jdk-24/hotspot/src/share/vm/opto/callGenerator.cpp

745 lines
26 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_callGenerator.cpp.incl"
CallGenerator::CallGenerator(ciMethod* method) {
_method = method;
}
// Utility function.
const TypeFunc* CallGenerator::tf() const {
return TypeFunc::make(method());
}
//-----------------------------ParseGenerator---------------------------------
// Internal class which handles all direct bytecode traversal.
class ParseGenerator : public InlineCallGenerator {
private:
bool _is_osr;
float _expected_uses;
public:
ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
: InlineCallGenerator(method)
{
_is_osr = is_osr;
_expected_uses = expected_uses;
assert(can_parse(method, is_osr), "parse must be possible");
}
// Can we build either an OSR or a regular parser for this method?
static bool can_parse(ciMethod* method, int is_osr = false);
virtual bool is_parse() const { return true; }
virtual JVMState* generate(JVMState* jvms);
int is_osr() { return _is_osr; }
};
JVMState* ParseGenerator::generate(JVMState* jvms) {
Compile* C = Compile::current();
if (is_osr()) {
// The JVMS for a OSR has a single argument (see its TypeFunc).
assert(jvms->depth() == 1, "no inline OSR");
}
if (C->failing()) {
return NULL; // bailing out of the compile; do not try to parse
}
Parse parser(jvms, method(), _expected_uses);
// Grab signature for matching/allocation
#ifdef ASSERT
if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
assert(C->env()->system_dictionary_modification_counter_changed(),
"Must invalidate if TypeFuncs differ");
}
#endif
GraphKit& exits = parser.exits();
if (C->failing()) {
while (exits.pop_exception_state() != NULL) ;
return NULL;
}
assert(exits.jvms()->same_calls_as(jvms), "sanity");
// Simply return the exit state of the parser,
// augmented by any exceptional states.
return exits.transfer_exceptions_into_jvms();
}
//---------------------------DirectCallGenerator------------------------------
// Internal class which handles all out-of-line calls w/o receiver type checks.
class DirectCallGenerator : public CallGenerator {
public:
DirectCallGenerator(ciMethod* method)
: CallGenerator(method)
{
}
virtual JVMState* generate(JVMState* jvms);
};
JVMState* DirectCallGenerator::generate(JVMState* jvms) {
GraphKit kit(jvms);
bool is_static = method()->is_static();
address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
: SharedRuntime::get_resolve_opt_virtual_call_stub();
if (kit.C->log() != NULL) {
kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
}
CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), target, method(), kit.bci());
if (!is_static) {
// Make an explicit receiver null_check as part of this call.
// Since we share a map with the caller, his JVMS gets adjusted.
kit.null_check_receiver(method());
if (kit.stopped()) {
// And dump it back to the caller, decorated with any exceptions:
return kit.transfer_exceptions_into_jvms();
}
// Mark the call node as virtual, sort of:
call->set_optimized_virtual(true);
}
kit.set_arguments_for_java_call(call);
kit.set_edges_for_java_call(call);
Node* ret = kit.set_results_for_java_call(call);
kit.push_node(method()->return_type()->basic_type(), ret);
return kit.transfer_exceptions_into_jvms();
}
class VirtualCallGenerator : public CallGenerator {
private:
int _vtable_index;
public:
VirtualCallGenerator(ciMethod* method, int vtable_index)
: CallGenerator(method), _vtable_index(vtable_index)
{
assert(vtable_index == methodOopDesc::invalid_vtable_index ||
vtable_index >= 0, "either invalid or usable");
}
virtual bool is_virtual() const { return true; }
virtual JVMState* generate(JVMState* jvms);
};
//--------------------------VirtualCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
GraphKit kit(jvms);
Node* receiver = kit.argument(0);
if (kit.C->log() != NULL) {
kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
}
// If the receiver is a constant null, do not torture the system
// by attempting to call through it. The compile will proceed
// correctly, but may bail out in final_graph_reshaping, because
// the call instruction will have a seemingly deficient out-count.
// (The bailout says something misleading about an "infinite loop".)
if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
kit.inc_sp(method()->arg_size()); // restore arguments
kit.uncommon_trap(Deoptimization::Reason_null_check,
Deoptimization::Action_none,
NULL, "null receiver");
return kit.transfer_exceptions_into_jvms();
}
// Ideally we would unconditionally do a null check here and let it
// be converted to an implicit check based on profile information.
// However currently the conversion to implicit null checks in
// Block::implicit_null_check() only looks for loads and stores, not calls.
ciMethod *caller = kit.method();
ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
if (!UseInlineCaches || !ImplicitNullChecks ||
((ImplicitNullCheckThreshold > 0) && caller_md &&
(caller_md->trap_count(Deoptimization::Reason_null_check)
>= (uint)ImplicitNullCheckThreshold))) {
// Make an explicit receiver null_check as part of this call.
// Since we share a map with the caller, his JVMS gets adjusted.
receiver = kit.null_check_receiver(method());
if (kit.stopped()) {
// And dump it back to the caller, decorated with any exceptions:
return kit.transfer_exceptions_into_jvms();
}
}
assert(!method()->is_static(), "virtual call must not be to static");
assert(!method()->is_final(), "virtual call should not be to final");
assert(!method()->is_private(), "virtual call should not be to private");
assert(_vtable_index == methodOopDesc::invalid_vtable_index || !UseInlineCaches,
"no vtable calls if +UseInlineCaches ");
address target = SharedRuntime::get_resolve_virtual_call_stub();
// Normal inline cache used for call
CallDynamicJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
kit.set_arguments_for_java_call(call);
kit.set_edges_for_java_call(call);
Node* ret = kit.set_results_for_java_call(call);
kit.push_node(method()->return_type()->basic_type(), ret);
// Represent the effect of an implicit receiver null_check
// as part of this call. Since we share a map with the caller,
// his JVMS gets adjusted.
kit.cast_not_null(receiver);
return kit.transfer_exceptions_into_jvms();
}
bool ParseGenerator::can_parse(ciMethod* m, int entry_bci) {
// Certain methods cannot be parsed at all:
if (!m->can_be_compiled()) return false;
if (!m->has_balanced_monitors()) return false;
if (m->get_flow_analysis()->failing()) return false;
// (Methods may bail out for other reasons, after the parser is run.
// We try to avoid this, but if forced, we must return (Node*)NULL.
// The user of the CallGenerator must check for this condition.)
return true;
}
CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
if (!ParseGenerator::can_parse(m)) return NULL;
return new ParseGenerator(m, expected_uses);
}
// As a special case, the JVMS passed to this CallGenerator is
// for the method execution already in progress, not just the JVMS
// of the caller. Thus, this CallGenerator cannot be mixed with others!
CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
if (!ParseGenerator::can_parse(m, true)) return NULL;
float past_uses = m->interpreter_invocation_count();
float expected_uses = past_uses;
return new ParseGenerator(m, expected_uses, true);
}
CallGenerator* CallGenerator::for_direct_call(ciMethod* m) {
assert(!m->is_abstract(), "for_direct_call mismatch");
return new DirectCallGenerator(m);
}
CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
assert(!m->is_static(), "for_virtual_call mismatch");
return new VirtualCallGenerator(m, vtable_index);
}
//---------------------------WarmCallGenerator--------------------------------
// Internal class which handles initial deferral of inlining decisions.
class WarmCallGenerator : public CallGenerator {
WarmCallInfo* _call_info;
CallGenerator* _if_cold;
CallGenerator* _if_hot;
bool _is_virtual; // caches virtuality of if_cold
bool _is_inline; // caches inline-ness of if_hot
public:
WarmCallGenerator(WarmCallInfo* ci,
CallGenerator* if_cold,
CallGenerator* if_hot)
: CallGenerator(if_cold->method())
{
assert(method() == if_hot->method(), "consistent choices");
_call_info = ci;
_if_cold = if_cold;
_if_hot = if_hot;
_is_virtual = if_cold->is_virtual();
_is_inline = if_hot->is_inline();
}
virtual bool is_inline() const { return _is_inline; }
virtual bool is_virtual() const { return _is_virtual; }
virtual bool is_deferred() const { return true; }
virtual JVMState* generate(JVMState* jvms);
};
CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
CallGenerator* if_cold,
CallGenerator* if_hot) {
return new WarmCallGenerator(ci, if_cold, if_hot);
}
JVMState* WarmCallGenerator::generate(JVMState* jvms) {
Compile* C = Compile::current();
if (C->log() != NULL) {
C->log()->elem("warm_call bci='%d'", jvms->bci());
}
jvms = _if_cold->generate(jvms);
if (jvms != NULL) {
Node* m = jvms->map()->control();
if (m->is_CatchProj()) m = m->in(0); else m = C->top();
if (m->is_Catch()) m = m->in(0); else m = C->top();
if (m->is_Proj()) m = m->in(0); else m = C->top();
if (m->is_CallJava()) {
_call_info->set_call(m->as_Call());
_call_info->set_hot_cg(_if_hot);
#ifndef PRODUCT
if (PrintOpto || PrintOptoInlining) {
tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
tty->print("WCI: ");
_call_info->print();
}
#endif
_call_info->set_heat(_call_info->compute_heat());
C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
}
}
return jvms;
}
void WarmCallInfo::make_hot() {
Compile* C = Compile::current();
// Replace the callnode with something better.
CallJavaNode* call = this->call()->as_CallJava();
ciMethod* method = call->method();
int nargs = method->arg_size();
JVMState* jvms = call->jvms()->clone_shallow(C);
uint size = TypeFunc::Parms + MAX2(2, nargs);
SafePointNode* map = new (C, size) SafePointNode(size, jvms);
for (uint i1 = 0; i1 < (uint)(TypeFunc::Parms + nargs); i1++) {
map->init_req(i1, call->in(i1));
}
jvms->set_map(map);
jvms->set_offsets(map->req());
jvms->set_locoff(TypeFunc::Parms);
jvms->set_stkoff(TypeFunc::Parms);
GraphKit kit(jvms);
JVMState* new_jvms = _hot_cg->generate(kit.jvms());
if (new_jvms == NULL) return; // no change
if (C->failing()) return;
kit.set_jvms(new_jvms);
Node* res = C->top();
int res_size = method->return_type()->size();
if (res_size != 0) {
kit.inc_sp(-res_size);
res = kit.argument(0);
}
GraphKit ekit(kit.combine_and_pop_all_exception_states()->jvms());
// Replace the call:
for (DUIterator i = call->outs(); call->has_out(i); i++) {
Node* n = call->out(i);
Node* nn = NULL; // replacement
if (n->is_Proj()) {
ProjNode* nproj = n->as_Proj();
assert(nproj->_con < (uint)(TypeFunc::Parms + (res_size ? 1 : 0)), "sane proj");
if (nproj->_con == TypeFunc::Parms) {
nn = res;
} else {
nn = kit.map()->in(nproj->_con);
}
if (nproj->_con == TypeFunc::I_O) {
for (DUIterator j = nproj->outs(); nproj->has_out(j); j++) {
Node* e = nproj->out(j);
if (e->Opcode() == Op_CreateEx) {
e->replace_by(ekit.argument(0));
} else if (e->Opcode() == Op_Catch) {
for (DUIterator k = e->outs(); e->has_out(k); k++) {
CatchProjNode* p = e->out(j)->as_CatchProj();
if (p->is_handler_proj()) {
p->replace_by(ekit.control());
} else {
p->replace_by(kit.control());
}
}
}
}
}
}
NOT_PRODUCT(if (!nn) n->dump(2));
assert(nn != NULL, "don't know what to do with this user");
n->replace_by(nn);
}
}
void WarmCallInfo::make_cold() {
// No action: Just dequeue.
}
//------------------------PredictedCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class PredictedCallGenerator : public CallGenerator {
ciKlass* _predicted_receiver;
CallGenerator* _if_missed;
CallGenerator* _if_hit;
float _hit_prob;
public:
PredictedCallGenerator(ciKlass* predicted_receiver,
CallGenerator* if_missed,
CallGenerator* if_hit, float hit_prob)
: CallGenerator(if_missed->method())
{
// The call profile data may predict the hit_prob as extreme as 0 or 1.
// Remove the extremes values from the range.
if (hit_prob > PROB_MAX) hit_prob = PROB_MAX;
if (hit_prob < PROB_MIN) hit_prob = PROB_MIN;
_predicted_receiver = predicted_receiver;
_if_missed = if_missed;
_if_hit = if_hit;
_hit_prob = hit_prob;
}
virtual bool is_virtual() const { return true; }
virtual bool is_inline() const { return _if_hit->is_inline(); }
virtual bool is_deferred() const { return _if_hit->is_deferred(); }
virtual JVMState* generate(JVMState* jvms);
};
CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
CallGenerator* if_missed,
CallGenerator* if_hit,
float hit_prob) {
return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
}
JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
GraphKit kit(jvms);
PhaseGVN& gvn = kit.gvn();
// We need an explicit receiver null_check before checking its type.
// We share a map with the caller, so his JVMS gets adjusted.
Node* receiver = kit.argument(0);
CompileLog* log = kit.C->log();
if (log != NULL) {
log->elem("predicted_call bci='%d' klass='%d'",
jvms->bci(), log->identify(_predicted_receiver));
}
receiver = kit.null_check_receiver(method());
if (kit.stopped()) {
return kit.transfer_exceptions_into_jvms();
}
Node* exact_receiver = receiver; // will get updated in place...
Node* slow_ctl = kit.type_check_receiver(receiver,
_predicted_receiver, _hit_prob,
&exact_receiver);
SafePointNode* slow_map = NULL;
JVMState* slow_jvms;
{ PreserveJVMState pjvms(&kit);
kit.set_control(slow_ctl);
if (!kit.stopped()) {
slow_jvms = _if_missed->generate(kit.sync_jvms());
assert(slow_jvms != NULL, "miss path must not fail to generate");
kit.add_exception_states_from(slow_jvms);
kit.set_map(slow_jvms->map());
if (!kit.stopped())
slow_map = kit.stop();
}
}
// fall through if the instance exactly matches the desired type
kit.replace_in_map(receiver, exact_receiver);
// Make the hot call:
JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
if (new_jvms == NULL) {
// Inline failed, so make a direct call.
assert(_if_hit->is_inline(), "must have been a failed inline");
CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
new_jvms = cg->generate(kit.sync_jvms());
}
kit.add_exception_states_from(new_jvms);
kit.set_jvms(new_jvms);
// Need to merge slow and fast?
if (slow_map == NULL) {
// The fast path is the only path remaining.
return kit.transfer_exceptions_into_jvms();
}
if (kit.stopped()) {
// Inlined method threw an exception, so it's just the slow path after all.
kit.set_jvms(slow_jvms);
return kit.transfer_exceptions_into_jvms();
}
// Finish the diamond.
kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
RegionNode* region = new (kit.C, 3) RegionNode(3);
region->init_req(1, kit.control());
region->init_req(2, slow_map->control());
kit.set_control(gvn.transform(region));
Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
iophi->set_req(2, slow_map->i_o());
kit.set_i_o(gvn.transform(iophi));
kit.merge_memory(slow_map->merged_memory(), region, 2);
uint tos = kit.jvms()->stkoff() + kit.sp();
uint limit = slow_map->req();
for (uint i = TypeFunc::Parms; i < limit; i++) {
// Skip unused stack slots; fast forward to monoff();
if (i == tos) {
i = kit.jvms()->monoff();
if( i >= limit ) break;
}
Node* m = kit.map()->in(i);
Node* n = slow_map->in(i);
if (m != n) {
const Type* t = gvn.type(m)->meet(gvn.type(n));
Node* phi = PhiNode::make(region, m, t);
phi->set_req(2, n);
kit.map()->set_req(i, gvn.transform(phi));
}
}
return kit.transfer_exceptions_into_jvms();
}
//-------------------------UncommonTrapCallGenerator-----------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class UncommonTrapCallGenerator : public CallGenerator {
Deoptimization::DeoptReason _reason;
Deoptimization::DeoptAction _action;
public:
UncommonTrapCallGenerator(ciMethod* m,
Deoptimization::DeoptReason reason,
Deoptimization::DeoptAction action)
: CallGenerator(m)
{
_reason = reason;
_action = action;
}
virtual bool is_virtual() const { ShouldNotReachHere(); return false; }
virtual bool is_trap() const { return true; }
virtual JVMState* generate(JVMState* jvms);
};
CallGenerator*
CallGenerator::for_uncommon_trap(ciMethod* m,
Deoptimization::DeoptReason reason,
Deoptimization::DeoptAction action) {
return new UncommonTrapCallGenerator(m, reason, action);
}
JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
GraphKit kit(jvms);
// Take the trap with arguments pushed on the stack. (Cf. null_check_receiver).
int nargs = method()->arg_size();
kit.inc_sp(nargs);
assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
if (_reason == Deoptimization::Reason_class_check &&
_action == Deoptimization::Action_maybe_recompile) {
// Temp fix for 6529811
// Don't allow uncommon_trap to override our decision to recompile in the event
// of a class cast failure for a monomorphic call as it will never let us convert
// the call to either bi-morphic or megamorphic and can lead to unc-trap loops
bool keep_exact_action = true;
kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
} else {
kit.uncommon_trap(_reason, _action);
}
return kit.transfer_exceptions_into_jvms();
}
// (Note: Moved hook_up_call to GraphKit::set_edges_for_java_call.)
// (Node: Merged hook_up_exits into ParseGenerator::generate.)
#define NODES_OVERHEAD_PER_METHOD (30.0)
#define NODES_PER_BYTECODE (9.5)
void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
int call_count = profile.count();
int code_size = call_method->code_size();
// Expected execution count is based on the historical count:
_count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
// Expected profit from inlining, in units of simple call-overheads.
_profit = 1.0;
// Expected work performed by the call in units of call-overheads.
// %%% need an empirical curve fit for "work" (time in call)
float bytecodes_per_call = 3;
_work = 1.0 + code_size / bytecodes_per_call;
// Expected size of compilation graph:
// -XX:+PrintParseStatistics once reported:
// Methods seen: 9184 Methods parsed: 9184 Nodes created: 1582391
// Histogram of 144298 parsed bytecodes:
// %%% Need an better predictor for graph size.
_size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
}
// is_cold: Return true if the node should never be inlined.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_cold() const {
if (count() < WarmCallMinCount) return true;
if (profit() < WarmCallMinProfit) return true;
if (work() > WarmCallMaxWork) return true;
if (size() > WarmCallMaxSize) return true;
return false;
}
// is_hot: Return true if the node should be inlined immediately.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_hot() const {
assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
if (count() >= HotCallCountThreshold) return true;
if (profit() >= HotCallProfitThreshold) return true;
if (work() <= HotCallTrivialWork) return true;
if (size() <= HotCallTrivialSize) return true;
return false;
}
// compute_heat:
float WarmCallInfo::compute_heat() const {
assert(!is_cold(), "compute heat only on warm nodes");
assert(!is_hot(), "compute heat only on warm nodes");
int min_size = MAX2(0, (int)HotCallTrivialSize);
int max_size = MIN2(500, (int)WarmCallMaxSize);
float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
float size_factor;
if (method_size < 0.05) size_factor = 4; // 2 sigmas better than avg.
else if (method_size < 0.15) size_factor = 2; // 1 sigma better than avg.
else if (method_size < 0.5) size_factor = 1; // better than avg.
else size_factor = 0.5; // worse than avg.
return (count() * profit() * size_factor);
}
bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
assert(this != that, "compare only different WCIs");
assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
if (this->heat() > that->heat()) return true;
if (this->heat() < that->heat()) return false;
assert(this->heat() == that->heat(), "no NaN heat allowed");
// Equal heat. Break the tie some other way.
if (!this->call() || !that->call()) return (address)this > (address)that;
return this->call()->_idx > that->call()->_idx;
}
//#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
#define UNINIT_NEXT ((WarmCallInfo*)NULL)
WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
assert(next() == UNINIT_NEXT, "not yet on any list");
WarmCallInfo* prev_p = NULL;
WarmCallInfo* next_p = head;
while (next_p != NULL && next_p->warmer_than(this)) {
prev_p = next_p;
next_p = prev_p->next();
}
// Install this between prev_p and next_p.
this->set_next(next_p);
if (prev_p == NULL)
head = this;
else
prev_p->set_next(this);
return head;
}
WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
WarmCallInfo* prev_p = NULL;
WarmCallInfo* next_p = head;
while (next_p != this) {
assert(next_p != NULL, "this must be in the list somewhere");
prev_p = next_p;
next_p = prev_p->next();
}
next_p = this->next();
debug_only(this->set_next(UNINIT_NEXT));
// Remove this from between prev_p and next_p.
if (prev_p == NULL)
head = next_p;
else
prev_p->set_next(next_p);
return head;
}
WarmCallInfo* WarmCallInfo::_always_hot = NULL;
WarmCallInfo* WarmCallInfo::_always_cold = NULL;
WarmCallInfo* WarmCallInfo::always_hot() {
if (_always_hot == NULL) {
static double bits[sizeof(WarmCallInfo) / sizeof(double) + 1] = {0};
WarmCallInfo* ci = (WarmCallInfo*) bits;
ci->_profit = ci->_count = MAX_VALUE();
ci->_work = ci->_size = MIN_VALUE();
_always_hot = ci;
}
assert(_always_hot->is_hot(), "must always be hot");
return _always_hot;
}
WarmCallInfo* WarmCallInfo::always_cold() {
if (_always_cold == NULL) {
static double bits[sizeof(WarmCallInfo) / sizeof(double) + 1] = {0};
WarmCallInfo* ci = (WarmCallInfo*) bits;
ci->_profit = ci->_count = MIN_VALUE();
ci->_work = ci->_size = MAX_VALUE();
_always_cold = ci;
}
assert(_always_cold->is_cold(), "must always be cold");
return _always_cold;
}
#ifndef PRODUCT
void WarmCallInfo::print() const {
tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
is_cold() ? "cold" : is_hot() ? "hot " : "warm",
count(), profit(), work(), size(), compute_heat(), next());
tty->cr();
if (call() != NULL) call()->dump();
}
void print_wci(WarmCallInfo* ci) {
ci->print();
}
void WarmCallInfo::print_all() const {
for (const WarmCallInfo* p = this; p != NULL; p = p->next())
p->print();
}
int WarmCallInfo::count_all() const {
int cnt = 0;
for (const WarmCallInfo* p = this; p != NULL; p = p->next())
cnt++;
return cnt;
}
#endif //PRODUCT