jdk-24/test/hotspot/gtest/gc/shared/test_oopStorage.cpp

1385 lines
41 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/shared/oopStorage.hpp"
#include "gc/shared/workgroup.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/enableIf.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/thread.hpp"
#include "runtime/vm_operations.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/align.hpp"
#include "utilities/ostream.hpp"
#include "utilities/quickSort.hpp"
#include "unittest.hpp"
// --- FIXME: Disable some tests on 32bit Windows, because SafeFetch
// (which is used by allocation_status) doesn't currently provide
// protection in the context where gtests are run; see JDK-8185734.
#ifdef _WIN32
#define DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
#endif
// Access storage internals.
class OopStorage::TestAccess : public AllStatic {
public:
typedef OopStorage::Block Block;
typedef OopStorage::BlockList BlockList;
static BlockList& active_list(OopStorage& storage) {
return storage._active_list;
}
static BlockList& allocate_list(OopStorage& storage) {
return storage._allocate_list;
}
static const BlockList& allocate_list(const OopStorage& storage) {
return storage._allocate_list;
}
static Mutex* allocate_mutex(const OopStorage& storage) {
return storage._allocate_mutex;
}
static bool block_is_empty(const Block& block) {
return block.is_empty();
}
static bool block_is_full(const Block& block) {
return block.is_full();
}
static unsigned block_allocation_count(const Block& block) {
uintx bitmask = block.allocated_bitmask();
unsigned count = 0;
for ( ; bitmask != 0; bitmask >>= 1) {
if ((bitmask & 1) != 0) {
++count;
}
}
return count;
}
static size_t memory_per_block() {
return Block::allocation_size();
}
};
typedef OopStorage::TestAccess TestAccess;
// --- FIXME: Should be just Block, but that collides with opto Block
// when building with precompiled headers. There really should be
// an opto namespace.
typedef TestAccess::Block OopBlock;
// --- FIXME: Similarly, this typedef collides with opto BlockList.
// typedef TestAccess::BlockList BlockList;
// Using EXPECT_EQ can't use NULL directly. Otherwise AIX build breaks.
const OopBlock* const NULL_BLOCK = NULL;
static size_t list_length(const TestAccess::BlockList& list) {
size_t result = 0;
for (const OopBlock* block = list.chead();
block != NULL;
block = list.next(*block)) {
++result;
}
return result;
}
static void clear_list(TestAccess::BlockList& list) {
OopBlock* next;
for (OopBlock* block = list.head(); block != NULL; block = next) {
next = list.next(*block);
list.unlink(*block);
}
}
static bool is_list_empty(const TestAccess::BlockList& list) {
return list.chead() == NULL;
}
static void release_entry(OopStorage& storage, oop* entry) {
*entry = NULL;
storage.release(entry);
}
class OopStorageTest : public ::testing::Test {
public:
OopStorageTest();
~OopStorageTest();
Mutex _allocate_mutex;
Mutex _active_mutex;
OopStorage _storage;
static const int _active_rank = Mutex::leaf - 1;
static const int _allocate_rank = Mutex::leaf;
class CountingIterateClosure;
template<bool is_const> class VM_CountAtSafepoint;
};
OopStorageTest::OopStorageTest() :
_allocate_mutex(_allocate_rank,
"test_OopStorage_allocate",
false,
Mutex::_safepoint_check_never),
_active_mutex(_active_rank,
"test_OopStorage_active",
false,
Mutex::_safepoint_check_never),
_storage("Test Storage", &_allocate_mutex, &_active_mutex)
{ }
OopStorageTest::~OopStorageTest() {
clear_list(TestAccess::allocate_list(_storage));
clear_list(TestAccess::active_list(_storage));
}
class OopStorageTestWithAllocation : public OopStorageTest {
public:
OopStorageTestWithAllocation();
static const size_t _max_entries = 1000;
oop* _entries[_max_entries];
class VM_DeleteBlocksAtSafepoint;
};
OopStorageTestWithAllocation::OopStorageTestWithAllocation() {
for (size_t i = 0; i < _max_entries; ++i) {
_entries[i] = _storage.allocate();
EXPECT_TRUE(_entries[i] != NULL);
EXPECT_EQ(i + 1, _storage.allocation_count());
}
};
const size_t OopStorageTestWithAllocation::_max_entries;
class OopStorageTestWithAllocation::VM_DeleteBlocksAtSafepoint
: public VM_GTestExecuteAtSafepoint {
public:
VM_DeleteBlocksAtSafepoint(OopStorage* storage, size_t retain) :
_storage(storage), _retain(retain)
{}
void doit() {
_storage->delete_empty_blocks_safepoint(_retain);
}
private:
OopStorage* _storage;
size_t _retain;
};
static bool is_allocate_list_sorted(const OopStorage& storage) {
// The allocate_list isn't strictly sorted. Rather, all empty
// blocks are segregated to the end of the list. And the number of
// empty blocks should match empty_block_count().
size_t expected_empty = storage.empty_block_count();
const TestAccess::BlockList& list = TestAccess::allocate_list(storage);
const OopBlock* block = list.ctail();
for (size_t i = 0; i < expected_empty; ++i, block = list.prev(*block)) {
if ((block == NULL) || !block->is_empty()) {
return false;
}
}
for ( ; block != NULL; block = list.prev(*block)) {
if (block->is_empty()) {
return false;
}
}
return true;
}
static size_t total_allocation_count(const TestAccess::BlockList& list) {
size_t total_count = 0;
for (const OopBlock* block = list.chead();
block != NULL;
block = list.next(*block)) {
total_count += TestAccess::block_allocation_count(*block);
}
return total_count;
}
TEST_VM_F(OopStorageTest, allocate_one) {
EXPECT_TRUE(is_list_empty(TestAccess::active_list(_storage)));
EXPECT_TRUE(is_list_empty(TestAccess::allocate_list(_storage)));
oop* ptr = _storage.allocate();
EXPECT_TRUE(ptr != NULL);
EXPECT_EQ(1u, _storage.allocation_count());
EXPECT_EQ(1u, list_length(TestAccess::active_list(_storage)));
EXPECT_EQ(1u, _storage.block_count());
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
EXPECT_EQ(0u, _storage.empty_block_count());
const OopBlock* block = TestAccess::allocate_list(_storage).chead();
EXPECT_NE(block, (OopBlock*)NULL);
EXPECT_EQ(block, (TestAccess::active_list(_storage).chead()));
EXPECT_FALSE(TestAccess::block_is_empty(*block));
EXPECT_FALSE(TestAccess::block_is_full(*block));
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
release_entry(_storage, ptr);
EXPECT_EQ(0u, _storage.allocation_count());
EXPECT_EQ(1u, list_length(TestAccess::active_list(_storage)));
EXPECT_EQ(1u, _storage.block_count());
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
EXPECT_EQ(1u, _storage.empty_block_count());
const OopBlock* new_block = TestAccess::allocate_list(_storage).chead();
EXPECT_EQ(block, new_block);
EXPECT_EQ(block, (TestAccess::active_list(_storage).chead()));
EXPECT_TRUE(TestAccess::block_is_empty(*block));
EXPECT_FALSE(TestAccess::block_is_full(*block));
EXPECT_EQ(0u, TestAccess::block_allocation_count(*block));
}
TEST_VM_F(OopStorageTest, allocation_count) {
static const size_t max_entries = 1000;
oop* entries[max_entries];
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
EXPECT_TRUE(is_list_empty(active_list));
EXPECT_EQ(0u, _storage.block_count());
EXPECT_TRUE(is_list_empty(allocate_list));
size_t allocated = 0;
for ( ; allocated < max_entries; ++allocated) {
EXPECT_EQ(allocated, _storage.allocation_count());
if (!is_list_empty(active_list)) {
EXPECT_EQ(1u, list_length(active_list));
EXPECT_EQ(1u, _storage.block_count());
const OopBlock& block = *active_list.chead();
EXPECT_EQ(allocated, TestAccess::block_allocation_count(block));
if (TestAccess::block_is_full(block)) {
break;
} else {
EXPECT_FALSE(is_list_empty(allocate_list));
EXPECT_EQ(&block, allocate_list.chead());
}
}
entries[allocated] = _storage.allocate();
}
EXPECT_EQ(allocated, _storage.allocation_count());
EXPECT_EQ(1u, list_length(active_list));
EXPECT_EQ(1u, _storage.block_count());
EXPECT_TRUE(is_list_empty(allocate_list));
const OopBlock& block = *active_list.chead();
EXPECT_TRUE(TestAccess::block_is_full(block));
EXPECT_EQ(allocated, TestAccess::block_allocation_count(block));
for (size_t i = 0; i < allocated; ++i) {
release_entry(_storage, entries[i]);
size_t remaining = allocated - (i + 1);
EXPECT_EQ(remaining, TestAccess::block_allocation_count(block));
EXPECT_EQ(remaining, _storage.allocation_count());
EXPECT_FALSE(is_list_empty(allocate_list));
}
}
TEST_VM_F(OopStorageTest, allocate_many) {
static const size_t max_entries = 1000;
oop* entries[max_entries];
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
EXPECT_EQ(0u, _storage.empty_block_count());
entries[0] = _storage.allocate();
ASSERT_TRUE(entries[0] != NULL);
EXPECT_EQ(1u, list_length(active_list));
EXPECT_EQ(1u, _storage.block_count());
EXPECT_EQ(1u, list_length(allocate_list));
EXPECT_EQ(0u, _storage.empty_block_count());
const OopBlock* block = active_list.chead();
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
EXPECT_EQ(block, allocate_list.chead());
for (size_t i = 1; i < max_entries; ++i) {
entries[i] = _storage.allocate();
EXPECT_EQ(i + 1, _storage.allocation_count());
ASSERT_TRUE(entries[i] != NULL);
EXPECT_EQ(0u, _storage.empty_block_count());
if (block == NULL) {
ASSERT_FALSE(is_list_empty(allocate_list));
EXPECT_EQ(1u, list_length(allocate_list));
block = allocate_list.chead();
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
EXPECT_EQ(block, active_list.chead());
} else if (TestAccess::block_is_full(*block)) {
EXPECT_TRUE(is_list_empty(allocate_list));
block = NULL;
} else {
EXPECT_FALSE(is_list_empty(allocate_list));
EXPECT_EQ(block, allocate_list.chead());
EXPECT_EQ(block, active_list.chead());
}
}
if (block != NULL) {
EXPECT_NE(0u, TestAccess::block_allocation_count(*block));
EXPECT_FALSE(is_list_empty(allocate_list));
EXPECT_EQ(block, allocate_list.chead());
EXPECT_EQ(block, active_list.chead());
}
size_t active_count = list_length(active_list);
for (size_t i = 0; i < max_entries; ++i) {
release_entry(_storage, entries[i]);
EXPECT_TRUE(is_allocate_list_sorted(_storage));
EXPECT_EQ(max_entries - (i + 1), total_allocation_count(active_list));
}
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
EXPECT_EQ(list_length(active_list), _storage.block_count());
EXPECT_EQ(list_length(active_list), _storage.empty_block_count());
for (const OopBlock* block = allocate_list.chead();
block != NULL;
block = allocate_list.next(*block)) {
EXPECT_TRUE(TestAccess::block_is_empty(*block));
}
}
TEST_VM_F(OopStorageTestWithAllocation, random_release) {
static const size_t step = 11;
ASSERT_NE(0u, _max_entries % step); // max_entries and step are mutually prime
EXPECT_EQ(0u, _storage.empty_block_count());
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
EXPECT_EQ(_max_entries, total_allocation_count(active_list));
EXPECT_GE(1u, list_length(allocate_list));
// Release all entries in "random" order.
size_t released = 0;
for (size_t i = 0; released < _max_entries; i = (i + step) % _max_entries) {
if (_entries[i] != NULL) {
release_entry(_storage, _entries[i]);
_entries[i] = NULL;
++released;
EXPECT_EQ(_max_entries - released, total_allocation_count(active_list));
EXPECT_TRUE(is_allocate_list_sorted(_storage));
}
}
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
EXPECT_EQ(list_length(active_list), _storage.block_count());
EXPECT_EQ(0u, total_allocation_count(active_list));
EXPECT_EQ(list_length(allocate_list), _storage.empty_block_count());
}
TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
static const size_t release_step = 11;
static const size_t allocate_step = 5;
ASSERT_NE(0u, _max_entries % release_step); // max_entries and step are mutually prime
EXPECT_EQ(0u, _storage.empty_block_count());
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
EXPECT_EQ(_max_entries, total_allocation_count(active_list));
EXPECT_GE(1u, list_length(allocate_list));
// Release all entries in "random" order, "randomly" interspersed
// with additional allocations.
size_t released = 0;
size_t total_released = 0;
for (size_t i = 0; released < _max_entries; i = (i + release_step) % _max_entries) {
if (_entries[i] != NULL) {
release_entry(_storage, _entries[i]);
_entries[i] = NULL;
++released;
++total_released;
EXPECT_EQ(_max_entries - released, total_allocation_count(active_list));
EXPECT_TRUE(is_allocate_list_sorted(_storage));
if (total_released % allocate_step == 0) {
_entries[i] = _storage.allocate();
--released;
EXPECT_EQ(_max_entries - released, total_allocation_count(active_list));
EXPECT_TRUE(is_allocate_list_sorted(_storage));
}
}
}
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
EXPECT_EQ(list_length(active_list), _storage.block_count());
EXPECT_EQ(0u, total_allocation_count(active_list));
EXPECT_EQ(list_length(allocate_list), _storage.empty_block_count());
}
template<bool sorted>
class OopStorageTestBlockRelease : public OopStorageTestWithAllocation {
public:
void SetUp() {
size_t nrelease = _max_entries / 2;
oop** to_release = NEW_C_HEAP_ARRAY(oop*, nrelease, mtInternal);
for (size_t i = 0; i < nrelease; ++i) {
to_release[i] = _entries[2 * i];
*to_release[i] = NULL;
}
if (sorted) {
QuickSort::sort(to_release, nrelease, PointerCompare(), false);
}
_storage.release(to_release, nrelease);
EXPECT_EQ(_max_entries - nrelease, _storage.allocation_count());
for (size_t i = 0; i < nrelease; ++i) {
release_entry(_storage, _entries[2 * i + 1]);
EXPECT_EQ(_max_entries - nrelease - (i + 1), _storage.allocation_count());
}
EXPECT_EQ(_storage.block_count(), _storage.empty_block_count());
FREE_C_HEAP_ARRAY(oop*, to_release);
}
struct PointerCompare {
int operator()(const void* p, const void* q) const {
return (p < q) ? -1 : int(p != q);
}
};
};
typedef OopStorageTestBlockRelease<true> OopStorageTestBlockReleaseSorted;
typedef OopStorageTestBlockRelease<false> OopStorageTestBlockReleaseUnsorted;
TEST_VM_F(OopStorageTestBlockReleaseSorted, block_release) {}
TEST_VM_F(OopStorageTestBlockReleaseUnsorted, block_release) {}
#ifndef DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
TEST_VM_F(OopStorageTest, invalid_pointer) {
{
char* mem = NEW_C_HEAP_ARRAY(char, 1000, mtInternal);
oop* ptr = reinterpret_cast<oop*>(align_down(mem + 250, sizeof(oop)));
// Predicate returns false for some malloc'ed block.
EXPECT_EQ(OopStorage::INVALID_ENTRY, _storage.allocation_status(ptr));
FREE_C_HEAP_ARRAY(char, mem);
}
{
oop obj;
oop* ptr = &obj;
// Predicate returns false for some "random" location.
EXPECT_EQ(OopStorage::INVALID_ENTRY, _storage.allocation_status(ptr));
}
}
#endif // DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
class OopStorageTest::CountingIterateClosure VALUE_OBJ_CLASS_SPEC {
public:
size_t _const_count;
size_t _const_non_null;
size_t _non_const_count;
size_t _non_const_non_null;
void do_oop(const oop* ptr) {
++_const_count;
if (*ptr != NULL) {
++_const_non_null;
}
}
void do_oop(oop* ptr) {
++_non_const_count;
if (*ptr != NULL) {
++_non_const_non_null;
}
}
CountingIterateClosure() :
_const_count(0),
_const_non_null(0),
_non_const_count(0),
_non_const_non_null(0)
{}
};
template<bool is_const>
class OopStorageTest::VM_CountAtSafepoint : public VM_GTestExecuteAtSafepoint {
public:
typedef typename Conditional<is_const,
const OopStorage,
OopStorage>::type Storage;
VM_CountAtSafepoint(Storage* storage, CountingIterateClosure* cl) :
_storage(storage), _cl(cl)
{}
void doit() { _storage->oops_do(_cl); }
private:
Storage* _storage;
CountingIterateClosure* _cl;
};
TEST_VM_F(OopStorageTest, simple_iterate) {
// Dummy oop value.
intptr_t dummy_oop_value = 0xbadbeaf;
oop dummy_oop = reinterpret_cast<oopDesc*>(&dummy_oop_value);
const size_t max_entries = 1000;
oop* entries[max_entries];
size_t allocated = 0;
size_t entries_with_values = 0;
for (size_t i = 0; i < max_entries; i += 10) {
for ( ; allocated < i; ++allocated) {
entries[allocated] = _storage.allocate();
ASSERT_TRUE(entries[allocated] != NULL);
if ((allocated % 3) != 0) {
*entries[allocated] = dummy_oop;
++entries_with_values;
}
}
{
CountingIterateClosure cl;
VM_CountAtSafepoint<false> op(&_storage, &cl);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_EQ(allocated, cl._non_const_count);
EXPECT_EQ(entries_with_values, cl._non_const_non_null);
EXPECT_EQ(0u, cl._const_count);
EXPECT_EQ(0u, cl._const_non_null);
}
{
CountingIterateClosure cl;
VM_CountAtSafepoint<true> op(&_storage, &cl);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_EQ(allocated, cl._const_count);
EXPECT_EQ(entries_with_values, cl._const_non_null);
EXPECT_EQ(0u, cl._non_const_count);
EXPECT_EQ(0u, cl._non_const_non_null);
}
}
while (allocated > 0) {
release_entry(_storage, entries[--allocated]);
}
}
class OopStorageTestIteration : public OopStorageTestWithAllocation {
public:
static const size_t _max_workers = 2;
unsigned char _states[_max_workers][_max_entries];
static const unsigned char mark_released = 1u << 0;
static const unsigned char mark_invalid = 1u << 1;
static const unsigned char mark_const = 1u << 2;
static const unsigned char mark_non_const = 1u << 3;
virtual void SetUp() {
OopStorageTestWithAllocation::SetUp();
memset(_states, 0, sizeof(_states));
size_t initial_release = 0;
for ( ; _storage.empty_block_count() < 2; ++initial_release) {
ASSERT_GT(_max_entries, initial_release);
release_entry(_storage, _entries[initial_release]);
_states[0][initial_release] = mark_released;
}
for (size_t i = initial_release; i < _max_entries; i += 3) {
release_entry(_storage, _entries[i]);
_states[0][i] = mark_released;
}
}
class VerifyState;
class VerifyFn;
template<bool is_const> class VM_Verify;
class VerifyClosure;
class VM_VerifyUsingOopsDo;
};
const unsigned char OopStorageTestIteration::mark_released;
const unsigned char OopStorageTestIteration::mark_invalid;
const unsigned char OopStorageTestIteration::mark_const;
const unsigned char OopStorageTestIteration::mark_non_const;
class OopStorageTestIteration::VerifyState VALUE_OBJ_CLASS_SPEC {
public:
unsigned char _expected_mark;
const oop* const* _entries;
unsigned char (&_states)[_max_workers][_max_entries];
VerifyState(unsigned char expected_mark,
const oop* const* entries,
unsigned char (&states)[_max_workers][_max_entries]) :
_expected_mark(expected_mark),
_entries(entries),
_states(states)
{ }
bool update(const oop* ptr, uint worker_id, unsigned char mark) const {
size_t index = 0;
bool found = find_entry(ptr, &index);
EXPECT_TRUE(found);
EXPECT_GT(_max_entries, index);
EXPECT_GT(_max_workers, worker_id);
if (!found) {
return false;
} else if (index >= _max_entries) {
return false;
} else if (worker_id >= _max_workers) {
return false;
} else {
EXPECT_EQ(0, _states[worker_id][index]);
if (_states[worker_id][index] != 0) {
_states[worker_id][index] |= mark_invalid;
return false;
} else {
_states[worker_id][index] |= mark;
return true;
}
}
}
void check() const {
for (size_t i = 0; i < _max_entries; ++i) {
unsigned char mark = 0;
for (size_t w = 0; w < _max_workers; ++w) {
if (mark == 0) {
mark = _states[w][i];
} else {
EXPECT_EQ(0u, _states[w][i]);
}
}
if (mark == 0) {
EXPECT_NE(0u, mark);
} else if ((mark & mark_released) != 0) {
EXPECT_EQ(mark_released, mark);
} else {
EXPECT_EQ(_expected_mark, mark);
}
}
}
private:
bool find_entry(const oop* ptr, size_t* index) const {
for (size_t i = 0; i < _max_entries; ++i) {
if (ptr == _entries[i]) {
*index = i;
return true;
}
}
return false;
}
};
class OopStorageTestIteration::VerifyFn VALUE_OBJ_CLASS_SPEC {
public:
VerifyFn(VerifyState* state, uint worker_id = 0) :
_state(state),
_worker_id(worker_id)
{}
bool operator()( oop* ptr) const {
return _state->update(ptr, _worker_id, mark_non_const);
}
bool operator()(const oop* ptr) const {
return _state->update(ptr, _worker_id, mark_const);
}
private:
VerifyState* _state;
uint _worker_id;
};
class OopStorageTestIteration::VerifyClosure VALUE_OBJ_CLASS_SPEC {
public:
VerifyClosure(VerifyState* state, uint worker_id = 0) :
_state(state),
_worker_id(worker_id)
{}
void do_oop(oop* ptr) {
_state->update(ptr, _worker_id, mark_non_const);
}
void do_oop(const oop* ptr) {
_state->update(ptr, _worker_id, mark_const);
}
private:
VerifyState* _state;
uint _worker_id;
};
const size_t OopStorageTestIteration::_max_workers;
template<bool is_const>
class OopStorageTestIteration::VM_Verify : public VM_GTestExecuteAtSafepoint {
public:
typedef typename Conditional<is_const,
const OopStorage,
OopStorage>::type Storage;
VM_Verify(Storage* storage, VerifyState* vstate) :
_storage(storage), _vstate(vstate), _result(false)
{}
void doit() {
VerifyFn verifier(_vstate);
_result = _storage->iterate_safepoint(verifier);
}
bool result() const { return _result; }
private:
Storage* _storage;
VerifyState* _vstate;
bool _result;
};
class OopStorageTestIteration::VM_VerifyUsingOopsDo : public VM_GTestExecuteAtSafepoint {
public:
VM_VerifyUsingOopsDo(OopStorage* storage, VerifyState* vstate) :
_storage(storage), _vstate(vstate)
{}
void doit() {
VerifyClosure verifier(_vstate);
_storage->oops_do(&verifier);
}
private:
OopStorage* _storage;
VerifyState* _vstate;
};
TEST_VM_F(OopStorageTestIteration, iterate_safepoint) {
VerifyState vstate(mark_non_const, _entries, _states);
VM_Verify<false> op(&_storage, &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_TRUE(op.result());
vstate.check();
}
TEST_VM_F(OopStorageTestIteration, const_iterate_safepoint) {
VerifyState vstate(mark_const, _entries, _states);
VM_Verify<true> op(&_storage, &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_TRUE(op.result());
vstate.check();
}
TEST_VM_F(OopStorageTestIteration, oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
VM_VerifyUsingOopsDo op(&_storage, &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
// Parallel iteration not available unless INCLUDE_ALL_GCS
#if INCLUDE_ALL_GCS
class OopStorageTestParIteration : public OopStorageTestIteration {
public:
WorkGang* workers();
class VM_ParStateVerify;
template<bool concurrent, bool is_const> class Task;
template<bool concurrent, bool is_const> class TaskUsingOopsDo;
private:
static WorkGang* _workers;
};
WorkGang* OopStorageTestParIteration::_workers = NULL;
WorkGang* OopStorageTestParIteration::workers() {
if (_workers == NULL) {
_workers = new WorkGang("OopStorageTestParIteration workers",
_max_workers,
false,
false);
_workers->initialize_workers();
_workers->update_active_workers(_max_workers);
}
return _workers;
}
template<bool concurrent, bool is_const>
class OopStorageTestParIteration::Task : public AbstractGangTask {
typedef OopStorage::ParState<concurrent, is_const> StateType;
typedef typename Conditional<is_const,
const OopStorage,
OopStorage>::type Storage;
public:
Task(const char* name, Storage* storage, VerifyState* vstate) :
AbstractGangTask(name, GCId::undefined()),
_state(storage),
_vstate(vstate)
{}
virtual void work(uint worker_id) {
VerifyFn verifier(_vstate, worker_id);
_state.iterate(verifier);
}
private:
StateType _state;
VerifyState* _vstate;
};
template<bool concurrent, bool is_const>
class OopStorageTestParIteration::TaskUsingOopsDo : public AbstractGangTask {
public:
TaskUsingOopsDo(const char* name, OopStorage* storage, VerifyState* vstate) :
AbstractGangTask(name, GCId::undefined()),
_state(storage),
_vstate(vstate)
{}
virtual void work(uint worker_id) {
VerifyClosure verifier(_vstate, worker_id);
_state.oops_do(&verifier);
}
private:
OopStorage::ParState<concurrent, is_const> _state;
VerifyState* _vstate;
};
class OopStorageTestParIteration::VM_ParStateVerify : public VM_GTestExecuteAtSafepoint {
public:
VM_ParStateVerify(WorkGang* workers, AbstractGangTask* task) :
_workers(workers), _task(task)
{}
void doit() {
_workers->run_task(_task);
}
private:
WorkGang* _workers;
AbstractGangTask* _task;
};
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_iterate) {
VerifyState vstate(mark_non_const, _entries, _states);
Task<false, false> task("test", &_storage, &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_const_iterate) {
VerifyState vstate(mark_const, _entries, _states);
Task<false, true> task("test", &_storage, &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
TaskUsingOopsDo<false, false> task("test", &_storage, &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_const_oops_do) {
VerifyState vstate(mark_const, _entries, _states);
TaskUsingOopsDo<false, true> task("test", &_storage, &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_iterate) {
VerifyState vstate(mark_non_const, _entries, _states);
Task<true, false> task("test", &_storage, &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_const_iterate) {
VerifyState vstate(mark_const, _entries, _states);
Task<true, true> task("test", &_storage, &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
TaskUsingOopsDo<true, false> task("test", &_storage, &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_const_oops_do) {
VerifyState vstate(mark_const, _entries, _states);
TaskUsingOopsDo<true, true> task("test", &_storage, &vstate);
workers()->run_task(&task);
vstate.check();
}
#endif // INCLUDE_ALL_GCS
TEST_VM_F(OopStorageTestWithAllocation, delete_empty_blocks_safepoint) {
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
size_t initial_active_size = list_length(active_list);
EXPECT_EQ(initial_active_size, _storage.block_count());
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
for (size_t i = 0; _storage.empty_block_count() < 3; ++i) {
ASSERT_GT(_max_entries, i);
release_entry(_storage, _entries[i]);
}
EXPECT_EQ(initial_active_size, list_length(active_list));
EXPECT_EQ(initial_active_size, _storage.block_count());
EXPECT_EQ(3u, _storage.empty_block_count());
{
ThreadInVMfromNative invm(JavaThread::current());
VM_DeleteBlocksAtSafepoint op(&_storage, 2);
VMThread::execute(&op);
}
EXPECT_EQ(2u, _storage.empty_block_count());
EXPECT_EQ(initial_active_size - 1, list_length(active_list));
EXPECT_EQ(initial_active_size - 1, _storage.block_count());
{
ThreadInVMfromNative invm(JavaThread::current());
VM_DeleteBlocksAtSafepoint op(&_storage, 0);
VMThread::execute(&op);
}
EXPECT_EQ(0u, _storage.empty_block_count());
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
}
TEST_VM_F(OopStorageTestWithAllocation, delete_empty_blocks_concurrent) {
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
size_t initial_active_size = list_length(active_list);
EXPECT_EQ(initial_active_size, _storage.block_count());
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
for (size_t i = 0; _storage.empty_block_count() < 3; ++i) {
ASSERT_GT(_max_entries, i);
release_entry(_storage, _entries[i]);
}
EXPECT_EQ(initial_active_size, list_length(active_list));
EXPECT_EQ(initial_active_size, _storage.block_count());
EXPECT_EQ(3u, _storage.empty_block_count());
_storage.delete_empty_blocks_concurrent(2);
EXPECT_EQ(2u, _storage.empty_block_count());
EXPECT_EQ(initial_active_size - 1, list_length(active_list));
EXPECT_EQ(initial_active_size - 1, _storage.block_count());
_storage.delete_empty_blocks_concurrent(0);
EXPECT_EQ(0u, _storage.empty_block_count());
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
}
TEST_VM_F(OopStorageTestWithAllocation, allocation_status) {
oop* retained = _entries[200];
oop* released = _entries[300];
oop* garbage = reinterpret_cast<oop*>(1024 * 1024);
release_entry(_storage, released);
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, _storage.allocation_status(retained));
EXPECT_EQ(OopStorage::UNALLOCATED_ENTRY, _storage.allocation_status(released));
#ifndef DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
EXPECT_EQ(OopStorage::INVALID_ENTRY, _storage.allocation_status(garbage));
#endif
for (size_t i = 0; i < _max_entries; ++i) {
if ((_entries[i] != retained) && (_entries[i] != released)) {
release_entry(_storage, _entries[i]);
}
}
{
ThreadInVMfromNative invm(JavaThread::current());
VM_DeleteBlocksAtSafepoint op(&_storage, 0);
VMThread::execute(&op);
}
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, _storage.allocation_status(retained));
#ifndef DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
EXPECT_EQ(OopStorage::INVALID_ENTRY, _storage.allocation_status(released));
EXPECT_EQ(OopStorage::INVALID_ENTRY, _storage.allocation_status(garbage));
#endif // DISABLE_GARBAGE_ALLOCATION_STATUS_TESTS
}
TEST_VM_F(OopStorageTest, usage_info) {
size_t goal_blocks = 5;
oop* entries[1000];
size_t allocated = 0;
EXPECT_EQ(0u, _storage.block_count());
// There is non-block overhead, so always some usage.
EXPECT_LT(0u, _storage.total_memory_usage());
while (_storage.block_count() < goal_blocks) {
size_t this_count = _storage.block_count();
while (_storage.block_count() == this_count) {
ASSERT_GT(ARRAY_SIZE(entries), allocated);
entries[allocated] = _storage.allocate();
ASSERT_TRUE(entries[allocated] != NULL);
++allocated;
}
EXPECT_NE(0u, _storage.block_count());
EXPECT_NE(0u, _storage.total_memory_usage());
}
EXPECT_LT(TestAccess::memory_per_block() * _storage.block_count(),
_storage.total_memory_usage());
}
#ifndef PRODUCT
TEST_VM_F(OopStorageTestWithAllocation, print_storage) {
// Release the first 1/2
for (size_t i = 0; i < (_max_entries / 2); ++i) {
release_entry(_storage, _entries[i]);
_entries[i] = NULL;
}
// Release every other remaining
for (size_t i = _max_entries / 2; i < _max_entries; i += 2) {
release_entry(_storage, _entries[i]);
_entries[i] = NULL;
}
size_t expected_entries = _max_entries / 4;
EXPECT_EQ(expected_entries, _storage.allocation_count());
size_t entries_per_block = BitsPerWord;
size_t expected_blocks = (_max_entries + entries_per_block - 1) / entries_per_block;
EXPECT_EQ(expected_blocks, _storage.block_count());
size_t expected_empties = (_max_entries / 2) / entries_per_block;
EXPECT_EQ(expected_empties, _storage.empty_block_count());
size_t expected_used = expected_blocks - expected_empties;
double expected_usage = (100.0 * expected_entries) / (expected_used * entries_per_block);
{
ResourceMark rm;
stringStream expected_st;
expected_st.print("Test Storage: " SIZE_FORMAT
" entries in " SIZE_FORMAT
" blocks (%.F%%), " SIZE_FORMAT
" empties, " SIZE_FORMAT " bytes",
expected_entries,
expected_used,
expected_usage,
expected_empties,
_storage.total_memory_usage());
stringStream st;
_storage.print_on(&st);
EXPECT_STREQ(expected_st.as_string(), st.as_string());
}
}
#endif // !PRODUCT
//////////////////////////////////////////////////////////////////////////////
// Unit tests for block lists
class OopStorageBlockListTest : public ::testing::Test {
public:
OopStorageBlockListTest() {
for (size_t i = 0; i < nvalues; ++i) {
values[i] = OopBlock::new_block(pseudo_owner());
}
}
~OopStorageBlockListTest() {
for (size_t i = 0; i < nvalues; ++i) {
OopBlock::delete_block(*values[i]);
}
}
static const size_t nvalues = 10;
OopBlock* values[nvalues];
private:
// The only thing we actually care about is the address of the owner.
static const size_t pseudo_owner_size = sizeof(OopStorage) / sizeof(void*);
static const void* const _pseudo_owner[pseudo_owner_size];
static const OopStorage* pseudo_owner() {
return reinterpret_cast<const OopStorage*>(&_pseudo_owner);
}
};
const size_t OopStorageBlockListTest::nvalues;
const void* const OopStorageBlockListTest::_pseudo_owner[] = {};
TEST_F(OopStorageBlockListTest, empty_list) {
TestAccess::BlockList list(&OopBlock::get_active_entry);
EXPECT_TRUE(is_list_empty(list));
EXPECT_EQ(NULL_BLOCK, list.head());
EXPECT_EQ(NULL_BLOCK, list.chead());
EXPECT_EQ(NULL_BLOCK, list.ctail());
}
TEST_F(OopStorageBlockListTest, push_back) {
TestAccess::BlockList list(&OopBlock::get_active_entry);
for (size_t i = 0; i < nvalues; ++i) {
list.push_back(*values[i]);
EXPECT_FALSE(is_list_empty(list));
EXPECT_EQ(list.ctail(), values[i]);
}
EXPECT_EQ(list.chead(), list.head());
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
block = list.ctail();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[nvalues - i - 1]);
block = list.prev(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
clear_list(list);
}
TEST_F(OopStorageBlockListTest, push_front) {
TestAccess::BlockList list(&OopBlock::get_active_entry);
for (size_t i = 0; i < nvalues; ++i) {
list.push_front(*values[i]);
EXPECT_FALSE(is_list_empty(list));
EXPECT_EQ(list.head(), values[i]);
}
EXPECT_EQ(list.chead(), list.head());
EXPECT_EQ(list.chead(), values[nvalues - 1]);
EXPECT_EQ(list.ctail(), values[0]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[nvalues - i - 1]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
block = list.ctail();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.prev(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
clear_list(list);
}
class OopStorageBlockListTestWithList : public OopStorageBlockListTest {
public:
OopStorageBlockListTestWithList() : list(&OopBlock::get_active_entry) {
for (size_t i = 0; i < nvalues; ++i) {
list.push_back(*values[i]);
}
}
~OopStorageBlockListTestWithList() {
clear_list(list);
}
TestAccess::BlockList list;
};
TEST_F(OopStorageBlockListTestWithList, unlink_front) {
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
list.unlink(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(list.chead(), values[1]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 1; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageBlockListTestWithList, unlink_back) {
EXPECT_EQ(list.chead(), values[0]);
list.unlink(*values[nvalues - 1]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[nvalues - 1]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[nvalues - 1]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 2]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues - 1; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageBlockListTestWithList, unlink_middle) {
EXPECT_EQ(list.chead(), values[0]);
size_t index = nvalues / 2;
list.unlink(*values[index]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[index]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[index]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < index; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
for (size_t i = index + 1; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageBlockListTest, single) {
TestAccess::BlockList list(&OopBlock::get_active_entry);
list.push_back(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[0]);
list.unlink(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.chead());
EXPECT_EQ(NULL_BLOCK, list.ctail());
}
TEST_F(OopStorageBlockListTestWithList, two_lists) {
TestAccess::BlockList list2(&OopBlock::get_allocate_entry);
for (size_t i = 0; i < nvalues; ++i) {
list2.push_front(*values[i]);
}
const OopBlock* active_block = list.chead();
const OopBlock* allocate_block = list2.ctail();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(active_block, allocate_block);
active_block = list.next(*active_block);
allocate_block = list2.prev(*allocate_block);
}
EXPECT_EQ(NULL_BLOCK, active_block);
EXPECT_EQ(NULL_BLOCK, allocate_block);
for (size_t i = 0; i < nvalues; ++i) {
list2.unlink(*values[i]);
}
EXPECT_TRUE(is_list_empty(list2));
active_block = list.chead();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(active_block, values[i]);
active_block = list.next(*active_block);
}
EXPECT_EQ(NULL_BLOCK, active_block);
}