jdk-24/hotspot/src/share/vm/jvmci/jvmciRuntime.cpp

955 lines
37 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "asm/codeBuffer.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciCompiler.hpp"
#include "jvmci/jvmciJavaClasses.hpp"
#include "jvmci/jvmciEnv.hpp"
#include "logging/log.hpp"
#include "memory/oopFactory.hpp"
#include "oops/oop.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "prims/jvm.h"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/reflection.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/debug.hpp"
#include "utilities/defaultStream.hpp"
#if defined(_MSC_VER)
#define strtoll _strtoi64
#endif
jobject JVMCIRuntime::_HotSpotJVMCIRuntime_instance = NULL;
bool JVMCIRuntime::_HotSpotJVMCIRuntime_initialized = false;
bool JVMCIRuntime::_well_known_classes_initialized = false;
const char* JVMCIRuntime::_compiler = NULL;
int JVMCIRuntime::_trivial_prefixes_count = 0;
char** JVMCIRuntime::_trivial_prefixes = NULL;
bool JVMCIRuntime::_shutdown_called = false;
BasicType JVMCIRuntime::kindToBasicType(Handle kind, TRAPS) {
if (kind.is_null()) {
THROW_(vmSymbols::java_lang_NullPointerException(), T_ILLEGAL);
}
jchar ch = JavaKind::typeChar(kind);
switch(ch) {
case 'z': return T_BOOLEAN;
case 'b': return T_BYTE;
case 's': return T_SHORT;
case 'c': return T_CHAR;
case 'i': return T_INT;
case 'f': return T_FLOAT;
case 'j': return T_LONG;
case 'd': return T_DOUBLE;
case 'a': return T_OBJECT;
case '-': return T_ILLEGAL;
default:
JVMCI_ERROR_(T_ILLEGAL, "unexpected Kind: %c", ch);
}
}
// Simple helper to see if the caller of a runtime stub which
// entered the VM has been deoptimized
static bool caller_is_deopted() {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread, false);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(&reg_map);
assert(caller_frame.is_compiled_frame(), "must be compiled");
return caller_frame.is_deoptimized_frame();
}
// Stress deoptimization
static void deopt_caller() {
if ( !caller_is_deopted()) {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread, false);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(&reg_map);
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
}
}
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance(JavaThread* thread, Klass* klass))
JRT_BLOCK;
assert(klass->is_klass(), "not a class");
instanceKlassHandle h(thread, klass);
h->check_valid_for_instantiation(true, CHECK);
// make sure klass is initialized
h->initialize(CHECK);
// allocate instance and return via TLS
oop obj = h->allocate_instance(CHECK);
thread->set_vm_result(obj);
JRT_BLOCK_END;
if (ReduceInitialCardMarks) {
new_store_pre_barrier(thread);
}
JRT_END
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array(JavaThread* thread, Klass* array_klass, jint length))
JRT_BLOCK;
// Note: no handle for klass needed since they are not used
// anymore after new_objArray() and no GC can happen before.
// (This may have to change if this code changes!)
assert(array_klass->is_klass(), "not a class");
oop obj;
if (array_klass->is_typeArray_klass()) {
BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
obj = oopFactory::new_typeArray(elt_type, length, CHECK);
} else {
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
obj = oopFactory::new_objArray(elem_klass, length, CHECK);
}
thread->set_vm_result(obj);
// This is pretty rare but this runtime patch is stressful to deoptimization
// if we deoptimize here so force a deopt to stress the path.
if (DeoptimizeALot) {
static int deopts = 0;
// Alternate between deoptimizing and raising an error (which will also cause a deopt)
if (deopts++ % 2 == 0) {
ResourceMark rm(THREAD);
THROW(vmSymbols::java_lang_OutOfMemoryError());
} else {
deopt_caller();
}
}
JRT_BLOCK_END;
if (ReduceInitialCardMarks) {
new_store_pre_barrier(thread);
}
JRT_END
void JVMCIRuntime::new_store_pre_barrier(JavaThread* thread) {
// After any safepoint, just before going back to compiled code,
// we inform the GC that we will be doing initializing writes to
// this object in the future without emitting card-marks, so
// GC may take any compensating steps.
// NOTE: Keep this code consistent with GraphKit::store_barrier.
oop new_obj = thread->vm_result();
if (new_obj == NULL) return;
assert(Universe::heap()->can_elide_tlab_store_barriers(),
"compiler must check this first");
// GC may decide to give back a safer copy of new_obj.
new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
thread->set_vm_result(new_obj);
}
JRT_ENTRY(void, JVMCIRuntime::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
assert(klass->is_klass(), "not a class");
assert(rank >= 1, "rank must be nonzero");
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
thread->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array(JavaThread* thread, oopDesc* element_mirror, jint length))
oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
thread->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance(JavaThread* thread, oopDesc* type_mirror))
instanceKlassHandle klass(THREAD, java_lang_Class::as_Klass(type_mirror));
if (klass == NULL) {
ResourceMark rm(THREAD);
THROW(vmSymbols::java_lang_InstantiationException());
}
// Create new instance (the receiver)
klass->check_valid_for_instantiation(false, CHECK);
// Make sure klass gets initialized
klass->initialize(CHECK);
oop obj = klass->allocate_instance(CHECK);
thread->set_vm_result(obj);
JRT_END
extern void vm_exit(int code);
// Enter this method from compiled code handler below. This is where we transition
// to VM mode. This is done as a helper routine so that the method called directly
// from compiled code does not have to transition to VM. This allows the entry
// method to see if the nmethod that we have just looked up a handler for has
// been deoptimized while we were in the vm. This simplifies the assembly code
// cpu directories.
//
// We are entering here from exception stub (via the entry method below)
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
// control the area where we can allow a safepoint. After we exit the safepoint area we can
// check to see if the handler we are going to return is now in a nmethod that has
// been deoptimized. If that is the case we return the deopt blob
// unpack_with_exception entry instead. This makes life for the exception blob easier
// because making that same check and diverting is painful from assembly language.
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
// Reset method handle flag.
thread->set_is_method_handle_return(false);
Handle exception(thread, ex);
nm = CodeCache::find_nmethod(pc);
assert(nm != NULL, "this is not a compiled method");
// Adjust the pc as needed/
if (nm->is_deopt_pc(pc)) {
RegisterMap map(thread, false);
frame exception_frame = thread->last_frame().sender(&map);
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
pc = exception_frame.pc();
}
#ifdef ASSERT
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
assert(exception->is_oop(), "just checking");
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
if (ExitVMOnVerifyError) vm_exit(-1);
ShouldNotReachHere();
}
#endif
// Check the stack guard pages and reenable them if necessary and there is
// enough space on the stack to do so. Use fast exceptions only if the guard
// pages are enabled.
bool guard_pages_enabled = thread->stack_guards_enabled();
if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
if (JvmtiExport::can_post_on_exceptions()) {
// To ensure correct notification of exception catches and throws
// we have to deoptimize here. If we attempted to notify the
// catches and throws during this exception lookup it's possible
// we could deoptimize on the way out of the VM and end back in
// the interpreter at the throw site. This would result in double
// notifications since the interpreter would also notify about
// these same catches and throws as it unwound the frame.
RegisterMap reg_map(thread);
frame stub_frame = thread->last_frame();
frame caller_frame = stub_frame.sender(&reg_map);
// We don't really want to deoptimize the nmethod itself since we
// can actually continue in the exception handler ourselves but I
// don't see an easy way to have the desired effect.
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
if (guard_pages_enabled) {
address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
if (fast_continuation != NULL) {
// Set flag if return address is a method handle call site.
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
return fast_continuation;
}
}
// If the stack guard pages are enabled, check whether there is a handler in
// the current method. Otherwise (guard pages disabled), force an unwind and
// skip the exception cache update (i.e., just leave continuation==NULL).
address continuation = NULL;
if (guard_pages_enabled) {
// New exception handling mechanism can support inlined methods
// with exception handlers since the mappings are from PC to PC
// debugging support
// tracing
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
log_info(exceptions)("Exception <%s> (" INTPTR_FORMAT ") thrown in"
" compiled method <%s> at PC " INTPTR_FORMAT
" for thread " INTPTR_FORMAT,
exception->print_value_string(),
p2i((address)exception()),
nm->method()->print_value_string(), p2i(pc),
p2i(thread));
}
// for AbortVMOnException flag
NOT_PRODUCT(Exceptions::debug_check_abort(exception));
// Clear out the exception oop and pc since looking up an
// exception handler can cause class loading, which might throw an
// exception and those fields are expected to be clear during
// normal bytecode execution.
thread->clear_exception_oop_and_pc();
continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
// If an exception was thrown during exception dispatch, the exception oop may have changed
thread->set_exception_oop(exception());
thread->set_exception_pc(pc);
// the exception cache is used only by non-implicit exceptions
if (continuation != NULL && !SharedRuntime::deopt_blob()->contains(continuation)) {
nm->add_handler_for_exception_and_pc(exception, pc, continuation);
}
}
// Set flag if return address is a method handle call site.
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
" for exception thrown at PC " PTR_FORMAT,
p2i(thread), p2i(continuation), p2i(pc));
}
return continuation;
JRT_END
// Enter this method from compiled code only if there is a Java exception handler
// in the method handling the exception.
// We are entering here from exception stub. We don't do a normal VM transition here.
// We do it in a helper. This is so we can check to see if the nmethod we have just
// searched for an exception handler has been deoptimized in the meantime.
address JVMCIRuntime::exception_handler_for_pc(JavaThread* thread) {
oop exception = thread->exception_oop();
address pc = thread->exception_pc();
// Still in Java mode
DEBUG_ONLY(ResetNoHandleMark rnhm);
nmethod* nm = NULL;
address continuation = NULL;
{
// Enter VM mode by calling the helper
ResetNoHandleMark rnhm;
continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
}
// Back in JAVA, use no oops DON'T safepoint
// Now check to see if the compiled method we were called from is now deoptimized.
// If so we must return to the deopt blob and deoptimize the nmethod
if (nm != NULL && caller_is_deopted()) {
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
assert(continuation != NULL, "no handler found");
return continuation;
}
JRT_ENTRY(void, JVMCIRuntime::create_null_exception(JavaThread* thread))
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
thread->set_vm_result(PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
JRT_END
JRT_ENTRY(void, JVMCIRuntime::create_out_of_bounds_exception(JavaThread* thread, jint index))
char message[jintAsStringSize];
sprintf(message, "%d", index);
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
thread->set_vm_result(PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
JRT_END
JRT_ENTRY_NO_ASYNC(void, JVMCIRuntime::monitorenter(JavaThread* thread, oopDesc* obj, BasicLock* lock))
IF_TRACE_jvmci_3 {
char type[O_BUFLEN];
obj->klass()->name()->as_C_string(type, O_BUFLEN);
markOop mark = obj->mark();
TRACE_jvmci_3("%s: entered locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(mark), p2i(lock));
tty->flush();
}
#ifdef ASSERT
if (PrintBiasedLockingStatistics) {
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
}
#endif
Handle h_obj(thread, obj);
assert(h_obj()->is_oop(), "must be NULL or an object");
if (UseBiasedLocking) {
// Retry fast entry if bias is revoked to avoid unnecessary inflation
ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
} else {
if (JVMCIUseFastLocking) {
// When using fast locking, the compiled code has already tried the fast case
ObjectSynchronizer::slow_enter(h_obj, lock, THREAD);
} else {
ObjectSynchronizer::fast_enter(h_obj, lock, false, THREAD);
}
}
TRACE_jvmci_3("%s: exiting locking slow with obj=" INTPTR_FORMAT, thread->name(), p2i(obj));
JRT_END
JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* thread, oopDesc* obj, BasicLock* lock))
assert(thread == JavaThread::current(), "threads must correspond");
assert(thread->last_Java_sp(), "last_Java_sp must be set");
// monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
EXCEPTION_MARK;
#ifdef DEBUG
if (!obj->is_oop()) {
ResetNoHandleMark rhm;
nmethod* method = thread->last_frame().cb()->as_nmethod_or_null();
if (method != NULL) {
tty->print_cr("ERROR in monitorexit in method %s wrong obj " INTPTR_FORMAT, method->name(), p2i(obj));
}
thread->print_stack_on(tty);
assert(false, "invalid lock object pointer dected");
}
#endif
if (JVMCIUseFastLocking) {
// When using fast locking, the compiled code has already tried the fast case
ObjectSynchronizer::slow_exit(obj, lock, THREAD);
} else {
ObjectSynchronizer::fast_exit(obj, lock, THREAD);
}
IF_TRACE_jvmci_3 {
char type[O_BUFLEN];
obj->klass()->name()->as_C_string(type, O_BUFLEN);
TRACE_jvmci_3("%s: exited locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(obj->mark()), p2i(lock));
tty->flush();
}
JRT_END
JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
ttyLocker ttyl;
if (obj == NULL) {
tty->print("NULL");
} else if (obj->is_oop_or_null(true) && (!as_string || !java_lang_String::is_instance(obj))) {
if (obj->is_oop_or_null(true)) {
char buf[O_BUFLEN];
tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
} else {
tty->print(INTPTR_FORMAT, p2i(obj));
}
} else {
ResourceMark rm;
assert(obj != NULL && java_lang_String::is_instance(obj), "must be");
char *buf = java_lang_String::as_utf8_string(obj);
tty->print_raw(buf);
}
if (newline) {
tty->cr();
}
JRT_END
JRT_LEAF(void, JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj))
thread->satb_mark_queue().enqueue(obj);
JRT_END
JRT_LEAF(void, JVMCIRuntime::write_barrier_post(JavaThread* thread, void* card_addr))
thread->dirty_card_queue().enqueue(card_addr);
JRT_END
JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
bool ret = true;
if(!Universe::heap()->is_in_closed_subset(parent)) {
tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
parent->print();
ret=false;
}
if(!Universe::heap()->is_in_closed_subset(child)) {
tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
child->print();
ret=false;
}
return (jint)ret;
JRT_END
JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* thread, jlong where, jlong format, jlong value))
ResourceMark rm;
const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
char *detail_msg = NULL;
if (format != 0L) {
const char* buf = (char*) (address) format;
size_t detail_msg_length = strlen(buf) * 2;
detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
jio_snprintf(detail_msg, detail_msg_length, buf, value);
2015-10-17 19:40:30 -04:00
report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
} else {
report_vm_error(__FILE__, __LINE__, error_msg);
}
JRT_END
JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
oop exception = thread->exception_oop();
assert(exception != NULL, "npe");
thread->set_exception_oop(NULL);
thread->set_exception_pc(0);
return exception;
JRT_END
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, oopDesc* format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
assert(format != NULL && java_lang_String::is_instance(format), "must be");
char *buf = java_lang_String::as_utf8_string(format);
tty->print((const char*)buf, v1, v2, v3);
JRT_END
PRAGMA_DIAG_POP
static void decipher(jlong v, bool ignoreZero) {
if (v != 0 || !ignoreZero) {
void* p = (void *)(address) v;
CodeBlob* cb = CodeCache::find_blob(p);
if (cb) {
if (cb->is_nmethod()) {
char buf[O_BUFLEN];
tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
return;
}
cb->print_value_on(tty);
return;
}
if (Universe::heap()->is_in(p)) {
oop obj = oop(p);
obj->print_value_on(tty);
return;
}
tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
}
}
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
const char *buf = (const char*) (address) format;
if (vmError) {
if (buf != NULL) {
2015-10-17 19:40:30 -04:00
fatal(buf, v1, v2, v3);
} else {
fatal("<anonymous error>");
}
} else if (buf != NULL) {
tty->print(buf, v1, v2, v3);
} else {
assert(v2 == 0, "v2 != 0");
assert(v3 == 0, "v3 != 0");
decipher(v1, false);
}
JRT_END
PRAGMA_DIAG_POP
JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
union {
jlong l;
jdouble d;
jfloat f;
} uu;
uu.l = value;
switch (typeChar) {
case 'z': tty->print(value == 0 ? "false" : "true"); break;
case 'b': tty->print("%d", (jbyte) value); break;
case 'c': tty->print("%c", (jchar) value); break;
case 's': tty->print("%d", (jshort) value); break;
case 'i': tty->print("%d", (jint) value); break;
case 'f': tty->print("%f", uu.f); break;
case 'j': tty->print(JLONG_FORMAT, value); break;
case 'd': tty->print("%lf", uu.d); break;
default: assert(false, "unknown typeChar"); break;
}
if (newline) {
tty->cr();
}
JRT_END
JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* thread, oopDesc* obj))
return (jint) obj->identity_hash();
JRT_END
JRT_ENTRY(jboolean, JVMCIRuntime::thread_is_interrupted(JavaThread* thread, oopDesc* receiver, jboolean clear_interrupted))
// Ensure that the C++ Thread and OSThread structures aren't freed before we operate.
// This locking requires thread_in_vm which is why this method cannot be JRT_LEAF.
Handle receiverHandle(thread, receiver);
MutexLockerEx ml(thread->threadObj() == (void*)receiver ? NULL : Threads_lock);
JavaThread* receiverThread = java_lang_Thread::thread(receiverHandle());
if (receiverThread == NULL) {
// The other thread may exit during this process, which is ok so return false.
return JNI_FALSE;
} else {
return (jint) Thread::is_interrupted(receiverThread, clear_interrupted != 0);
}
JRT_END
JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* thread, int value))
deopt_caller();
return value;
JRT_END
// private static JVMCIRuntime JVMCI.initializeRuntime()
JVM_ENTRY(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c))
if (!EnableJVMCI) {
THROW_MSG_NULL(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled")
}
JVMCIRuntime::initialize_HotSpotJVMCIRuntime(CHECK_NULL);
jobject ret = JVMCIRuntime::get_HotSpotJVMCIRuntime_jobject(CHECK_NULL);
return ret;
JVM_END
Handle JVMCIRuntime::callStatic(const char* className, const char* methodName, const char* signature, JavaCallArguments* args, TRAPS) {
guarantee(!_HotSpotJVMCIRuntime_initialized, "cannot reinitialize HotSpotJVMCIRuntime");
TempNewSymbol name = SymbolTable::new_symbol(className, CHECK_(Handle()));
KlassHandle klass = SystemDictionary::resolve_or_fail(name, true, CHECK_(Handle()));
TempNewSymbol runtime = SymbolTable::new_symbol(methodName, CHECK_(Handle()));
TempNewSymbol sig = SymbolTable::new_symbol(signature, CHECK_(Handle()));
JavaValue result(T_OBJECT);
if (args == NULL) {
JavaCalls::call_static(&result, klass, runtime, sig, CHECK_(Handle()));
} else {
JavaCalls::call_static(&result, klass, runtime, sig, args, CHECK_(Handle()));
}
return Handle((oop)result.get_jobject());
}
void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(TRAPS) {
if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) {
ResourceMark rm;
#ifdef ASSERT
// This should only be called in the context of the JVMCI class being initialized
TempNewSymbol name = SymbolTable::new_symbol("jdk/vm/ci/runtime/JVMCI", CHECK);
Klass* k = SystemDictionary::resolve_or_null(name, CHECK);
instanceKlassHandle klass = InstanceKlass::cast(k);
assert(klass->is_being_initialized() && klass->is_reentrant_initialization(THREAD),
"HotSpotJVMCIRuntime initialization should only be triggered through JVMCI initialization");
#endif
if (_compiler != NULL) {
JavaCallArguments args;
oop compiler = java_lang_String::create_oop_from_str(_compiler, CHECK);
args.push_oop(compiler);
callStatic("jdk/vm/ci/hotspot/HotSpotJVMCICompilerConfig",
"selectCompiler",
"(Ljava/lang/String;)Ljava/lang/Boolean;", &args, CHECK);
}
Handle result = callStatic("jdk/vm/ci/hotspot/HotSpotJVMCIRuntime",
"runtime",
"()Ljdk/vm/ci/hotspot/HotSpotJVMCIRuntime;", NULL, CHECK);
objArrayOop trivial_prefixes = HotSpotJVMCIRuntime::trivialPrefixes(result);
if (trivial_prefixes != NULL) {
char** prefixes = NEW_C_HEAP_ARRAY(char*, trivial_prefixes->length(), mtCompiler);
for (int i = 0; i < trivial_prefixes->length(); i++) {
oop str = trivial_prefixes->obj_at(i);
if (str == NULL) {
THROW(vmSymbols::java_lang_NullPointerException());
} else {
prefixes[i] = strdup(java_lang_String::as_utf8_string(str));
}
}
_trivial_prefixes = prefixes;
_trivial_prefixes_count = trivial_prefixes->length();
}
_HotSpotJVMCIRuntime_initialized = true;
_HotSpotJVMCIRuntime_instance = JNIHandles::make_global(result());
}
}
void JVMCIRuntime::initialize_JVMCI(TRAPS) {
if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) {
callStatic("jdk/vm/ci/runtime/JVMCI",
"getRuntime",
"()Ljdk/vm/ci/runtime/JVMCIRuntime;", NULL, CHECK);
}
assert(_HotSpotJVMCIRuntime_initialized == true, "what?");
}
void JVMCIRuntime::initialize_well_known_classes(TRAPS) {
if (JVMCIRuntime::_well_known_classes_initialized == false) {
SystemDictionary::WKID scan = SystemDictionary::FIRST_JVMCI_WKID;
SystemDictionary::initialize_wk_klasses_through(SystemDictionary::LAST_JVMCI_WKID, scan, CHECK);
JVMCIJavaClasses::compute_offsets(CHECK);
JVMCIRuntime::_well_known_classes_initialized = true;
}
}
void JVMCIRuntime::metadata_do(void f(Metadata*)) {
// For simplicity, the existence of HotSpotJVMCIMetaAccessContext in
// the SystemDictionary well known classes should ensure the other
// classes have already been loaded, so make sure their order in the
// table enforces that.
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedJavaMethodImpl) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotConstantPool) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedObjectTypeImpl) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
if (HotSpotJVMCIMetaAccessContext::klass() == NULL ||
!HotSpotJVMCIMetaAccessContext::klass()->is_linked()) {
// Nothing could be registered yet
return;
}
// WeakReference<HotSpotJVMCIMetaAccessContext>[]
objArrayOop allContexts = HotSpotJVMCIMetaAccessContext::allContexts();
if (allContexts == NULL) {
return;
}
// These must be loaded at this point but the linking state doesn't matter.
assert(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass() != NULL, "must be loaded");
assert(SystemDictionary::HotSpotConstantPool_klass() != NULL, "must be loaded");
assert(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass() != NULL, "must be loaded");
for (int i = 0; i < allContexts->length(); i++) {
oop ref = allContexts->obj_at(i);
if (ref != NULL) {
oop referent = java_lang_ref_Reference::referent(ref);
if (referent != NULL) {
// Chunked Object[] with last element pointing to next chunk
objArrayOop metadataRoots = HotSpotJVMCIMetaAccessContext::metadataRoots(referent);
while (metadataRoots != NULL) {
for (int typeIndex = 0; typeIndex < metadataRoots->length() - 1; typeIndex++) {
oop reference = metadataRoots->obj_at(typeIndex);
if (reference == NULL) {
continue;
}
oop metadataRoot = java_lang_ref_Reference::referent(reference);
if (metadataRoot == NULL) {
continue;
}
if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) {
Method* method = CompilerToVM::asMethod(metadataRoot);
f(method);
} else if (metadataRoot->is_a(SystemDictionary::HotSpotConstantPool_klass())) {
ConstantPool* constantPool = CompilerToVM::asConstantPool(metadataRoot);
f(constantPool);
} else if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) {
Klass* klass = CompilerToVM::asKlass(metadataRoot);
f(klass);
} else {
metadataRoot->print();
ShouldNotReachHere();
}
}
metadataRoots = (objArrayOop)metadataRoots->obj_at(metadataRoots->length() - 1);
assert(metadataRoots == NULL || metadataRoots->is_objArray(), "wrong type");
}
}
}
}
}
// private static void CompilerToVM.registerNatives()
JVM_ENTRY(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass))
if (!EnableJVMCI) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled");
}
#ifdef _LP64
#ifndef TARGET_ARCH_sparc
uintptr_t heap_end = (uintptr_t) Universe::heap()->reserved_region().end();
uintptr_t allocation_end = heap_end + ((uintptr_t)16) * 1024 * 1024 * 1024;
guarantee(heap_end < allocation_end, "heap end too close to end of address space (might lead to erroneous TLAB allocations)");
#endif // TARGET_ARCH_sparc
#else
fatal("check TLAB allocation code for address space conflicts");
#endif
JVMCIRuntime::initialize_well_known_classes(CHECK);
{
ThreadToNativeFromVM trans(thread);
env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count());
}
JVM_END
/**
* Closure for parsing a line from a *.properties file in jre/lib/jvmci/properties.
* The line must match the regular expression "[^=]+=.*". That is one or more
* characters other than '=' followed by '=' followed by zero or more characters.
* Everything before the '=' is the property name and everything after '=' is the value.
* Lines that start with '#' are treated as comments and ignored.
* No special processing of whitespace or any escape characters is performed.
* The last definition of a property "wins" (i.e., it overrides all earlier
* definitions of the property).
*/
class JVMCIPropertiesFileClosure : public ParseClosure {
SystemProperty** _plist;
public:
JVMCIPropertiesFileClosure(SystemProperty** plist) : _plist(plist) {}
void do_line(char* line) {
if (line[0] == '#') {
// skip comment
return;
}
size_t len = strlen(line);
char* sep = strchr(line, '=');
if (sep == NULL) {
warn_and_abort("invalid format: could not find '=' character");
return;
}
if (sep == line) {
warn_and_abort("invalid format: name cannot be empty");
return;
}
*sep = '\0';
const char* name = line;
char* value = sep + 1;
Arguments::PropertyList_unique_add(_plist, name, value);
}
};
void JVMCIRuntime::init_system_properties(SystemProperty** plist) {
char jvmciDir[JVM_MAXPATHLEN];
const char* fileSep = os::file_separator();
jio_snprintf(jvmciDir, sizeof(jvmciDir), "%s%slib%sjvmci",
Arguments::get_java_home(), fileSep, fileSep, fileSep);
DIR* dir = os::opendir(jvmciDir);
if (dir != NULL) {
struct dirent *entry;
char *dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(jvmciDir), mtInternal);
JVMCIPropertiesFileClosure closure(plist);
const unsigned suffix_len = (unsigned)strlen(".properties");
while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL && !closure.is_aborted()) {
const char* name = entry->d_name;
if (strlen(name) > suffix_len && strcmp(name + strlen(name) - suffix_len, ".properties") == 0) {
char propertiesFilePath[JVM_MAXPATHLEN];
jio_snprintf(propertiesFilePath, sizeof(propertiesFilePath), "%s%s%s",jvmciDir, fileSep, name);
JVMCIRuntime::parse_lines(propertiesFilePath, &closure, false);
}
}
FREE_C_HEAP_ARRAY(char, dbuf);
os::closedir(dir);
}
}
#define CHECK_WARN_ABORT_(message) THREAD); \
if (HAS_PENDING_EXCEPTION) { \
warning(message); \
char buf[512]; \
jio_snprintf(buf, 512, "Uncaught exception at %s:%d", __FILE__, __LINE__); \
JVMCIRuntime::abort_on_pending_exception(PENDING_EXCEPTION, buf); \
return; \
} \
(void)(0
void JVMCIRuntime::save_compiler(const char* compiler) {
assert(compiler != NULL, "npe");
assert(_compiler == NULL, "cannot reassign JVMCI compiler");
_compiler = compiler;
}
void JVMCIRuntime::shutdown(TRAPS) {
if (_HotSpotJVMCIRuntime_instance != NULL) {
_shutdown_called = true;
HandleMark hm(THREAD);
Handle receiver = get_HotSpotJVMCIRuntime(CHECK);
JavaValue result(T_VOID);
JavaCallArguments args;
args.push_oop(receiver);
JavaCalls::call_special(&result, receiver->klass(), vmSymbols::shutdown_method_name(), vmSymbols::void_method_signature(), &args, CHECK);
}
}
bool JVMCIRuntime::treat_as_trivial(Method* method) {
if (_HotSpotJVMCIRuntime_initialized) {
oop loader = method->method_holder()->class_loader();
if (loader == NULL) {
for (int i = 0; i < _trivial_prefixes_count; i++) {
if (method->method_holder()->name()->starts_with(_trivial_prefixes[i])) {
return true;
}
}
}
}
return false;
}
void JVMCIRuntime::parse_lines(char* path, ParseClosure* closure, bool warnStatFailure) {
struct stat st;
if (::stat(path, &st) == 0 && (st.st_mode & S_IFREG) == S_IFREG) { // exists & is regular file
int file_handle = ::open(path, os::default_file_open_flags(), 0);
if (file_handle != -1) {
char* buffer = NEW_C_HEAP_ARRAY(char, st.st_size + 1, mtInternal);
int num_read;
num_read = (int) ::read(file_handle, (char*) buffer, st.st_size);
if (num_read == -1) {
warning("Error reading file %s due to %s", path, strerror(errno));
} else if (num_read != st.st_size) {
warning("Only read %d of " SIZE_FORMAT " bytes from %s", num_read, (size_t) st.st_size, path);
}
::close(file_handle);
closure->set_filename(path);
if (num_read == st.st_size) {
buffer[num_read] = '\0';
char* line = buffer;
while (line - buffer < num_read && !closure->is_aborted()) {
// find line end (\r, \n or \r\n)
char* nextline = NULL;
char* cr = strchr(line, '\r');
char* lf = strchr(line, '\n');
if (cr != NULL && lf != NULL) {
char* min = MIN2(cr, lf);
*min = '\0';
if (lf == cr + 1) {
nextline = lf + 1;
} else {
nextline = min + 1;
}
} else if (cr != NULL) {
*cr = '\0';
nextline = cr + 1;
} else if (lf != NULL) {
*lf = '\0';
nextline = lf + 1;
}
// trim left
while (*line == ' ' || *line == '\t') line++;
char* end = line + strlen(line);
// trim right
while (end > line && (*(end -1) == ' ' || *(end -1) == '\t')) end--;
*end = '\0';
// skip comments and empty lines
if (*line != '#' && strlen(line) > 0) {
closure->parse_line(line);
}
if (nextline != NULL) {
line = nextline;
} else {
// File without newline at the end
break;
}
}
}
FREE_C_HEAP_ARRAY(char, buffer);
} else {
warning("Error opening file %s due to %s", path, strerror(errno));
}
} else if (warnStatFailure) {
warning("Could not stat file %s due to %s", path, strerror(errno));
}
}