jdk-24/src/hotspot/share/gc/g1/heapRegionRemSet.hpp

408 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
#define SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
#include "gc/g1/g1CodeCacheRemSet.hpp"
#include "gc/g1/g1FromCardCache.hpp"
#include "gc/g1/sparsePRT.hpp"
// Remembered set for a heap region. Represent a set of "cards" that
// contain pointers into the owner heap region. Cards are defined somewhat
// abstractly, in terms of what the "BlockOffsetTable" in use can parse.
class G1CollectedHeap;
class G1BlockOffsetTable;
class G1CardLiveData;
class HeapRegion;
class HeapRegionRemSetIterator;
class PerRegionTable;
class SparsePRT;
class nmethod;
// The "_coarse_map" is a bitmap with one bit for each region, where set
// bits indicate that the corresponding region may contain some pointer
// into the owning region.
// The "_fine_grain_entries" array is an open hash table of PerRegionTables
// (PRTs), indicating regions for which we're keeping the RS as a set of
// cards. The strategy is to cap the size of the fine-grain table,
// deleting an entry and setting the corresponding coarse-grained bit when
// we would overflow this cap.
// We use a mixture of locking and lock-free techniques here. We allow
// threads to locate PRTs without locking, but threads attempting to alter
// a bucket list obtain a lock. This means that any failing attempt to
// find a PRT must be retried with the lock. It might seem dangerous that
// a read can find a PRT that is concurrently deleted. This is all right,
// because:
//
// 1) We only actually free PRT's at safe points (though we reuse them at
// other times).
// 2) We find PRT's in an attempt to add entries. If a PRT is deleted,
// it's _coarse_map bit is set, so the that we were attempting to add
// is represented. If a deleted PRT is re-used, a thread adding a bit,
// thinking the PRT is for a different region, does no harm.
class OtherRegionsTable {
friend class HeapRegionRemSetIterator;
G1CollectedHeap* _g1h;
Mutex* _m;
// These are protected by "_m".
CHeapBitMap _coarse_map;
size_t _n_coarse_entries;
static jint _n_coarsenings;
PerRegionTable** _fine_grain_regions;
size_t _n_fine_entries;
// The fine grain remembered sets are doubly linked together using
// their 'next' and 'prev' fields.
// This allows fast bulk freeing of all the fine grain remembered
// set entries, and fast finding of all of them without iterating
// over the _fine_grain_regions table.
PerRegionTable * _first_all_fine_prts;
PerRegionTable * _last_all_fine_prts;
// Used to sample a subset of the fine grain PRTs to determine which
// PRT to evict and coarsen.
size_t _fine_eviction_start;
static size_t _fine_eviction_stride;
static size_t _fine_eviction_sample_size;
SparsePRT _sparse_table;
// These are static after init.
static size_t _max_fine_entries;
static size_t _mod_max_fine_entries_mask;
// Requires "prt" to be the first element of the bucket list appropriate
// for "hr". If this list contains an entry for "hr", return it,
// otherwise return "NULL".
PerRegionTable* find_region_table(size_t ind, HeapRegion* hr) const;
// Find, delete, and return a candidate PerRegionTable, if any exists,
// adding the deleted region to the coarse bitmap. Requires the caller
// to hold _m, and the fine-grain table to be full.
PerRegionTable* delete_region_table();
// link/add the given fine grain remembered set into the "all" list
void link_to_all(PerRegionTable * prt);
// unlink/remove the given fine grain remembered set into the "all" list
void unlink_from_all(PerRegionTable * prt);
bool contains_reference_locked(OopOrNarrowOopStar from) const;
size_t occ_fine() const;
size_t occ_coarse() const;
size_t occ_sparse() const;
public:
// Create a new remembered set. The given mutex is used to ensure consistency.
OtherRegionsTable(Mutex* m);
// Returns the card index of the given within_region pointer relative to the bottom
// of the given heap region.
static CardIdx_t card_within_region(OopOrNarrowOopStar within_region, HeapRegion* hr);
// Adds the reference from "from to this remembered set.
void add_reference(OopOrNarrowOopStar from, uint tid);
// Returns whether the remembered set contains the given reference.
bool contains_reference(OopOrNarrowOopStar from) const;
// Returns whether this remembered set (and all sub-sets) have an occupancy
// that is less or equal than the given occupancy.
bool occupancy_less_or_equal_than(size_t limit) const;
// Returns whether this remembered set (and all sub-sets) does not contain any entry.
bool is_empty() const;
// Returns the number of cards contained in this remembered set.
size_t occupied() const;
static jint n_coarsenings() { return _n_coarsenings; }
// Returns size of the actual remembered set containers in bytes.
size_t mem_size() const;
// Returns the size of static data in bytes.
static size_t static_mem_size();
// Returns the size of the free list content in bytes.
static size_t fl_mem_size();
// Clear the entire contents of this remembered set.
void clear();
};
class HeapRegionRemSet : public CHeapObj<mtGC> {
friend class VMStructs;
friend class HeapRegionRemSetIterator;
private:
G1BlockOffsetTable* _bot;
// A set of code blobs (nmethods) whose code contains pointers into
// the region that owns this RSet.
G1CodeRootSet _code_roots;
Mutex _m;
OtherRegionsTable _other_regions;
HeapRegion* _hr;
void clear_fcc();
public:
HeapRegionRemSet(G1BlockOffsetTable* bot, HeapRegion* hr);
static void setup_remset_size();
bool cardset_is_empty() const {
return _other_regions.is_empty();
}
bool is_empty() const {
return (strong_code_roots_list_length() == 0) && cardset_is_empty();
}
bool occupancy_less_or_equal_than(size_t occ) const {
return (strong_code_roots_list_length() == 0) && _other_regions.occupancy_less_or_equal_than(occ);
}
size_t occupied() {
MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
return occupied_locked();
}
size_t occupied_locked() {
return _other_regions.occupied();
}
static jint n_coarsenings() { return OtherRegionsTable::n_coarsenings(); }
private:
enum RemSetState {
Untracked,
Updating,
Complete
};
RemSetState _state;
static const char* _state_strings[];
static const char* _short_state_strings[];
public:
const char* get_state_str() const { return _state_strings[_state]; }
const char* get_short_state_str() const { return _short_state_strings[_state]; }
bool is_tracked() { return _state != Untracked; }
bool is_updating() { return _state == Updating; }
bool is_complete() { return _state == Complete; }
void set_state_empty() {
guarantee(SafepointSynchronize::is_at_safepoint() || !is_tracked(), "Should only set to Untracked during safepoint but is %s.", get_state_str());
if (_state == Untracked) {
return;
}
clear_fcc();
_state = Untracked;
}
void set_state_updating() {
guarantee(SafepointSynchronize::is_at_safepoint() && !is_tracked(), "Should only set to Updating from Untracked during safepoint but is %s", get_state_str());
clear_fcc();
_state = Updating;
}
void set_state_complete() {
clear_fcc();
_state = Complete;
}
// Used in the sequential case.
void add_reference(OopOrNarrowOopStar from) {
add_reference(from, 0);
}
// Used in the parallel case.
void add_reference(OopOrNarrowOopStar from, uint tid) {
RemSetState state = _state;
if (state == Untracked) {
return;
}
uint cur_idx = _hr->hrm_index();
uintptr_t from_card = uintptr_t(from) >> CardTable::card_shift;
if (G1FromCardCache::contains_or_replace(tid, cur_idx, from_card)) {
assert(contains_reference(from), "We just found " PTR_FORMAT " in the FromCardCache", p2i(from));
return;
}
_other_regions.add_reference(from, tid);
}
// The region is being reclaimed; clear its remset, and any mention of
// entries for this region in other remsets.
void clear(bool only_cardset = false);
void clear_locked(bool only_cardset = false);
// The actual # of bytes this hr_remset takes up.
// Note also includes the strong code root set.
size_t mem_size() {
MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
return _other_regions.mem_size()
// This correction is necessary because the above includes the second
// part.
+ (sizeof(HeapRegionRemSet) - sizeof(OtherRegionsTable))
+ strong_code_roots_mem_size();
}
// Returns the memory occupancy of all static data structures associated
// with remembered sets.
static size_t static_mem_size() {
return OtherRegionsTable::static_mem_size() + G1CodeRootSet::static_mem_size();
}
// Returns the memory occupancy of all free_list data structures associated
// with remembered sets.
static size_t fl_mem_size() {
return OtherRegionsTable::fl_mem_size();
}
bool contains_reference(OopOrNarrowOopStar from) const {
return _other_regions.contains_reference(from);
}
// Routines for managing the list of code roots that point into
// the heap region that owns this RSet.
void add_strong_code_root(nmethod* nm);
void add_strong_code_root_locked(nmethod* nm);
void remove_strong_code_root(nmethod* nm);
// Applies blk->do_code_blob() to each of the entries in
// the strong code roots list
void strong_code_roots_do(CodeBlobClosure* blk) const;
void clean_strong_code_roots(HeapRegion* hr);
// Returns the number of elements in the strong code roots list
size_t strong_code_roots_list_length() const {
return _code_roots.length();
}
// Returns true if the strong code roots contains the given
// nmethod.
bool strong_code_roots_list_contains(nmethod* nm) {
return _code_roots.contains(nm);
}
// Returns the amount of memory, in bytes, currently
// consumed by the strong code roots.
size_t strong_code_roots_mem_size();
static void invalidate_from_card_cache(uint start_idx, size_t num_regions) {
G1FromCardCache::invalidate(start_idx, num_regions);
}
#ifndef PRODUCT
static void print_from_card_cache() {
G1FromCardCache::print();
}
static void test();
#endif
};
class HeapRegionRemSetIterator : public StackObj {
private:
// The region RSet over which we are iterating.
HeapRegionRemSet* _hrrs;
// Local caching of HRRS fields.
const BitMap* _coarse_map;
G1BlockOffsetTable* _bot;
G1CollectedHeap* _g1h;
// The number of cards yielded since initialization.
size_t _n_yielded_fine;
size_t _n_yielded_coarse;
size_t _n_yielded_sparse;
// Indicates what granularity of table that we are currently iterating over.
// We start iterating over the sparse table, progress to the fine grain
// table, and then finish with the coarse table.
enum IterState {
Sparse,
Fine,
Coarse
};
IterState _is;
// For both Coarse and Fine remembered set iteration this contains the
// first card number of the heap region we currently iterate over.
size_t _cur_region_card_offset;
// Current region index for the Coarse remembered set iteration.
int _coarse_cur_region_index;
size_t _coarse_cur_region_cur_card;
bool coarse_has_next(size_t& card_index);
// The PRT we are currently iterating over.
PerRegionTable* _fine_cur_prt;
// Card offset within the current PRT.
size_t _cur_card_in_prt;
// Update internal variables when switching to the given PRT.
void switch_to_prt(PerRegionTable* prt);
bool fine_has_next();
bool fine_has_next(size_t& card_index);
// The Sparse remembered set iterator.
SparsePRTIter _sparse_iter;
public:
HeapRegionRemSetIterator(HeapRegionRemSet* hrrs);
// If there remains one or more cards to be yielded, returns true and
// sets "card_index" to one of those cards (which is then considered
// yielded.) Otherwise, returns false (and leaves "card_index"
// undefined.)
bool has_next(size_t& card_index);
size_t n_yielded_fine() { return _n_yielded_fine; }
size_t n_yielded_coarse() { return _n_yielded_coarse; }
size_t n_yielded_sparse() { return _n_yielded_sparse; }
size_t n_yielded() {
return n_yielded_fine() + n_yielded_coarse() + n_yielded_sparse();
}
};
#endif // SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP