jdk-24/test/micro/org/openjdk/bench/java/math/BigIntegerMersennePrimeMultiply.java

323 lines
12 KiB
Java
Raw Normal View History

package org.openjdk.bench.java.math;
import javax.management.MBeanServer;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Locale;
import java.util.LongSummaryStatistics;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinWorkerThread;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.BinaryOperator;
import java.util.function.LongUnaryOperator;
import java.util.stream.Collectors;
import static java.util.concurrent.ForkJoinPool.defaultForkJoinWorkerThreadFactory;
/**
* Benchmark for checking performance difference between sequential and parallel
* multiply of very large Mersenne primes using BigInteger. We want to measure
* real time, user time, system time and the amount of memory allocated. To
* calculate this, we create our own thread factory for the common ForkJoinPool
* and then use that to measure user time, cpu time and bytes allocated.
* <p>
* We use reflection to discover all methods that match "*ultiply", and use them
* to multiply two very large Mersenne primes together.
* <p>
* <h3>Results on a 1-6-2 machine running Ubuntu linux</h3>
* <p>
* Memory allocation increased from 83.9GB to 84GB, for both the sequential and
* parallel versions. This is an increase of just 0.1%. On this machine, the
* parallel version was 3.8x faster in latency (real time), but it used 2.7x
* more CPU resources.
* <p>
* Testing multiplying Mersenne primes of 2^57885161-1 and 2^82589933-1
* <p>
* <pre>
* openjdk version "18-internal" 2022-03-15
* BigInteger.parallelMultiply()
* real 0m6.288s
* user 1m3.010s
* sys 0m0.027s
* mem 84.0GB
* BigInteger.multiply()
* real 0m23.682s
* user 0m23.530s
* sys 0m0.004s
* mem 84.0GB
*
* openjdk version "1.8.0_302"
* BigInteger.multiply()
* real 0m25.657s
* user 0m25.390s
* sys 0m0.001s
* mem 83.9GB
*
* openjdk version "9.0.7.1"
* BigInteger.multiply()
* real 0m24.907s
* user 0m24.700s
* sys 0m0.001s
* mem 83.9GB
*
* openjdk version "10.0.2" 2018-07-17
* BigInteger.multiply()
* real 0m24.632s
* user 0m24.380s
* sys 0m0.004s
* mem 83.9GB
*
* openjdk version "11.0.12" 2021-07-20 LTS
* BigInteger.multiply()
* real 0m22.114s
* user 0m21.930s
* sys 0m0.001s
* mem 83.9GB
*
* openjdk version "12.0.2" 2019-07-16
* BigInteger.multiply()
* real 0m23.015s
* user 0m22.830s
* sys 0m0.000s
* mem 83.9GB
*
* openjdk version "13.0.9" 2021-10-19
* BigInteger.multiply()
* real 0m23.548s
* user 0m23.350s
* sys 0m0.005s
* mem 83.9GB
*
* openjdk version "14.0.2" 2020-07-14
* BigInteger.multiply()
* real 0m22.918s
* user 0m22.530s
* sys 0m0.131s
* mem 83.9GB
*
* openjdk version "15.0.5" 2021-10-19
* BigInteger.multiply()
* real 0m22.038s
* user 0m21.750s
* sys 0m0.003s
* mem 83.9GB
*
* openjdk version "16.0.2" 2021-07-20
* BigInteger.multiply()
* real 0m23.049s
* user 0m22.760s
* sys 0m0.006s
* mem 83.9GB
*
* openjdk version "17" 2021-09-14
* BigInteger.multiply()
* real 0m22.580s
* user 0m22.310s
* sys 0m0.001s
* mem 83.9GB
*</pre>
*
* @author Heinz Kabutz, heinz@javaspecialists.eu
*/
public class BigIntegerMersennePrimeMultiply implements ForkJoinPool.ForkJoinWorkerThreadFactory {
// Large Mersenne prime discovered by Curtis Cooper in 2013
private static final int EXPONENT_1 = 57885161;
private static final BigInteger MERSENNE_1 =
BigInteger.ONE.shiftLeft(EXPONENT_1).subtract(BigInteger.ONE);
// Largest Mersenne prime number discovered by Patrick Laroche in 2018
private static final int EXPONENT_2 = 82589933;
private static final BigInteger MERSENNE_2 =
BigInteger.ONE.shiftLeft(EXPONENT_2).subtract(BigInteger.ONE);
private static boolean DEBUG = false;
public static void main(String... args) {
System.setProperty("java.util.concurrent.ForkJoinPool.common.threadFactory",
BigIntegerMersennePrimeMultiply.class.getName());
System.out.println("Testing multiplying Mersenne primes of " +
"2^" + EXPONENT_1 + "-1 and 2^" + EXPONENT_2 + "-1");
addCounters(Thread.currentThread());
System.out.println("Using the following multiply methods:");
List<Method> methods = Arrays.stream(BigInteger.class.getMethods())
.filter(method -> method.getName().endsWith("ultiply") &&
method.getParameterCount() == 1 &&
method.getParameterTypes()[0] == BigInteger.class)
.peek(method -> System.out.println(" " + method))
.collect(Collectors.toList());
for (int i = 0; i < 3; i++) {
System.out.println();
methods.forEach(BigIntegerMersennePrimeMultiply::test);
}
}
private static void test(Method method) {
BinaryOperator<BigInteger> multiplyOperator = (a, b) -> {
try {
return (BigInteger) method.invoke(a, b);
} catch (IllegalAccessException e) {
throw new AssertionError(e);
} catch (InvocationTargetException e) {
throw new AssertionError(e.getCause());
}
};
test(method.getName(), multiplyOperator);
}
private static void test(String description,
BinaryOperator<BigInteger> multiplyOperator) {
System.out.println("BigInteger." + description + "()");
resetAllCounters();
long elapsedTimeInNanos = System.nanoTime();
try {
BigInteger result1 = multiplyOperator.apply(MERSENNE_1, MERSENNE_2);
BigInteger result2 = multiplyOperator.apply(MERSENNE_2, MERSENNE_1);
if (result1.bitLength() != 140475094)
throw new AssertionError("Expected bitLength: 140475094, " +
"but was " + result1.bitLength());
if (result2.bitLength() != 140475094)
throw new AssertionError("Expected bitLength: 140475094, " +
"but was " + result1.bitLength());
} finally {
elapsedTimeInNanos = System.nanoTime() - elapsedTimeInNanos;
}
LongSummaryStatistics userTimeStatistics = getStatistics(userTime);
LongSummaryStatistics cpuTimeStatistics = getStatistics(cpuTime);
LongSummaryStatistics memoryAllocationStatistics = getStatistics(bytes);
System.out.println("real " + formatTime(elapsedTimeInNanos));
System.out.println("user " + formatTime(userTimeStatistics.getSum()));
System.out.println("sys " +
formatTime(cpuTimeStatistics.getSum() - userTimeStatistics.getSum()));
System.out.println("mem " + formatMemory(memoryAllocationStatistics.getSum(), 1));
}
private static LongSummaryStatistics getStatistics(Map<Thread, AtomicLong> timeMap) {
return timeMap.entrySet()
.stream()
.peek(entry -> {
long timeInMs = (counterExtractorMap.get(timeMap)
.applyAsLong(entry.getKey().threadId())
- entry.getValue().get());
entry.getValue().set(timeInMs);
})
.peek(BigIntegerMersennePrimeMultiply::printTime)
.map(Map.Entry::getValue)
.mapToLong(AtomicLong::get)
.summaryStatistics();
}
private static void printTime(Map.Entry<Thread, AtomicLong> threadCounter) {
if (DEBUG)
System.out.printf("%s %d%n", threadCounter.getKey(), threadCounter.getValue()
.get());
}
private static void addCounters(Thread thread) {
counterExtractorMap.forEach((map, timeExtractor) -> add(map, thread, timeExtractor));
}
private static void add(Map<Thread, AtomicLong> time, Thread thread,
LongUnaryOperator timeExtractor) {
time.put(thread, new AtomicLong(timeExtractor.applyAsLong(thread.threadId())));
}
private static void resetAllCounters() {
counterExtractorMap.forEach(BigIntegerMersennePrimeMultiply::resetTimes);
}
private static void resetTimes(Map<Thread, AtomicLong> timeMap, LongUnaryOperator timeMethod) {
timeMap.forEach((thread, time) ->
time.set(timeMethod.applyAsLong(thread.threadId())));
}
private static final Map<Thread, AtomicLong> userTime =
new ConcurrentHashMap<>();
private static final Map<Thread, AtomicLong> cpuTime =
new ConcurrentHashMap<>();
private static final Map<Thread, AtomicLong> bytes =
new ConcurrentHashMap<>();
private static final ThreadMXBean tmb = ManagementFactory.getThreadMXBean();
private static final Map<Map<Thread, AtomicLong>, LongUnaryOperator> counterExtractorMap =
new IdentityHashMap<>();
static {
counterExtractorMap.put(userTime, tmb::getThreadUserTime);
counterExtractorMap.put(cpuTime, tmb::getThreadCpuTime);
counterExtractorMap.put(bytes, BigIntegerMersennePrimeMultiply::threadAllocatedBytes);
}
public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
ForkJoinWorkerThread thread = defaultForkJoinWorkerThreadFactory.newThread(pool);
addCounters(thread);
return thread;
}
private static final String[] SIGNATURE = new String[]{long.class.getName()};
private static final MBeanServer mBeanServer;
private static final ObjectName name;
static {
try {
name = new ObjectName(ManagementFactory.THREAD_MXBEAN_NAME);
mBeanServer = ManagementFactory.getPlatformMBeanServer();
} catch (MalformedObjectNameException e) {
throw new ExceptionInInitializerError(e);
}
}
public static long threadAllocatedBytes(long threadId) {
try {
return (long) mBeanServer.invoke(
name,
"getThreadAllocatedBytes",
new Object[]{threadId},
SIGNATURE
);
} catch (Exception e) {
throw new IllegalArgumentException(e);
}
}
public static String formatMemory(double bytes, int decimals) {
double val;
String unitStr;
if (bytes < 1024) {
val = bytes;
unitStr = "B";
} else if (bytes < 1024 * 1024) {
val = bytes / 1024;
unitStr = "KB";
} else if (bytes < 1024 * 1024 * 1024) {
val = bytes / (1024 * 1024);
unitStr = "MB";
} else if (bytes < 1024 * 1024 * 1024 * 1024L) {
val = bytes / (1024 * 1024 * 1024L);
unitStr = "GB";
} else {
val = bytes / (1024 * 1024 * 1024 * 1024L);
unitStr = "TB";
}
return String.format(Locale.US, "%." + decimals + "f%s", val, unitStr);
}
public static String formatTime(long nanos) {
if (nanos < 0) nanos = 0;
long timeInMs = TimeUnit.NANOSECONDS.toMillis(nanos);
long minutes = timeInMs / 60_000;
double remainingMs = (timeInMs % 60_000) / 1000.0;
return String.format(Locale.US, "%dm%.3fs", minutes, remainingMs);
}
}