jdk-24/hotspot/src/share/vm/memory/allocation.inline.hpp

167 lines
5.2 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*
*/
#ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#include "runtime/atomic.inline.hpp"
#include "runtime/os.hpp"
2007-12-01 00:00:00 +00:00
// Explicit C-heap memory management
void trace_heap_malloc(size_t size, const char* name, void *p);
void trace_heap_free(void *p);
#ifndef PRODUCT
// Increments unsigned long value for statistics (not atomic on MP).
inline void inc_stat_counter(volatile julong* dest, julong add_value) {
#if defined(SPARC) || defined(X86)
// Sparc and X86 have atomic jlong (8 bytes) instructions
julong value = Atomic::load((volatile jlong*)dest);
value += add_value;
Atomic::store((jlong)value, (volatile jlong*)dest);
#else
// possible word-tearing during load/store
*dest += add_value;
#endif
}
#endif
2007-12-01 00:00:00 +00:00
// allocate using malloc; will fail if no memory available
inline char* AllocateHeap(size_t size, MEMFLAGS flags, address pc = 0,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
if (pc == 0) {
pc = CURRENT_PC;
}
char* p = (char*) os::malloc(size, flags, pc);
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p);
2007-12-01 00:00:00 +00:00
#endif
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap");
}
2007-12-01 00:00:00 +00:00
return p;
}
inline char* ReallocateHeap(char *old, size_t size, MEMFLAGS flags,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
char* p = (char*) os::realloc(old, size, flags, CURRENT_PC);
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p);
2007-12-01 00:00:00 +00:00
#endif
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap");
}
2007-12-01 00:00:00 +00:00
return p;
}
inline void FreeHeap(void* p, MEMFLAGS memflags = mtInternal) {
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_free(p);
#endif
os::free(p, memflags);
2007-12-01 00:00:00 +00:00
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size,
address caller_pc) throw() {
void* p = (void*)AllocateHeap(size, F, (caller_pc != 0 ? caller_pc : CALLER_PC));
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
return p;
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
const std::nothrow_t& nothrow_constant, address caller_pc) throw() {
void* p = (void*)AllocateHeap(size, F, (caller_pc != 0 ? caller_pc : CALLER_PC),
AllocFailStrategy::RETURN_NULL);
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
return p;
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
address caller_pc) throw() {
return CHeapObj<F>::operator new(size, caller_pc);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
const std::nothrow_t& nothrow_constant, address caller_pc) throw() {
return CHeapObj<F>::operator new(size, nothrow_constant, caller_pc);
}
template <MEMFLAGS F> void CHeapObj<F>::operator delete(void* p){
FreeHeap(p, F);
}
template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
FreeHeap(p, F);
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
assert(_addr == NULL, "Already in use");
_size = sizeof(E) * length;
_use_malloc = _size < ArrayAllocatorMallocLimit;
if (_use_malloc) {
_addr = AllocateHeap(_size, F);
if (_addr == NULL && _size >= (size_t)os::vm_allocation_granularity()) {
// malloc failed let's try with mmap instead
_use_malloc = false;
} else {
return (E*)_addr;
}
}
int alignment = os::vm_allocation_granularity();
_size = align_size_up(_size, alignment);
_addr = os::reserve_memory(_size, NULL, alignment, F);
if (_addr == NULL) {
vm_exit_out_of_memory(_size, OOM_MMAP_ERROR, "Allocator (reserve)");
}
os::commit_memory_or_exit(_addr, _size, !ExecMem, "Allocator (commit)");
return (E*)_addr;
}
template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free() {
if (_addr != NULL) {
if (_use_malloc) {
FreeHeap(_addr, F);
} else {
os::release_memory(_addr, _size);
}
_addr = NULL;
}
}
#endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP