
sum = 0L;
|
||
|
for ( int i = 0; i <= n; i++ ){
|
||
|
sum += ((long)data[i]&0xffffffffL) + ((long)S.data[i]&0xffffffffL);
|
||
|
data[i] = (int) sum;
|
||
|
sum >>= 32; // Signed or unsigned, answer is 0 or 1
|
||
|
}
|
||
|
/*
|
||
|
* Originally the following line read
|
||
|
* "if ( sum !=0 && sum != -1 )"
|
||
|
* but that would be wrong, because of the
|
||
|
* treatment of the two values as entirely unsigned,
|
||
|
* it would be impossible for a carry-out to be interpreted
|
||
|
* as -1 -- it would have to be a single-bit carry-out, or
|
||
|
* +1.
|
||
|
*/
|
||
|
assert sum == 0 || sum == 1 : sum; // carry out of division correction
|
||
|
q -= 1;
|
||
|
}
|
||
|
}
|
||
|
// finally, we can multiply this by 10.
|
||
|
// it cannot overflow, right, as the high-order word has
|
||
|
// at least 4 high-order zeros!
|
||
|
long p = 0L;
|
||
|
for ( int i = 0; i <= n; i++ ){
|
||
|
p += 10*((long)data[i]&0xffffffffL);
|
||
|
data[i] = (int)p;
|
||
|
p >>= 32; // SIGNED shift.
|
||
|
}
|
||
|
assert p == 0L : p; // Carry out of *10
|
||
|
return (int)q;
|
||
|
}
|
||
|
|
||
|
public long
|
||
|
longValue(){
|
||
|
// if this can be represented as a long, return the value
|
||
|
assert this.nWords > 0 : this.nWords; // longValue confused
|
||
|
|
||
|
if (this.nWords == 1)
|
||
|
return ((long)data[0]&0xffffffffL);
|
||
|
|
||
|
assert dataInRangeIsZero(2, this.nWords, this); // value too big
|
||
|
assert data[1] >= 0; // value too big
|
||
|
return ((long)(data[1]) << 32) | ((long)data[0]&0xffffffffL);
|
||
|
}
|
||
|
|
||
|
public String
|
||
|
toString() {
|
||
|
StringBuffer r = new StringBuffer(30);
|
||
|
r.append('[');
|
||
|
int i = Math.min( nWords-1, data.length-1) ;
|
||
|
if ( nWords > data.length ){
|
||
|
r.append( "("+data.length+"<"+nWords+"!)" );
|
||
|
}
|
||
|
for( ; i> 0 ; i-- ){
|
||
|
r.append( Integer.toHexString( data[i] ) );
|
||
|
r.append(' ');
|
||
|
}
|
||
|
r.append( Integer.toHexString( data[0] ) );
|
||
|
r.append(']');
|
||
|
return new String( r );
|
||
|
}
|
||
|
}
|