jdk-24/test/jdk/java/awt/geom/AffineTransform/TestInvertMethods.java

486 lines
18 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 4987374 8062163
* @summary Unit test for inversion methods:
*
* AffineTransform.createInverse();
* AffineTransform.invert();
*
* @author flar
* @run main TestInvertMethods
*/
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
/*
* Instances of the inner class Tester are "nodes" which take an input
* AffineTransform (AT), modify it in some way and pass the modified
* AT onto another Tester node.
*
* There is one particular Tester node of note called theVerifier.
* This is a leaf node which takes the input AT and tests the various
* inversion methods on that matrix.
*
* Most of the other Tester nodes will perform a single affine operation
* on their input, such as a rotate by various angles, or a scale by
* various predefined scale values, and then pass the modified AT on
* to the next node in the chain which may be a verifier or another
* modifier.
*
* The Tester instances can also be chained together using the chain
* method so that we can test not only matrices modified by some single
* affine operation (scale, rotate, etc.) but also composite matrices
* that represent multiple operations concatenated together.
*/
public class TestInvertMethods {
public static boolean verbose;
public static final double MAX_ULPS = 2.0;
public static double MAX_TX_ULPS = MAX_ULPS;
public static double maxulps = 0.0;
public static double maxtxulps = 0.0;
public static int numtests = 0;
public static void main(String argv[]) {
Tester rotate = new Tester.Rotate();
Tester scale = new Tester.Scale();
Tester shear = new Tester.Shear();
Tester translate = new Tester.Translate();
if (argv.length > 1) {
// This next line verifies that chaining works correctly...
scale.chain(translate.chain(new Tester.Debug())).test(false);
return;
}
verbose = (argv.length > 0);
new Tester.Identity().test(true);
translate.test(true);
scale.test(true);
rotate.test(true);
shear.test(true);
scale.chain(translate).test(true);
rotate.chain(translate).test(true);
shear.chain(translate).test(true);
translate.chain(scale).test(true);
translate.chain(rotate).test(true);
translate.chain(shear).test(true);
translate.chain(scale.chain(rotate.chain(shear))).test(false);
shear.chain(rotate.chain(scale.chain(translate))).test(false);
System.out.println(numtests+" tests performed");
System.out.println("Max scale and shear difference: "+maxulps+" ulps");
System.out.println("Max translate difference: "+maxtxulps+" ulps");
}
public abstract static class Tester {
public static AffineTransform IdentityTx = new AffineTransform();
/*
* This is the leaf node that performs inversion testing
* on the incoming AffineTransform.
*/
public static final Tester theVerifier = new Tester() {
public void test(AffineTransform at, boolean full) {
numtests++;
AffineTransform inv1, inv2;
boolean isinvertible =
(Math.abs(at.getDeterminant()) >= Double.MIN_VALUE);
try {
inv1 = at.createInverse();
if (!isinvertible) missingNTE("createInverse", at);
} catch (NoninvertibleTransformException e) {
inv1 = null;
if (isinvertible) extraNTE("createInverse", at);
}
inv2 = new AffineTransform(at);
try {
inv2.invert();
if (!isinvertible) missingNTE("invert", at);
} catch (NoninvertibleTransformException e) {
if (isinvertible) extraNTE("invert", at);
}
if (verbose) System.out.println("at = "+at);
if (isinvertible) {
if (verbose) System.out.println(" inv1 = "+inv1);
if (verbose) System.out.println(" inv2 = "+inv2);
if (!inv1.equals(inv2)) {
report(at, inv1, inv2,
"invert methods do not agree");
}
inv1.concatenate(at);
inv2.concatenate(at);
// "Fix" some values that don't always behave
// well with all the math that we've done up
// to this point.
// See the note on the concatfix method below.
concatfix(inv1);
concatfix(inv2);
if (verbose) System.out.println(" at*inv1 = "+inv1);
if (verbose) System.out.println(" at*inv2 = "+inv2);
if (!compare(inv1, IdentityTx)) {
report(at, inv1, IdentityTx,
"createInverse() check failed");
}
if (!compare(inv2, IdentityTx)) {
report(at, inv2, IdentityTx,
"invert() check failed");
}
} else {
if (verbose) System.out.println(" is not invertible");
}
if (verbose) System.out.println();
}
void missingNTE(String methodname, AffineTransform at) {
throw new RuntimeException("Noninvertible was not "+
"thrown from "+methodname+
" for: "+at);
}
void extraNTE(String methodname, AffineTransform at) {
throw new RuntimeException("Unexpected Noninvertible "+
"thrown from "+methodname+
" for: "+at);
}
};
/*
* The inversion math may work out fairly exactly, but when
* we concatenate the inversions back with the original matrix
* in an attempt to restore them to the identity matrix,
* then we can end up compounding errors to a fairly high
* level, particularly if the component values had mantissas
* that were repeating fractions. This function therefore
* "fixes" the results of concatenating the inversions back
* with their original matrices to get rid of small variations
* in the values that should have ended up being 0.0.
*/
public void concatfix(AffineTransform at) {
double m00 = at.getScaleX();
double m10 = at.getShearY();
double m01 = at.getShearX();
double m11 = at.getScaleY();
double m02 = at.getTranslateX();
double m12 = at.getTranslateY();
if (Math.abs(m00-1.0) < 1E-10) m00 = 1.0;
if (Math.abs(m11-1.0) < 1E-10) m11 = 1.0;
if (Math.abs(m02) < 1E-10) m02 = 0.0;
if (Math.abs(m12) < 1E-10) m12 = 0.0;
if (Math.abs(m01) < 1E-15) m01 = 0.0;
if (Math.abs(m10) < 1E-15) m10 = 0.0;
at.setTransform(m00, m10,
m01, m11,
m02, m12);
}
public void test(boolean full) {
test(IdentityTx, full);
}
public void test(AffineTransform init, boolean full) {
test(init, theVerifier, full);
}
public void test(AffineTransform init, Tester next, boolean full) {
next.test(init, full);
}
public Tester chain(Tester next) {
return new Chain(this, next);
}
/*
* Utility node used to chain together two other nodes for
* implementing the "chain" method.
*/
public static class Chain extends Tester {
Tester prev;
Tester next;
public Chain(Tester prev, Tester next) {
this.prev = prev;
this.next = next;
}
public void test(AffineTransform init, boolean full) {
prev.test(init, next, full);
}
public Tester chain(Tester next) {
this.next = this.next.chain(next);
return this;
}
}
/*
* Utility node for testing.
*/
public static class Fail extends Tester {
public void test(AffineTransform init, Tester next, boolean full) {
throw new RuntimeException("Debug: Forcing failure");
}
}
/*
* Utility node for testing that chaining works.
*/
public static class Debug extends Tester {
public void test(AffineTransform init, Tester next, boolean full) {
new Throwable().printStackTrace();
next.test(init, full);
}
}
/*
* NOP node.
*/
public static class Identity extends Tester {
public void test(AffineTransform init, Tester next, boolean full) {
if (verbose) System.out.println("*Identity = "+init);
next.test(init, full);
}
}
/*
* Affine rotation node.
*/
public static class Rotate extends Tester {
public void test(AffineTransform init, Tester next, boolean full) {
int inc = full ? 10 : 45;
for (int i = -720; i <= 720; i += inc) {
AffineTransform at2 = new AffineTransform(init);
at2.rotate(i / 180.0 * Math.PI);
if (verbose) System.out.println("*Rotate("+i+") = "+at2);
next.test(at2, full);
}
}
}
public static final double SMALL_VALUE = .0001;
public static final double LARGE_VALUE = 10000;
/*
* Affine scale node.
*/
public static class Scale extends Tester {
public double fullvals[] = {
// Noninvertibles
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
// Invertibles
SMALL_VALUE, SMALL_VALUE,
SMALL_VALUE, 1.0,
1.0, SMALL_VALUE,
SMALL_VALUE, LARGE_VALUE,
LARGE_VALUE, SMALL_VALUE,
LARGE_VALUE, LARGE_VALUE,
LARGE_VALUE, 1.0,
1.0, LARGE_VALUE,
0.5, 0.5,
1.0, 1.0,
2.0, 2.0,
Math.PI, Math.E,
};
public double abbrevvals[] = {
0.0, 0.0,
1.0, 1.0,
2.0, 3.0,
};
public void test(AffineTransform init, Tester next, boolean full) {
double scales[] = (full ? fullvals : abbrevvals);
for (int i = 0; i < scales.length; i += 2) {
AffineTransform at2 = new AffineTransform(init);
at2.scale(scales[i], scales[i+1]);
if (verbose) System.out.println("*Scale("+scales[i]+", "+
scales[i+1]+") = "+at2);
next.test(at2, full);
}
}
}
/*
* Affine shear node.
*/
public static class Shear extends Tester {
public double fullvals[] = {
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
// Noninvertible
1.0, 1.0,
SMALL_VALUE, SMALL_VALUE,
SMALL_VALUE, LARGE_VALUE,
LARGE_VALUE, SMALL_VALUE,
LARGE_VALUE, LARGE_VALUE,
Math.PI, Math.E,
};
public double abbrevvals[] = {
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
// Noninvertible
1.0, 1.0,
};
public void test(AffineTransform init, Tester next, boolean full) {
double shears[] = (full ? fullvals : abbrevvals);
for (int i = 0; i < shears.length; i += 2) {
AffineTransform at2 = new AffineTransform(init);
at2.shear(shears[i], shears[i+1]);
if (verbose) System.out.println("*Shear("+shears[i]+", "+
shears[i+1]+") = "+at2);
next.test(at2, full);
}
}
}
/*
* Affine translate node.
*/
public static class Translate extends Tester {
public double fullvals[] = {
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
SMALL_VALUE, SMALL_VALUE,
SMALL_VALUE, LARGE_VALUE,
LARGE_VALUE, SMALL_VALUE,
LARGE_VALUE, LARGE_VALUE,
Math.PI, Math.E,
};
public double abbrevvals[] = {
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
Math.PI, Math.E,
};
public void test(AffineTransform init, Tester next, boolean full) {
double translates[] = (full ? fullvals : abbrevvals);
for (int i = 0; i < translates.length; i += 2) {
AffineTransform at2 = new AffineTransform(init);
at2.translate(translates[i], translates[i+1]);
if (verbose) System.out.println("*Translate("+
translates[i]+", "+
translates[i+1]+") = "+at2);
next.test(at2, full);
}
}
}
}
public static void report(AffineTransform orig,
AffineTransform at1, AffineTransform at2,
String message)
{
System.out.println(orig+", type = "+orig.getType());
System.out.println(at1+", type = "+at1.getType());
System.out.println(at2+", type = "+at2.getType());
System.out.println("ScaleX values differ by "+
ulps(at1.getScaleX(),
at2.getScaleX())+" ulps");
System.out.println("ScaleY values differ by "+
ulps(at1.getScaleY(),
at2.getScaleY())+" ulps");
System.out.println("ShearX values differ by "+
ulps(at1.getShearX(),
at2.getShearX())+" ulps");
System.out.println("ShearY values differ by "+
ulps(at1.getShearY(),
at2.getShearY())+" ulps");
System.out.println("TranslateX values differ by "+
ulps(at1.getTranslateX(),
at2.getTranslateX())+" ulps");
System.out.println("TranslateY values differ by "+
ulps(at1.getTranslateY(),
at2.getTranslateY())+" ulps");
throw new RuntimeException(message);
}
public static boolean compare(AffineTransform at1, AffineTransform at2) {
maxulps = Math.max(maxulps, ulps(at1.getScaleX(), at2.getScaleX()));
maxulps = Math.max(maxulps, ulps(at1.getScaleY(), at2.getScaleY()));
maxulps = Math.max(maxulps, ulps(at1.getShearX(), at2.getShearX()));
maxulps = Math.max(maxulps, ulps(at1.getShearY(), at2.getShearY()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateX(), at2.getTranslateX()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateY(), at2.getTranslateY()));
return (getModifiedType(at1) == getModifiedType(at2) &&
(compare(at1.getScaleX(), at2.getScaleX(), MAX_ULPS)) &&
(compare(at1.getScaleY(), at2.getScaleY(), MAX_ULPS)) &&
(compare(at1.getShearX(), at2.getShearX(), MAX_ULPS)) &&
(compare(at1.getShearY(), at2.getShearY(), MAX_ULPS)) &&
(compare(at1.getTranslateX(),
at2.getTranslateX(), MAX_TX_ULPS)) &&
(compare(at1.getTranslateY(),
at2.getTranslateY(), MAX_TX_ULPS)));
}
public static final int ANY_SCALE_MASK =
(AffineTransform.TYPE_UNIFORM_SCALE |
AffineTransform.TYPE_GENERAL_SCALE);
public static int getModifiedType(AffineTransform at) {
int type = at.getType();
// Some of the vector methods can introduce a tiny uniform scale
// at some angles...
if ((type & ANY_SCALE_MASK) != 0) {
maxulps = Math.max(maxulps, ulps(at.getDeterminant(), 1.0));
if (ulps(at.getDeterminant(), 1.0) <= MAX_ULPS) {
// Really tiny - we will ignore it
type &= ~ ANY_SCALE_MASK;
}
}
return type;
}
public static boolean compare(double val1, double val2, double maxulps) {
if (Math.abs(val1 - val2) < 1E-15) return true;
return (ulps(val1, val2) <= maxulps);
}
public static double ulps(double val1, double val2) {
double diff = Math.abs(val1 - val2);
double ulpmax = Math.min(Math.ulp(val1), Math.ulp(val2));
return (diff / ulpmax);
}
}