2018-08-22 15:55:04 -07:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @test
|
|
|
|
* @bug 8200698
|
|
|
|
* @summary Tests that exceptions are thrown for ops which would overflow
|
2019-03-27 11:35:41 +01:00
|
|
|
* @requires (sun.arch.data.model == "64" & os.maxMemory >= 4g)
|
2018-08-22 15:55:04 -07:00
|
|
|
* @run testng/othervm -Xmx4g LargeValueExceptions
|
|
|
|
*/
|
|
|
|
import java.math.BigInteger;
|
|
|
|
import static java.math.BigInteger.ONE;
|
|
|
|
import org.testng.annotations.Test;
|
|
|
|
|
|
|
|
//
|
|
|
|
// The intent of this test is to probe the boundaries between overflow and
|
|
|
|
// non-overflow, principally for multiplication and squaring, specifically
|
|
|
|
// the largest values which should not overflow and the smallest values which
|
|
|
|
// should. The transition values used are not necessarily at the exact
|
|
|
|
// boundaries but should be "close." Quite a few different values were used
|
|
|
|
// experimentally before settling on the ones in this test. For multiplication
|
|
|
|
// and squaring all cases are exercised: definite overflow and non-overflow
|
|
|
|
// which can be detected "up front," and "indefinite" overflow, i.e., overflow
|
|
|
|
// which cannot be detected up front so further calculations are required.
|
|
|
|
//
|
|
|
|
// Testing negative values is unnecessary. For both multiplication and squaring
|
|
|
|
// the paths lead to the Toom-Cook algorithm where the signum is used only to
|
|
|
|
// determine the sign of the result and not in the intermediate calculations.
|
|
|
|
// This is also true for exponentiation.
|
|
|
|
//
|
|
|
|
// @Test annotations with optional element "enabled" set to "false" should
|
|
|
|
// succeed when "enabled" is set to "true" but they take too to run in the
|
|
|
|
// course of the typical regression test execution scenario.
|
|
|
|
//
|
|
|
|
public class LargeValueExceptions {
|
|
|
|
// BigInteger.MAX_MAG_LENGTH
|
|
|
|
private static final int MAX_INTS = 1 << 26;
|
|
|
|
|
|
|
|
// Number of bits corresponding to MAX_INTS
|
|
|
|
private static final long MAX_BITS = (0xffffffffL & MAX_INTS) << 5L;
|
|
|
|
|
|
|
|
// Half BigInteger.MAX_MAG_LENGTH
|
|
|
|
private static final int MAX_INTS_HALF = MAX_INTS / 2;
|
|
|
|
|
|
|
|
// --- squaring ---
|
|
|
|
|
|
|
|
// Largest no overflow determined by examining data lengths alone.
|
|
|
|
@Test(enabled=false)
|
|
|
|
public void squareNoOverflow() {
|
|
|
|
BigInteger x = ONE.shiftLeft(16*MAX_INTS - 1).subtract(ONE);
|
|
|
|
BigInteger y = x.multiply(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Smallest no overflow determined by extra calculations.
|
|
|
|
@Test(enabled=false)
|
|
|
|
public void squareIndefiniteOverflowSuccess() {
|
|
|
|
BigInteger x = ONE.shiftLeft(16*MAX_INTS - 1);
|
|
|
|
BigInteger y = x.multiply(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Largest overflow detected by extra calculations.
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class,enabled=false)
|
|
|
|
public void squareIndefiniteOverflowFailure() {
|
|
|
|
BigInteger x = ONE.shiftLeft(16*MAX_INTS).subtract(ONE);
|
|
|
|
BigInteger y = x.multiply(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Smallest overflow detected by examining data lengths alone.
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class)
|
|
|
|
public void squareDefiniteOverflow() {
|
|
|
|
BigInteger x = ONE.shiftLeft(16*MAX_INTS);
|
|
|
|
BigInteger y = x.multiply(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// --- multiplication ---
|
|
|
|
|
|
|
|
// Largest no overflow determined by examining data lengths alone.
|
|
|
|
@Test(enabled=false)
|
|
|
|
public void multiplyNoOverflow() {
|
|
|
|
final int halfMaxBits = MAX_INTS_HALF << 5;
|
|
|
|
|
|
|
|
BigInteger x = ONE.shiftLeft(halfMaxBits).subtract(ONE);
|
|
|
|
BigInteger y = ONE.shiftLeft(halfMaxBits - 1).subtract(ONE);
|
|
|
|
BigInteger z = x.multiply(y);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Smallest no overflow determined by extra calculations.
|
|
|
|
@Test(enabled=false)
|
|
|
|
public void multiplyIndefiniteOverflowSuccess() {
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS/2) - 1);
|
|
|
|
long m = MAX_BITS - x.bitLength();
|
|
|
|
|
|
|
|
BigInteger y = ONE.shiftLeft((int)(MAX_BITS/2) - 1);
|
|
|
|
long n = MAX_BITS - y.bitLength();
|
|
|
|
|
|
|
|
if (m + n != MAX_BITS) {
|
|
|
|
throw new RuntimeException("Unexpected leading zero sum");
|
|
|
|
}
|
|
|
|
|
|
|
|
BigInteger z = x.multiply(y);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Largest overflow detected by extra calculations.
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class,enabled=false)
|
|
|
|
public void multiplyIndefiniteOverflowFailure() {
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS/2)).subtract(ONE);
|
|
|
|
long m = MAX_BITS - x.bitLength();
|
|
|
|
|
|
|
|
BigInteger y = ONE.shiftLeft((int)(MAX_BITS/2)).subtract(ONE);
|
|
|
|
long n = MAX_BITS - y.bitLength();
|
|
|
|
|
|
|
|
if (m + n != MAX_BITS) {
|
|
|
|
throw new RuntimeException("Unexpected leading zero sum");
|
|
|
|
}
|
|
|
|
|
|
|
|
BigInteger z = x.multiply(y);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Smallest overflow detected by examining data lengths alone.
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class)
|
|
|
|
public void multiplyDefiniteOverflow() {
|
|
|
|
// multiply by 4 as MAX_INTS_HALF refers to ints
|
|
|
|
byte[] xmag = new byte[4*MAX_INTS_HALF];
|
|
|
|
xmag[0] = (byte)0xff;
|
|
|
|
BigInteger x = new BigInteger(1, xmag);
|
|
|
|
|
|
|
|
byte[] ymag = new byte[4*MAX_INTS_HALF + 1];
|
|
|
|
ymag[0] = (byte)0xff;
|
|
|
|
BigInteger y = new BigInteger(1, ymag);
|
|
|
|
|
|
|
|
BigInteger z = x.multiply(y);
|
|
|
|
}
|
|
|
|
|
|
|
|
// --- exponentiation ---
|
|
|
|
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class)
|
|
|
|
public void powOverflow() {
|
|
|
|
BigInteger.TEN.pow(Integer.MAX_VALUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class)
|
|
|
|
public void powOverflow1() {
|
|
|
|
int shift = 20;
|
|
|
|
int exponent = 1 << shift;
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS / exponent));
|
|
|
|
BigInteger y = x.pow(exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class)
|
|
|
|
public void powOverflow2() {
|
|
|
|
int shift = 20;
|
|
|
|
int exponent = 1 << shift;
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS / exponent)).add(ONE);
|
|
|
|
BigInteger y = x.pow(exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test(expectedExceptions=ArithmeticException.class,enabled=false)
|
|
|
|
public void powOverflow3() {
|
|
|
|
int shift = 20;
|
|
|
|
int exponent = 1 << shift;
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS / exponent)).subtract(ONE);
|
|
|
|
BigInteger y = x.pow(exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test(enabled=false)
|
|
|
|
public void powOverflow4() {
|
|
|
|
int shift = 20;
|
|
|
|
int exponent = 1 << shift;
|
|
|
|
BigInteger x = ONE.shiftLeft((int)(MAX_BITS / exponent - 1)).add(ONE);
|
|
|
|
BigInteger y = x.pow(exponent);
|
|
|
|
}
|
|
|
|
}
|