jdk-24/src/hotspot/share/oops/compressedOops.inline.hpp

150 lines
5.5 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP
#define SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP
#include "gc/shared/collectedHeap.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "oops/oop.hpp"
#include "utilities/align.hpp"
// Functions for encoding and decoding compressed oops.
// If the oops are compressed, the type passed to these overloaded functions
// is narrowOop. All functions are overloaded so they can be called by
// template functions without conditionals (the compiler instantiates via
// the right type and inlines the appropriate code).
// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
// offset from the heap base. Saving the check for null can save instructions
// in inner GC loops so these are separated.
inline oop CompressedOops::decode_raw_not_null(narrowOop v) {
assert(!is_null(v), "narrow oop value can never be zero");
return decode_raw(v);
}
inline oop CompressedOops::decode_raw(narrowOop v) {
return (oop)(void*)((uintptr_t)base() + ((uintptr_t)v << shift()));
}
inline oop CompressedOops::decode_not_null(narrowOop v) {
assert(!is_null(v), "narrow oop value can never be zero");
oop result = decode_raw(v);
assert(is_object_aligned(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
assert(Universe::heap()->is_in(result), "object not in heap " PTR_FORMAT, p2i((void*) result));
return result;
}
inline oop CompressedOops::decode(narrowOop v) {
return is_null(v) ? (oop)NULL : decode_not_null(v);
}
inline narrowOop CompressedOops::encode_not_null(oop v) {
assert(!is_null(v), "oop value can never be zero");
assert(is_object_aligned(v), "address not aligned: " PTR_FORMAT, p2i((void*)v));
assert(is_in(v), "address not in heap range: " PTR_FORMAT, p2i((void*)v));
uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base(), 1));
assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
narrowOop result = narrow_oop_cast(pd >> shift());
assert(decode_raw(result) == v, "reversibility");
return result;
}
inline narrowOop CompressedOops::encode(oop v) {
return is_null(v) ? narrowOop::null : encode_not_null(v);
}
inline oop CompressedOops::decode_not_null(oop v) {
assert(Universe::heap()->is_in(v), "object not in heap " PTR_FORMAT, p2i((void*) v));
return v;
}
inline oop CompressedOops::decode(oop v) {
assert(Universe::heap()->is_in_or_null(v), "object not in heap " PTR_FORMAT, p2i((void*) v));
return v;
}
inline narrowOop CompressedOops::encode_not_null(narrowOop v) {
return v;
}
inline narrowOop CompressedOops::encode(narrowOop v) {
return v;
}
inline uint32_t CompressedOops::narrow_oop_value(oop o) {
return narrow_oop_value(encode(o));
}
inline uint32_t CompressedOops::narrow_oop_value(narrowOop o) {
return static_cast<uint32_t>(o);
}
template<typename T>
inline narrowOop CompressedOops::narrow_oop_cast(T i) {
static_assert(std::is_integral<T>::value, "precondition");
uint32_t narrow_value = static_cast<uint32_t>(i);
// Ensure no bits lost in conversion to uint32_t.
assert(i == static_cast<T>(narrow_value), "narrowOop overflow");
return static_cast<narrowOop>(narrow_value);
}
static inline bool check_alignment(Klass* v) {
return (intptr_t)v % KlassAlignmentInBytes == 0;
}
inline Klass* CompressedKlassPointers::decode_raw(narrowKlass v) {
return (Klass*)(void*)((uintptr_t)base() +((uintptr_t)v << shift()));
}
inline Klass* CompressedKlassPointers::decode_not_null(narrowKlass v) {
assert(!is_null(v), "narrow klass value can never be zero");
Klass* result = decode_raw(v);
assert(check_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
return result;
}
inline Klass* CompressedKlassPointers::decode(narrowKlass v) {
return is_null(v) ? (Klass*)NULL : decode_not_null(v);
}
inline narrowKlass CompressedKlassPointers::encode_not_null(Klass* v) {
assert(!is_null(v), "klass value can never be zero");
assert(check_alignment(v), "Address not aligned");
uint64_t pd = (uint64_t)(pointer_delta((void*)v, base(), 1));
assert(KlassEncodingMetaspaceMax > pd, "change encoding max if new encoding");
uint64_t result = pd >> shift();
assert((result & CONST64(0xffffffff00000000)) == 0, "narrow klass pointer overflow");
assert(decode(result) == v, "reversibility");
return (narrowKlass)result;
}
inline narrowKlass CompressedKlassPointers::encode(Klass* v) {
return is_null(v) ? (narrowKlass)0 : encode_not_null(v);
}
#endif // SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP