jdk-24/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp

673 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1BufferNodeList.hpp"
#include "gc/g1/g1CardTableEntryClosure.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefineThread.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "memory/iterator.hpp"
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/globalCounter.inline.hpp"
#include "utilities/macros.hpp"
#include "utilities/quickSort.hpp"
G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
// Dirty card queues are always active, so we create them with their
// active field set to true.
PtrQueue(qset, true /* active */)
{ }
G1DirtyCardQueue::~G1DirtyCardQueue() {
flush();
}
void G1DirtyCardQueue::handle_completed_buffer() {
assert(_buf != NULL, "precondition");
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
G1DirtyCardQueueSet* dcqs = dirty_card_qset();
if (dcqs->process_or_enqueue_completed_buffer(node)) {
reset(); // Buffer fully processed, reset index.
} else {
allocate_buffer(); // Buffer enqueued, get a new one.
}
}
// Assumed to be zero by concurrent threads.
static uint par_ids_start() { return 0; }
G1DirtyCardQueueSet::G1DirtyCardQueueSet(BufferNode::Allocator* allocator) :
PtrQueueSet(allocator),
_primary_refinement_thread(NULL),
_num_cards(0),
_completed(),
_paused(),
_free_ids(par_ids_start(), num_par_ids()),
_process_cards_threshold(ProcessCardsThresholdNever),
_max_cards(MaxCardsUnlimited),
_max_cards_padding(0),
_mutator_refined_cards_counters(NEW_C_HEAP_ARRAY(size_t, num_par_ids(), mtGC))
{
::memset(_mutator_refined_cards_counters, 0, num_par_ids() * sizeof(size_t));
_all_active = true;
}
G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
abandon_completed_buffers();
FREE_C_HEAP_ARRAY(size_t, _mutator_refined_cards_counters);
}
// Determines how many mutator threads can process the buffers in parallel.
uint G1DirtyCardQueueSet::num_par_ids() {
return (uint)os::initial_active_processor_count();
}
size_t G1DirtyCardQueueSet::total_mutator_refined_cards() const {
size_t sum = 0;
for (uint i = 0; i < num_par_ids(); ++i) {
sum += _mutator_refined_cards_counters[i];
}
return sum;
}
void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
}
#ifdef ASSERT
G1DirtyCardQueueSet::Queue::~Queue() {
assert(_head == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
#endif // ASSERT
BufferNode* G1DirtyCardQueueSet::Queue::top() const {
return Atomic::load(&_head);
}
// An append operation atomically exchanges the new tail with the queue tail.
// It then sets the "next" value of the old tail to the head of the list being
// appended; it is an invariant that the old tail's "next" value is NULL.
// But if the old tail is NULL then the queue was empty. In this case the
// head of the list being appended is instead stored in the queue head; it is
// an invariant that the queue head is NULL in this case.
//
// This means there is a period between the exchange and the old tail update
// where the queue sequence is split into two parts, the list from the queue
// head to the old tail, and the list being appended. If there are concurrent
// push/append operations, each may introduce another such segment. But they
// all eventually get resolved by their respective updates of their old tail's
// "next" value. This also means that pop operations must handle a buffer
// with a NULL "next" value specially.
//
// A push operation is just a degenerate append, where the buffer being pushed
// is both the head and the tail of the list being appended.
void G1DirtyCardQueueSet::Queue::append(BufferNode& first, BufferNode& last) {
assert(last.next() == NULL, "precondition");
BufferNode* old_tail = Atomic::xchg(&_tail, &last);
if (old_tail == NULL) { // Was empty.
assert(Atomic::load(&_head) == NULL, "invariant");
Atomic::store(&_head, &first);
} else {
assert(old_tail->next() == NULL, "invariant");
old_tail->set_next(&first);
}
}
// pop gets the queue head as the candidate result (returning NULL if the
// queue head was NULL), and then gets that result node's "next" value. If
// that "next" value is NULL and the queue head hasn't changed, then there
// is only one element in the accessible part of the list (the sequence from
// head to a node with a NULL "next" value). We can't return that element,
// because it may be the old tail of a concurrent push/append that has not
// yet had its "next" field set to the new tail. So return NULL in this case.
// Otherwise, attempt to cmpxchg that "next" value into the queue head,
// retrying the whole operation if that fails. This is the "usual" lock-free
// pop from the head of a singly linked list, with the additional restriction
// on taking the last element.
BufferNode* G1DirtyCardQueueSet::Queue::pop() {
Thread* current_thread = Thread::current();
while (true) {
// Use a critical section per iteration, rather than over the whole
// operation. We're not guaranteed to make progress, because of possible
// contention on the queue head. Lingering in one CS the whole time could
// lead to excessive allocation of buffers, because the CS blocks return
// of released buffers to the free list for reuse.
GlobalCounter::CriticalSection cs(current_thread);
BufferNode* result = Atomic::load_acquire(&_head);
// Check for empty queue. Only needs to be done on first iteration,
// since we never take the last element, but it's messy to make use
// of that and we expect one iteration to be the common case.
if (result == NULL) return NULL;
BufferNode* next = Atomic::load_acquire(BufferNode::next_ptr(*result));
if (next != NULL) {
next = Atomic::cmpxchg(&_head, result, next);
if (next == result) {
// Former head successfully taken; it is not the last.
assert(Atomic::load(&_tail) != result, "invariant");
assert(result->next() != NULL, "invariant");
result->set_next(NULL);
return result;
}
// cmpxchg failed; try again.
} else if (result == Atomic::load_acquire(&_head)) {
// If follower of head is NULL and head hasn't changed, then only
// the one element is currently accessible. We don't take the last
// accessible element, because there may be a concurrent add using it.
// The check for unchanged head isn't needed for correctness, but the
// retry on change may sometimes let us get a buffer after all.
return NULL;
}
// Head changed; try again.
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::Queue::take_all() {
assert_at_safepoint();
HeadTail result(Atomic::load(&_head), Atomic::load(&_tail));
Atomic::store(&_head, (BufferNode*)NULL);
Atomic::store(&_tail, (BufferNode*)NULL);
return result;
}
void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
assert(cbn != NULL, "precondition");
// Increment _num_cards before adding to queue, so queue removal doesn't
// need to deal with _num_cards possibly going negative.
size_t new_num_cards = Atomic::add(&_num_cards, buffer_size() - cbn->index());
_completed.push(*cbn);
if ((new_num_cards > process_cards_threshold()) &&
(_primary_refinement_thread != NULL)) {
_primary_refinement_thread->activate();
}
}
BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) {
enqueue_previous_paused_buffers();
// Check for insufficient cards to satisfy request. We only do this once,
// up front, rather than on each iteration below, since the test is racy
// regardless of when we do it.
if (Atomic::load_acquire(&_num_cards) <= stop_at) {
return NULL;
}
BufferNode* result = _completed.pop();
if (result != NULL) {
Atomic::sub(&_num_cards, buffer_size() - result->index());
}
return result;
}
#ifdef ASSERT
void G1DirtyCardQueueSet::verify_num_cards() const {
size_t actual = 0;
BufferNode* cur = _completed.top();
for ( ; cur != NULL; cur = cur->next()) {
actual += buffer_size() - cur->index();
}
assert(actual == Atomic::load(&_num_cards),
"Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT,
Atomic::load(&_num_cards), actual);
}
#endif // ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::PausedList() :
_head(NULL), _tail(NULL),
_safepoint_id(SafepointSynchronize::safepoint_id())
{}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::~PausedList() {
assert(Atomic::load(&_head) == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
#endif // ASSERT
bool G1DirtyCardQueueSet::PausedBuffers::PausedList::is_next() const {
assert_not_at_safepoint();
return _safepoint_id == SafepointSynchronize::safepoint_id();
}
void G1DirtyCardQueueSet::PausedBuffers::PausedList::add(BufferNode* node) {
assert_not_at_safepoint();
assert(is_next(), "precondition");
BufferNode* old_head = Atomic::xchg(&_head, node);
if (old_head == NULL) {
assert(_tail == NULL, "invariant");
_tail = node;
} else {
node->set_next(old_head);
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::PausedList::take() {
BufferNode* head = Atomic::load(&_head);
BufferNode* tail = _tail;
Atomic::store(&_head, (BufferNode*)NULL);
_tail = NULL;
return HeadTail(head, tail);
}
G1DirtyCardQueueSet::PausedBuffers::PausedBuffers() : _plist(NULL) {}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::~PausedBuffers() {
assert(is_empty(), "invariant");
}
#endif // ASSERT
bool G1DirtyCardQueueSet::PausedBuffers::is_empty() const {
return Atomic::load(&_plist) == NULL;
}
void G1DirtyCardQueueSet::PausedBuffers::add(BufferNode* node) {
assert_not_at_safepoint();
PausedList* plist = Atomic::load_acquire(&_plist);
if (plist != NULL) {
// Already have a next list, so use it. We know it's a next list because
// of the precondition that take_previous() has already been called.
assert(plist->is_next(), "invariant");
} else {
// Try to install a new next list.
plist = new PausedList();
PausedList* old_plist = Atomic::cmpxchg(&_plist, (PausedList*)NULL, plist);
if (old_plist != NULL) {
// Some other thread installed a new next list. Use it instead.
delete plist;
plist = old_plist;
}
}
plist->add(node);
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_previous() {
assert_not_at_safepoint();
PausedList* previous;
{
// Deal with plist in a critical section, to prevent it from being
// deleted out from under us by a concurrent take_previous().
GlobalCounter::CriticalSection cs(Thread::current());
previous = Atomic::load_acquire(&_plist);
if ((previous == NULL) || // Nothing to take.
previous->is_next() || // Not from a previous safepoint.
// Some other thread stole it.
(Atomic::cmpxchg(&_plist, previous, (PausedList*)NULL) != previous)) {
return HeadTail();
}
}
// We now own previous.
HeadTail result = previous->take();
// There might be other threads examining previous (in concurrent
// take_previous()). Synchronize to wait until any such threads are
// done with such examination before deleting.
GlobalCounter::write_synchronize();
delete previous;
return result;
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_all() {
assert_at_safepoint();
HeadTail result;
PausedList* plist = Atomic::load(&_plist);
if (plist != NULL) {
Atomic::store(&_plist, (PausedList*)NULL);
result = plist->take();
delete plist;
}
return result;
}
void G1DirtyCardQueueSet::record_paused_buffer(BufferNode* node) {
assert_not_at_safepoint();
assert(node->next() == NULL, "precondition");
// Cards for paused buffers are included in count, to contribute to
// notification checking after the coming safepoint if it doesn't GC.
// Note that this means the queue's _num_cards differs from the number
// of cards in the queued buffers when there are paused buffers.
Atomic::add(&_num_cards, buffer_size() - node->index());
_paused.add(node);
}
void G1DirtyCardQueueSet::enqueue_paused_buffers_aux(const HeadTail& paused) {
if (paused._head != NULL) {
assert(paused._tail != NULL, "invariant");
// Cards from paused buffers are already recorded in the queue count.
_completed.append(*paused._head, *paused._tail);
}
}
void G1DirtyCardQueueSet::enqueue_previous_paused_buffers() {
assert_not_at_safepoint();
// The fast-path still satisfies the precondition for record_paused_buffer
// and PausedBuffers::add, even with a racy test. If there are paused
// buffers from a previous safepoint, is_empty() will return false; there
// will have been a safepoint between recording and test, so there can't be
// a false negative (is_empty() returns true) while such buffers are present.
// If is_empty() is false, there are two cases:
//
// (1) There were paused buffers from a previous safepoint. A concurrent
// caller may take and enqueue them first, but that's okay; the precondition
// for a possible later record_paused_buffer by this thread will still hold.
//
// (2) There are paused buffers for a requested next safepoint.
//
// In each of those cases some effort may be spent detecting and dealing
// with those circumstances; any wasted effort in such cases is expected to
// be well compensated by the fast path.
if (!_paused.is_empty()) {
enqueue_paused_buffers_aux(_paused.take_previous());
}
}
void G1DirtyCardQueueSet::enqueue_all_paused_buffers() {
assert_at_safepoint();
enqueue_paused_buffers_aux(_paused.take_all());
}
void G1DirtyCardQueueSet::abandon_completed_buffers() {
enqueue_all_paused_buffers();
verify_num_cards();
G1BufferNodeList list = take_all_completed_buffers();
BufferNode* buffers_to_delete = list._head;
while (buffers_to_delete != NULL) {
BufferNode* bn = buffers_to_delete;
buffers_to_delete = bn->next();
bn->set_next(NULL);
deallocate_buffer(bn);
}
}
void G1DirtyCardQueueSet::notify_if_necessary() {
if ((_primary_refinement_thread != NULL) &&
(num_cards() > process_cards_threshold())) {
_primary_refinement_thread->activate();
}
}
// Merge lists of buffers. The source queue set is emptied as a
// result. The queue sets must share the same allocator.
void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) {
assert(allocator() == src->allocator(), "precondition");
const G1BufferNodeList from = src->take_all_completed_buffers();
if (from._head != NULL) {
Atomic::add(&_num_cards, from._entry_count);
_completed.append(*from._head, *from._tail);
}
}
G1BufferNodeList G1DirtyCardQueueSet::take_all_completed_buffers() {
enqueue_all_paused_buffers();
verify_num_cards();
HeadTail buffers = _completed.take_all();
size_t num_cards = Atomic::load(&_num_cards);
Atomic::store(&_num_cards, size_t(0));
return G1BufferNodeList(buffers._head, buffers._tail, num_cards);
}
class G1RefineBufferedCards : public StackObj {
BufferNode* const _node;
CardTable::CardValue** const _node_buffer;
const size_t _node_buffer_size;
const uint _worker_id;
size_t* _total_refined_cards;
G1RemSet* const _g1rs;
static inline int compare_card(const CardTable::CardValue* p1,
const CardTable::CardValue* p2) {
return p2 - p1;
}
// Sorts the cards from start_index to _node_buffer_size in *decreasing*
// address order. Tests showed that this order is preferable to not sorting
// or increasing address order.
void sort_cards(size_t start_index) {
QuickSort::sort(&_node_buffer[start_index],
_node_buffer_size - start_index,
compare_card,
false);
}
// Returns the index to the first clean card in the buffer.
size_t clean_cards() {
const size_t start = _node->index();
assert(start <= _node_buffer_size, "invariant");
// Two-fingered compaction algorithm similar to the filtering mechanism in
// SATBMarkQueue. The main difference is that clean_card_before_refine()
// could change the buffer element in-place.
// We don't check for SuspendibleThreadSet::should_yield(), because
// cleaning and redirtying the cards is fast.
CardTable::CardValue** src = &_node_buffer[start];
CardTable::CardValue** dst = &_node_buffer[_node_buffer_size];
assert(src <= dst, "invariant");
for ( ; src < dst; ++src) {
// Search low to high for a card to keep.
if (_g1rs->clean_card_before_refine(src)) {
// Found keeper. Search high to low for a card to discard.
while (src < --dst) {
if (!_g1rs->clean_card_before_refine(dst)) {
*dst = *src; // Replace discard with keeper.
break;
}
}
// If discard search failed (src == dst), the outer loop will also end.
}
}
// dst points to the first retained clean card, or the end of the buffer
// if all the cards were discarded.
const size_t first_clean = dst - _node_buffer;
assert(first_clean >= start && first_clean <= _node_buffer_size, "invariant");
// Discarded cards are considered as refined.
*_total_refined_cards += first_clean - start;
return first_clean;
}
bool refine_cleaned_cards(size_t start_index) {
bool result = true;
size_t i = start_index;
for ( ; i < _node_buffer_size; ++i) {
if (SuspendibleThreadSet::should_yield()) {
redirty_unrefined_cards(i);
result = false;
break;
}
_g1rs->refine_card_concurrently(_node_buffer[i], _worker_id);
}
_node->set_index(i);
*_total_refined_cards += i - start_index;
return result;
}
void redirty_unrefined_cards(size_t start) {
for ( ; start < _node_buffer_size; ++start) {
*_node_buffer[start] = G1CardTable::dirty_card_val();
}
}
public:
G1RefineBufferedCards(BufferNode* node,
size_t node_buffer_size,
uint worker_id,
size_t* total_refined_cards) :
_node(node),
_node_buffer(reinterpret_cast<CardTable::CardValue**>(BufferNode::make_buffer_from_node(node))),
_node_buffer_size(node_buffer_size),
_worker_id(worker_id),
_total_refined_cards(total_refined_cards),
_g1rs(G1CollectedHeap::heap()->rem_set()) {}
bool refine() {
size_t first_clean_index = clean_cards();
if (first_clean_index == _node_buffer_size) {
_node->set_index(first_clean_index);
return true;
}
// This fence serves two purposes. First, the cards must be cleaned
// before processing the contents. Second, we can't proceed with
// processing a region until after the read of the region's top in
// collect_and_clean_cards(), for synchronization with possibly concurrent
// humongous object allocation (see comment at the StoreStore fence before
// setting the regions' tops in humongous allocation path).
// It's okay that reading region's top and reading region's type were racy
// wrto each other. We need both set, in any order, to proceed.
OrderAccess::fence();
sort_cards(first_clean_index);
return refine_cleaned_cards(first_clean_index);
}
};
bool G1DirtyCardQueueSet::refine_buffer(BufferNode* node,
uint worker_id,
size_t* total_refined_cards) {
G1RefineBufferedCards buffered_cards(node,
buffer_size(),
worker_id,
total_refined_cards);
return buffered_cards.refine();
}
#ifndef ASSERT
#define assert_fully_consumed(node, buffer_size)
#else
#define assert_fully_consumed(node, buffer_size) \
do { \
size_t _afc_index = (node)->index(); \
size_t _afc_size = (buffer_size); \
assert(_afc_index == _afc_size, \
"Buffer was not fully consumed as claimed: index: " \
SIZE_FORMAT ", size: " SIZE_FORMAT, \
_afc_index, _afc_size); \
} while (0)
#endif // ASSERT
bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// If the number of buffers exceeds the limit, make this Java
// thread do the processing itself. Calculation is racy but we
// don't need precision here. The add of padding could overflow,
// which is treated as unlimited.
size_t limit = max_cards() + max_cards_padding();
if ((num_cards() > limit) && (limit >= max_cards())) {
if (mut_process_buffer(node)) {
return true;
}
// Buffer was incompletely processed because of a pending safepoint
// request. Unlike with refinement thread processing, for mutator
// processing the buffer did not come from the completed buffer queue,
// so it is okay to add it to the queue rather than to the paused set.
// Indeed, it can't be added to the paused set because we didn't pass
// through enqueue_previous_paused_buffers.
}
}
enqueue_completed_buffer(node);
return false;
}
bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
uint worker_id = _free_ids.claim_par_id(); // temporarily claim an id
uint counter_index = worker_id - par_ids_start();
size_t* counter = &_mutator_refined_cards_counters[counter_index];
bool result = refine_buffer(node, worker_id, counter);
_free_ids.release_par_id(worker_id); // release the id
if (result) {
assert_fully_consumed(node, buffer_size());
}
return result;
}
bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_id,
size_t stop_at,
size_t* total_refined_cards) {
BufferNode* node = get_completed_buffer(stop_at);
if (node == NULL) {
return false;
} else if (refine_buffer(node, worker_id, total_refined_cards)) {
assert_fully_consumed(node, buffer_size());
// Done with fully processed buffer.
deallocate_buffer(node);
return true;
} else {
// Buffer incompletely processed because there is a pending safepoint.
// Record partially processed buffer, to be finished later.
record_paused_buffer(node);
return true;
}
}
void G1DirtyCardQueueSet::abandon_logs() {
assert_at_safepoint();
abandon_completed_buffers();
// Since abandon is done only at safepoints, we can safely manipulate
// these queues.
struct AbandonThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).reset();
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().reset();
}
void G1DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
assert_at_safepoint();
size_t old_limit = max_cards();
set_max_cards(MaxCardsUnlimited);
struct ConcatenateThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
if (!dcq.is_empty()) {
dcq.flush();
}
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().flush();
enqueue_all_paused_buffers();
verify_num_cards();
set_max_cards(old_limit);
}