jdk-24/hotspot/src/share/vm/gc_implementation/g1/collectionSetChooser.cpp

384 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "memory/space.inline.hpp"
CSetChooserCache::CSetChooserCache() {
for (int i = 0; i < CacheLength; ++i)
_cache[i] = NULL;
clear();
}
void CSetChooserCache::clear() {
_occupancy = 0;
_first = 0;
for (int i = 0; i < CacheLength; ++i) {
HeapRegion *hr = _cache[i];
if (hr != NULL)
hr->set_sort_index(-1);
_cache[i] = NULL;
}
}
#ifndef PRODUCT
bool CSetChooserCache::verify() {
int index = _first;
HeapRegion *prev = NULL;
for (int i = 0; i < _occupancy; ++i) {
guarantee(_cache[index] != NULL, "cache entry should not be empty");
HeapRegion *hr = _cache[index];
guarantee(!hr->is_young(), "should not be young!");
if (prev != NULL) {
guarantee(prev->gc_efficiency() >= hr->gc_efficiency(),
"cache should be correctly ordered");
}
guarantee(hr->sort_index() == get_sort_index(index),
"sort index should be correct");
index = trim_index(index + 1);
prev = hr;
}
for (int i = 0; i < (CacheLength - _occupancy); ++i) {
guarantee(_cache[index] == NULL, "cache entry should be empty");
index = trim_index(index + 1);
}
guarantee(index == _first, "we should have reached where we started from");
return true;
}
#endif // PRODUCT
void CSetChooserCache::insert(HeapRegion *hr) {
assert(!is_full(), "cache should not be empty");
hr->calc_gc_efficiency();
int empty_index;
if (_occupancy == 0) {
empty_index = _first;
} else {
empty_index = trim_index(_first + _occupancy);
assert(_cache[empty_index] == NULL, "last slot should be empty");
int last_index = trim_index(empty_index - 1);
HeapRegion *last = _cache[last_index];
assert(last != NULL,"as the cache is not empty, last should not be empty");
while (empty_index != _first &&
last->gc_efficiency() < hr->gc_efficiency()) {
_cache[empty_index] = last;
last->set_sort_index(get_sort_index(empty_index));
empty_index = last_index;
last_index = trim_index(last_index - 1);
last = _cache[last_index];
}
}
_cache[empty_index] = hr;
hr->set_sort_index(get_sort_index(empty_index));
++_occupancy;
assert(verify(), "cache should be consistent");
}
HeapRegion *CSetChooserCache::remove_first() {
if (_occupancy > 0) {
assert(_cache[_first] != NULL, "cache should have at least one region");
HeapRegion *ret = _cache[_first];
_cache[_first] = NULL;
ret->set_sort_index(-1);
--_occupancy;
_first = trim_index(_first + 1);
assert(verify(), "cache should be consistent");
return ret;
} else {
return NULL;
}
}
// this is a bit expensive... but we expect that it should not be called
// to often.
void CSetChooserCache::remove(HeapRegion *hr) {
assert(_occupancy > 0, "cache should not be empty");
assert(hr->sort_index() < -1, "should already be in the cache");
int index = get_index(hr->sort_index());
assert(_cache[index] == hr, "index should be correct");
int next_index = trim_index(index + 1);
int last_index = trim_index(_first + _occupancy - 1);
while (index != last_index) {
assert(_cache[next_index] != NULL, "should not be null");
_cache[index] = _cache[next_index];
_cache[index]->set_sort_index(get_sort_index(index));
index = next_index;
next_index = trim_index(next_index+1);
}
assert(index == last_index, "should have reached the last one");
_cache[index] = NULL;
hr->set_sort_index(-1);
--_occupancy;
assert(verify(), "cache should be consistent");
}
static inline int orderRegions(HeapRegion* hr1, HeapRegion* hr2) {
if (hr1 == NULL) {
if (hr2 == NULL) return 0;
else return 1;
} else if (hr2 == NULL) {
return -1;
}
if (hr2->gc_efficiency() < hr1->gc_efficiency()) return -1;
else if (hr1->gc_efficiency() < hr2->gc_efficiency()) return 1;
else return 0;
}
static int orderRegions(HeapRegion** hr1p, HeapRegion** hr2p) {
return orderRegions(*hr1p, *hr2p);
}
CollectionSetChooser::CollectionSetChooser() :
// The line below is the worst bit of C++ hackery I've ever written
// (Detlefs, 11/23). You should think of it as equivalent to
// "_regions(100, true)": initialize the growable array and inform it
// that it should allocate its elem array(s) on the C heap.
//
// The first argument, however, is actually a comma expression
// (set_allocation_type(this, C_HEAP), 100). The purpose of the
// set_allocation_type() call is to replace the default allocation
// type for embedded objects STACK_OR_EMBEDDED with C_HEAP. It will
// allow to pass the assert in GenericGrowableArray() which checks
// that a growable array object must be on C heap if elements are.
//
// Note: containing object is allocated on C heap since it is CHeapObj.
//
_markedRegions((ResourceObj::set_allocation_type((address)&_markedRegions,
ResourceObj::C_HEAP),
100),
true),
_curMarkedIndex(0),
_numMarkedRegions(0),
_unmarked_age_1_returned_as_new(false),
_first_par_unreserved_idx(0)
{}
#ifndef PRODUCT
bool CollectionSetChooser::verify() {
int index = 0;
guarantee(_curMarkedIndex <= _numMarkedRegions,
"_curMarkedIndex should be within bounds");
while (index < _curMarkedIndex) {
guarantee(_markedRegions.at(index++) == NULL,
"all entries before _curMarkedIndex should be NULL");
}
HeapRegion *prev = NULL;
while (index < _numMarkedRegions) {
HeapRegion *curr = _markedRegions.at(index++);
if (curr != NULL) {
int si = curr->sort_index();
guarantee(!curr->is_young(), "should not be young!");
guarantee(si > -1 && si == (index-1), "sort index invariant");
if (prev != NULL) {
guarantee(orderRegions(prev, curr) != 1, "regions should be sorted");
}
prev = curr;
}
}
return _cache.verify();
}
#endif
bool
CollectionSetChooser::addRegionToCache() {
assert(!_cache.is_full(), "cache should not be full");
HeapRegion *hr = NULL;
while (hr == NULL && _curMarkedIndex < _numMarkedRegions) {
hr = _markedRegions.at(_curMarkedIndex++);
}
if (hr == NULL)
return false;
assert(!hr->is_young(), "should not be young!");
assert(hr->sort_index() == _curMarkedIndex-1, "sort_index invariant");
_markedRegions.at_put(hr->sort_index(), NULL);
_cache.insert(hr);
assert(!_cache.is_empty(), "cache should not be empty");
assert(verify(), "cache should be consistent");
return false;
}
void
CollectionSetChooser::fillCache() {
while (!_cache.is_full() && addRegionToCache()) {
}
}
void
CollectionSetChooser::sortMarkedHeapRegions() {
guarantee(_cache.is_empty(), "cache should be empty");
// First trim any unused portion of the top in the parallel case.
if (_first_par_unreserved_idx > 0) {
if (G1PrintParCleanupStats) {
gclog_or_tty->print(" Truncating _markedRegions from %d to %d.\n",
_markedRegions.length(), _first_par_unreserved_idx);
}
assert(_first_par_unreserved_idx <= _markedRegions.length(),
"Or we didn't reserved enough length");
_markedRegions.trunc_to(_first_par_unreserved_idx);
}
_markedRegions.sort(orderRegions);
assert(_numMarkedRegions <= _markedRegions.length(), "Requirement");
assert(_numMarkedRegions == 0
|| _markedRegions.at(_numMarkedRegions-1) != NULL,
"Testing _numMarkedRegions");
assert(_numMarkedRegions == _markedRegions.length()
|| _markedRegions.at(_numMarkedRegions) == NULL,
"Testing _numMarkedRegions");
if (G1PrintParCleanupStats) {
gclog_or_tty->print_cr(" Sorted %d marked regions.", _numMarkedRegions);
}
for (int i = 0; i < _numMarkedRegions; i++) {
assert(_markedRegions.at(i) != NULL, "Should be true by sorting!");
_markedRegions.at(i)->set_sort_index(i);
}
if (G1PrintRegionLivenessInfo) {
G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Sorting");
for (int i = 0; i < _numMarkedRegions; ++i) {
HeapRegion* r = _markedRegions.at(i);
cl.doHeapRegion(r);
}
}
assert(verify(), "should now be sorted");
}
void
CollectionSetChooser::addMarkedHeapRegion(HeapRegion* hr) {
assert(!hr->isHumongous(),
"Humongous regions shouldn't be added to the collection set");
assert(!hr->is_young(), "should not be young!");
_markedRegions.append(hr);
_numMarkedRegions++;
hr->calc_gc_efficiency();
}
void
CollectionSetChooser::
prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
_first_par_unreserved_idx = 0;
size_t max_waste = ParallelGCThreads * chunkSize;
// it should be aligned with respect to chunkSize
size_t aligned_n_regions =
(n_regions + (chunkSize - 1)) / chunkSize * chunkSize;
assert( aligned_n_regions % chunkSize == 0, "should be aligned" );
_markedRegions.at_put_grow((int)(aligned_n_regions + max_waste - 1), NULL);
}
jint
CollectionSetChooser::getParMarkedHeapRegionChunk(jint n_regions) {
jint res = Atomic::add(n_regions, &_first_par_unreserved_idx);
assert(_markedRegions.length() > res + n_regions - 1,
"Should already have been expanded");
return res - n_regions;
}
void
CollectionSetChooser::setMarkedHeapRegion(jint index, HeapRegion* hr) {
assert(_markedRegions.at(index) == NULL, "precondition");
assert(!hr->is_young(), "should not be young!");
_markedRegions.at_put(index, hr);
hr->calc_gc_efficiency();
}
void
CollectionSetChooser::incNumMarkedHeapRegions(jint inc_by) {
(void)Atomic::add(inc_by, &_numMarkedRegions);
}
void
CollectionSetChooser::clearMarkedHeapRegions(){
for (int i = 0; i < _markedRegions.length(); i++) {
HeapRegion* r = _markedRegions.at(i);
if (r != NULL) r->set_sort_index(-1);
}
_markedRegions.clear();
_curMarkedIndex = 0;
_numMarkedRegions = 0;
_cache.clear();
};
void
CollectionSetChooser::updateAfterFullCollection() {
clearMarkedHeapRegions();
}
void CollectionSetChooser::removeRegion(HeapRegion *hr) {
int si = hr->sort_index();
assert(si == -1 || hr->is_marked(), "Sort index not valid.");
if (si > -1) {
assert(_markedRegions.at(si) == hr, "Sort index not valid." );
_markedRegions.at_put(si, NULL);
} else if (si < -1) {
assert(_cache.region_in_cache(hr), "should be in the cache");
_cache.remove(hr);
assert(hr->sort_index() == -1, "sort index invariant");
}
hr->set_sort_index(-1);
}
// if time_remaining < 0.0, then this method should try to return
// a region, whether it fits within the remaining time or not
HeapRegion*
CollectionSetChooser::getNextMarkedRegion(double time_remaining,
double avg_prediction) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1CollectorPolicy* g1p = g1h->g1_policy();
fillCache();
if (_cache.is_empty()) {
assert(_curMarkedIndex == _numMarkedRegions,
"if cache is empty, list should also be empty");
return NULL;
}
HeapRegion *hr = _cache.get_first();
assert(hr != NULL, "if cache not empty, first entry should be non-null");
double predicted_time = g1h->predict_region_elapsed_time_ms(hr, false);
if (g1p->adaptive_young_list_length()) {
if (time_remaining - predicted_time < 0.0) {
g1h->check_if_region_is_too_expensive(predicted_time);
return NULL;
}
} else {
if (predicted_time > 2.0 * avg_prediction) {
return NULL;
}
}
HeapRegion *hr2 = _cache.remove_first();
assert(hr == hr2, "cache contents should not have changed");
return hr;
}