jdk-24/test/hotspot/jtreg/compiler/intrinsics/float16/Binary16ConversionNaN.java

163 lines
6.4 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2022, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8289551 8302976
* @summary Verify NaN sign and significand bits are preserved across conversions
* @requires (vm.cpu.features ~= ".*avx512vl.*" | vm.cpu.features ~= ".*f16c.*") | os.arch=="aarch64"
* | (os.arch == "riscv64" & vm.cpu.features ~= ".*zfh,.*")
* @requires vm.compiler1.enabled & vm.compiler2.enabled
* @requires vm.compMode != "Xcomp"
* @library /test/lib /
*
* @build jdk.test.whitebox.WhiteBox
* @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI
* -Xmixed -XX:-BackgroundCompilation -XX:-UseOnStackReplacement
* -XX:CompileThresholdScaling=1000.0 Binary16ConversionNaN
*/
/*
* The behavior tested below is an implementation property not
* required by the specification. It would be acceptable for this
* information to not be preserved (as long as a NaN is returned) if,
* say, a intrinsified version using native hardware instructions
* behaved differently.
*
* If that is the case, this test should be modified to disable
* intrinsics or to otherwise not run on platforms with an differently
* behaving intrinsic.
*/
import compiler.whitebox.CompilerWhiteBoxTest;
import jdk.test.whitebox.WhiteBox;
import java.lang.reflect.Method;
public class Binary16ConversionNaN {
private static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();
/*
* Put all 16-bit NaN values through a conversion loop and make
* sure the significand, sign, and exponent are all preserved.
*/
public static void main(String... argv) throws NoSuchMethodException {
int errors = 0;
final int NAN_EXPONENT = 0x7c00;
final int SIGN_BIT = 0x8000;
// First, run with Interpreter only to collect "gold" data.
// Glags -Xmixed -XX:CompileThresholdScaling=1000.0 are used
// to prevent compilation during this phase.
short[] pVal = new short[1024];
short[] pRes = new short[1024];
short[] nVal = new short[1024];
short[] nRes = new short[1024];
// A NaN has a nonzero significand
for (int i = 1; i <= 0x3ff; i++) {
short binary16NaN = (short)(NAN_EXPONENT | i);
assert isNaN(binary16NaN);
short s1 = testRoundTrip(binary16NaN);
errors += verify(binary16NaN, s1);
pVal[i] = binary16NaN;
pRes[i] = s1;
short binary16NegNaN = (short)(SIGN_BIT | binary16NaN);
short s2 = testRoundTrip(binary16NegNaN);
errors += verify(binary16NegNaN, s2);
nVal[i] = binary16NegNaN;
nRes[i] = s2;
}
if (errors > 0) { // Exit if Interpreter failed
throw new RuntimeException(errors + " errors");
}
Method test_method = Binary16ConversionNaN.class.getDeclaredMethod("testRoundTrip", short.class);
// Compile with C1 and compare results
WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_SIMPLE);
if (!WHITE_BOX.isMethodCompiled(test_method)) {
throw new RuntimeException("test is not compiled by C1");
}
for (int i = 1; i <= 0x3ff; i++) {
short s1 = testRoundTrip(pVal[i]);
errors += verifyCompiler(pRes[i], s1, "C1");
short s2 = testRoundTrip(nVal[i]);
errors += verifyCompiler(nRes[i], s2, "C1");
}
WHITE_BOX.deoptimizeMethod(test_method);
// Compile with C2 and compare results
WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_FULL_OPTIMIZATION);
if (!WHITE_BOX.isMethodCompiled(test_method)) {
throw new RuntimeException("test is not compiled by C2");
}
for (int i = 1; i <= 0x3ff; i++) {
short s1 = testRoundTrip(pVal[i]);
errors += verifyCompiler(pRes[i], s1, "C2");
short s2 = testRoundTrip(nVal[i]);
errors += verifyCompiler(nRes[i], s2, "C2");
}
if (errors > 0) {
throw new RuntimeException(errors + " errors");
}
}
private static boolean isNaN(short binary16) {
return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
&& ((binary16 & 0x03ff) != 0 ); // significand nonzero.
}
private static short testRoundTrip(short i) {
float f = Float.float16ToFloat(i);
return Float.floatToFloat16(f);
}
private static int verify(short s, short s2) {
int errors = 0;
if ((s & ~0x0200) != (s2 & ~0x0200)) { // ignore QNaN bit
errors++;
System.out.println("Roundtrip failure on NaN value " +
Integer.toHexString(0xFFFF & (int)s) +
"\t got back " + Integer.toHexString(0xFFFF & (int)s2));
}
return errors;
}
private static int verifyCompiler(short s, short s2, String name) {
int errors = 0;
if (s != s2) {
errors++;
System.out.println("Roundtrip failure on NaN value " +
Integer.toHexString(0xFFFF & (int)s) +
"\t got back " + Integer.toHexString(0xFFFF & (int)s2) +
"\t from " + name + " code");
}
return errors;
}
}