jdk-24/hotspot/test/runtime/NMT/MallocStressTest.java

268 lines
9.5 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary Stress test for malloc tracking
* @key nmt jcmd stress
* @library /testlibrary /../../test/lib
* @modules java.base/sun.misc
* java.management
* @build MallocStressTest
* @ignore - This test is disabled since it will stress NMT and timeout during normal testing
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm/timeout=600 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:NativeMemoryTracking=detail MallocStressTest
*/
import java.util.concurrent.atomic.AtomicInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import jdk.test.lib.*;
import sun.hotspot.WhiteBox;
public class MallocStressTest {
private static int K = 1024;
// The stress test runs in three phases:
// 1. alloc: A lot of malloc with fewer free, which simulates a burst memory allocation
// that is usually seen during startup or class loading.
// 2. pause: Pause the test to check accuracy of native memory tracking
// 3. release: Release all malloc'd memory and check native memory tracking result.
public enum TestPhase {
alloc,
pause,
release
};
static TestPhase phase = TestPhase.alloc;
// malloc'd memory
static ArrayList<MallocMemory> mallocd_memory = new ArrayList<MallocMemory>();
static long mallocd_total = 0;
static WhiteBox whiteBox;
static AtomicInteger pause_count = new AtomicInteger();
static boolean is_64_bit_system;
private static boolean is_64_bit_system() { return is_64_bit_system; }
public static void main(String args[]) throws Exception {
is_64_bit_system = (Platform.is64bit());
OutputAnalyzer output;
whiteBox = WhiteBox.getWhiteBox();
// Grab my own PID
String pid = Integer.toString(ProcessTools.getProcessId());
ProcessBuilder pb = new ProcessBuilder();
AllocThread[] alloc_threads = new AllocThread[256];
ReleaseThread[] release_threads = new ReleaseThread[64];
int index;
// Create many allocation threads
for (index = 0; index < alloc_threads.length; index ++) {
alloc_threads[index] = new AllocThread();
}
// Fewer release threads
for (index = 0; index < release_threads.length; index ++) {
release_threads[index] = new ReleaseThread();
}
if (is_64_bit_system()) {
sleep_wait(2*60*1000);
} else {
sleep_wait(60*1000);
}
// pause the stress test
phase = TestPhase.pause;
while (pause_count.intValue() < alloc_threads.length + release_threads.length) {
sleep_wait(10);
}
long mallocd_total_in_KB = (mallocd_total + K / 2) / K;
// Now check if the result from NMT matches the total memory allocated.
String expected_test_summary = "Test (reserved=" + mallocd_total_in_KB +"KB, committed=" + mallocd_total_in_KB + "KB)";
// Run 'jcmd <pid> VM.native_memory summary'
pb.command(new String[] { JDKToolFinder.getJDKTool("jcmd"), pid, "VM.native_memory", "summary"});
output = new OutputAnalyzer(pb.start());
output.shouldContain(expected_test_summary);
// Release all allocated memory
phase = TestPhase.release;
synchronized(mallocd_memory) {
mallocd_memory.notifyAll();
}
// Join all threads
for (index = 0; index < alloc_threads.length; index ++) {
try {
alloc_threads[index].join();
} catch (InterruptedException e) {
}
}
for (index = 0; index < release_threads.length; index ++) {
try {
release_threads[index].join();
} catch (InterruptedException e) {
}
}
// All test memory allocated should be released
output = new OutputAnalyzer(pb.start());
output.shouldNotContain("Test (reserved=");
// Verify that tracking level has not been downgraded
pb.command(new String[] { JDKToolFinder.getJDKTool("jcmd"), pid, "VM.native_memory", "statistics"});
output = new OutputAnalyzer(pb.start());
output.shouldNotContain("Tracking level has been downgraded due to lack of resources");
}
private static void sleep_wait(int n) {
try {
Thread.sleep(n);
} catch (InterruptedException e) {
}
}
static class MallocMemory {
private long addr;
private int size;
MallocMemory(long addr, int size) {
this.addr = addr;
this.size = size;
}
long addr() { return this.addr; }
int size() { return this.size; }
}
static class AllocThread extends Thread {
AllocThread() {
this.setName("MallocThread");
this.start();
}
// AllocThread only runs "Alloc" phase
public void run() {
Random random = new Random();
while (MallocStressTest.phase == TestPhase.alloc) {
int r = Math.abs(random.nextInt());
// Only malloc small amount to avoid OOM
int size = r % 32;
if (is_64_bit_system()) {
r = r % 32 * K;
} else {
r = r % 64;
}
if (size == 0) size = 1;
long addr = MallocStressTest.whiteBox.NMTMallocWithPseudoStack(size, r);
if (addr != 0) {
MallocMemory mem = new MallocMemory(addr, size);
synchronized(MallocStressTest.mallocd_memory) {
MallocStressTest.mallocd_memory.add(mem);
MallocStressTest.mallocd_total += size;
}
} else {
System.out.println("Out of malloc memory");
break;
}
}
MallocStressTest.pause_count.incrementAndGet();
}
}
static class ReleaseThread extends Thread {
private Random random = new Random();
ReleaseThread() {
this.setName("ReleaseThread");
this.start();
}
public void run() {
while(true) {
switch(MallocStressTest.phase) {
case alloc:
slow_release();
break;
case pause:
enter_pause();
break;
case release:
quick_release();
return;
}
}
}
private void enter_pause() {
MallocStressTest.pause_count.incrementAndGet();
while (MallocStressTest.phase != MallocStressTest.TestPhase.release) {
try {
synchronized(MallocStressTest.mallocd_memory) {
MallocStressTest.mallocd_memory.wait(10);
}
} catch (InterruptedException e) {
}
}
}
private void quick_release() {
List<MallocMemory> free_list;
while (true) {
synchronized(MallocStressTest.mallocd_memory) {
if (MallocStressTest.mallocd_memory.isEmpty()) return;
int size = Math.min(MallocStressTest.mallocd_memory.size(), 5000);
List<MallocMemory> subList = MallocStressTest.mallocd_memory.subList(0, size);
free_list = new ArrayList<MallocMemory>(subList);
subList.clear();
}
for (int index = 0; index < free_list.size(); index ++) {
MallocMemory mem = free_list.get(index);
MallocStressTest.whiteBox.NMTFree(mem.addr());
}
}
}
private void slow_release() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
}
synchronized(MallocStressTest.mallocd_memory) {
if (MallocStressTest.mallocd_memory.isEmpty()) return;
int n = Math.abs(random.nextInt()) % MallocStressTest.mallocd_memory.size();
MallocMemory mem = mallocd_memory.remove(n);
MallocStressTest.whiteBox.NMTFree(mem.addr());
MallocStressTest.mallocd_total -= mem.size();
}
}
}
}