jdk-24/hotspot/src/share/vm/oops/cpCacheOop.cpp

450 lines
15 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 1998-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_cpCacheOop.cpp.incl"
// Implememtation of ConstantPoolCacheEntry
void ConstantPoolCacheEntry::set_initial_state(int index) {
assert(0 <= index && index < 0x10000, "sanity check");
_indices = index;
}
int ConstantPoolCacheEntry::as_flags(TosState state, bool is_final,
bool is_vfinal, bool is_volatile,
bool is_method_interface, bool is_method) {
int f = state;
assert( state < number_of_states, "Invalid state in as_flags");
f <<= 1;
if (is_final) f |= 1;
f <<= 1;
if (is_vfinal) f |= 1;
f <<= 1;
if (is_volatile) f |= 1;
f <<= 1;
if (is_method_interface) f |= 1;
f <<= 1;
if (is_method) f |= 1;
f <<= ConstantPoolCacheEntry::hotSwapBit;
// Preserve existing flag bit values
#ifdef ASSERT
int old_state = ((_flags >> tosBits) & 0x0F);
assert(old_state == 0 || old_state == state,
"inconsistent cpCache flags state");
#endif
return (_flags | f) ;
}
void ConstantPoolCacheEntry::set_bytecode_1(Bytecodes::Code code) {
#ifdef ASSERT
// Read once.
volatile Bytecodes::Code c = bytecode_1();
assert(c == 0 || c == code || code == 0, "update must be consistent");
#endif
// Need to flush pending stores here before bytecode is written.
OrderAccess::release_store_ptr(&_indices, _indices | ((u_char)code << 16));
}
void ConstantPoolCacheEntry::set_bytecode_2(Bytecodes::Code code) {
#ifdef ASSERT
// Read once.
volatile Bytecodes::Code c = bytecode_2();
assert(c == 0 || c == code || code == 0, "update must be consistent");
#endif
// Need to flush pending stores here before bytecode is written.
OrderAccess::release_store_ptr(&_indices, _indices | ((u_char)code << 24));
}
#ifdef ASSERT
// It is possible to have two different dummy methodOops created
// when the resolve code for invoke interface executes concurrently
// Hence the assertion below is weakened a bit for the invokeinterface
// case.
bool ConstantPoolCacheEntry::same_methodOop(oop cur_f1, oop f1) {
return (cur_f1 == f1 || ((methodOop)cur_f1)->name() ==
((methodOop)f1)->name() || ((methodOop)cur_f1)->signature() ==
((methodOop)f1)->signature());
}
#endif
// Note that concurrent update of both bytecodes can leave one of them
// reset to zero. This is harmless; the interpreter will simply re-resolve
// the damaged entry. More seriously, the memory synchronization is needed
// to flush other fields (f1, f2) completely to memory before the bytecodes
// are updated, lest other processors see a non-zero bytecode but zero f1/f2.
void ConstantPoolCacheEntry::set_field(Bytecodes::Code get_code,
Bytecodes::Code put_code,
KlassHandle field_holder,
int orig_field_index,
int field_offset,
TosState field_type,
bool is_final,
bool is_volatile) {
set_f1(field_holder());
set_f2(field_offset);
// The field index is used by jvm/ti and is the index into fields() array
// in holder instanceKlass. This is scaled by instanceKlass::next_offset.
assert((orig_field_index % instanceKlass::next_offset) == 0, "wierd index");
const int field_index = orig_field_index / instanceKlass::next_offset;
assert(field_index <= field_index_mask,
"field index does not fit in low flag bits");
set_flags(as_flags(field_type, is_final, false, is_volatile, false, false) |
(field_index & field_index_mask));
set_bytecode_1(get_code);
set_bytecode_2(put_code);
NOT_PRODUCT(verify(tty));
}
int ConstantPoolCacheEntry::field_index() const {
return (_flags & field_index_mask) * instanceKlass::next_offset;
}
void ConstantPoolCacheEntry::set_method(Bytecodes::Code invoke_code,
methodHandle method,
int vtable_index) {
assert(method->interpreter_entry() != NULL, "should have been set at this point");
assert(!method->is_obsolete(), "attempt to write obsolete method to cpCache");
bool change_to_virtual = (invoke_code == Bytecodes::_invokeinterface);
int byte_no = -1;
bool needs_vfinal_flag = false;
switch (invoke_code) {
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface: {
if (method->can_be_statically_bound()) {
set_f2((intptr_t)method());
needs_vfinal_flag = true;
} else {
assert(vtable_index >= 0, "valid index");
set_f2(vtable_index);
}
byte_no = 2;
break;
}
case Bytecodes::_invokespecial:
// Preserve the value of the vfinal flag on invokevirtual bytecode
// which may be shared with this constant pool cache entry.
needs_vfinal_flag = is_resolved(Bytecodes::_invokevirtual) && is_vfinal();
// fall through
case Bytecodes::_invokestatic:
set_f1(method());
byte_no = 1;
break;
default:
ShouldNotReachHere();
break;
}
set_flags(as_flags(as_TosState(method->result_type()),
method->is_final_method(),
needs_vfinal_flag,
false,
change_to_virtual,
true)|
method()->size_of_parameters());
// Note: byte_no also appears in TemplateTable::resolve.
if (byte_no == 1) {
set_bytecode_1(invoke_code);
} else if (byte_no == 2) {
if (change_to_virtual) {
// NOTE: THIS IS A HACK - BE VERY CAREFUL!!!
//
// Workaround for the case where we encounter an invokeinterface, but we
// should really have an _invokevirtual since the resolved method is a
// virtual method in java.lang.Object. This is a corner case in the spec
// but is presumably legal. javac does not generate this code.
//
// We set bytecode_1() to _invokeinterface, because that is the
// bytecode # used by the interpreter to see if it is resolved.
// We set bytecode_2() to _invokevirtual.
// See also interpreterRuntime.cpp. (8/25/2000)
// Only set resolved for the invokeinterface case if method is public.
// Otherwise, the method needs to be reresolved with caller for each
// interface call.
if (method->is_public()) set_bytecode_1(invoke_code);
set_bytecode_2(Bytecodes::_invokevirtual);
} else {
set_bytecode_2(invoke_code);
}
} else {
ShouldNotReachHere();
}
NOT_PRODUCT(verify(tty));
}
void ConstantPoolCacheEntry::set_interface_call(methodHandle method, int index) {
klassOop interf = method->method_holder();
assert(instanceKlass::cast(interf)->is_interface(), "must be an interface");
set_f1(interf);
set_f2(index);
set_flags(as_flags(as_TosState(method->result_type()), method->is_final_method(), false, false, false, true) | method()->size_of_parameters());
set_bytecode_1(Bytecodes::_invokeinterface);
}
class LocalOopClosure: public OopClosure {
private:
void (*_f)(oop*);
public:
LocalOopClosure(void f(oop*)) { _f = f; }
virtual void do_oop(oop* o) { _f(o); }
};
void ConstantPoolCacheEntry::oops_do(void f(oop*)) {
LocalOopClosure blk(f);
oop_iterate(&blk);
}
void ConstantPoolCacheEntry::oop_iterate(OopClosure* blk) {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
blk->do_oop((oop*)&_f1);
if (is_vfinal()) {
blk->do_oop((oop*)&_f2);
}
}
void ConstantPoolCacheEntry::oop_iterate_m(OopClosure* blk, MemRegion mr) {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
if (mr.contains((oop *)&_f1)) blk->do_oop((oop*)&_f1);
if (is_vfinal()) {
if (mr.contains((oop *)&_f2)) blk->do_oop((oop*)&_f2);
}
}
void ConstantPoolCacheEntry::follow_contents() {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
MarkSweep::mark_and_push((oop*)&_f1);
if (is_vfinal()) {
MarkSweep::mark_and_push((oop*)&_f2);
}
}
#ifndef SERIALGC
void ConstantPoolCacheEntry::follow_contents(ParCompactionManager* cm) {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
PSParallelCompact::mark_and_push(cm, (oop*)&_f1);
if (is_vfinal()) {
PSParallelCompact::mark_and_push(cm, (oop*)&_f2);
}
}
#endif // SERIALGC
void ConstantPoolCacheEntry::adjust_pointers() {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
MarkSweep::adjust_pointer((oop*)&_f1);
if (is_vfinal()) {
MarkSweep::adjust_pointer((oop*)&_f2);
}
}
#ifndef SERIALGC
void ConstantPoolCacheEntry::update_pointers() {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
PSParallelCompact::adjust_pointer((oop*)&_f1);
if (is_vfinal()) {
PSParallelCompact::adjust_pointer((oop*)&_f2);
}
}
void ConstantPoolCacheEntry::update_pointers(HeapWord* beg_addr,
HeapWord* end_addr) {
assert(in_words(size()) == 4, "check code below - may need adjustment");
// field[1] is always oop or NULL
PSParallelCompact::adjust_pointer((oop*)&_f1, beg_addr, end_addr);
if (is_vfinal()) {
PSParallelCompact::adjust_pointer((oop*)&_f2, beg_addr, end_addr);
}
}
#endif // SERIALGC
// RedefineClasses() API support:
// If this constantPoolCacheEntry refers to old_method then update it
// to refer to new_method.
bool ConstantPoolCacheEntry::adjust_method_entry(methodOop old_method,
methodOop new_method, bool * trace_name_printed) {
if (is_vfinal()) {
// virtual and final so f2() contains method ptr instead of vtable index
if (f2() == (intptr_t)old_method) {
// match old_method so need an update
_f2 = (intptr_t)new_method;
if (RC_TRACE_IN_RANGE(0x00100000, 0x00400000)) {
if (!(*trace_name_printed)) {
// RC_TRACE_MESG macro has an embedded ResourceMark
RC_TRACE_MESG(("adjust: name=%s",
Klass::cast(old_method->method_holder())->external_name()));
*trace_name_printed = true;
}
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00400000, ("cpc vf-entry update: %s(%s)",
new_method->name()->as_C_string(),
new_method->signature()->as_C_string()));
}
return true;
}
// f1() is not used with virtual entries so bail out
return false;
}
if ((oop)_f1 == NULL) {
// NULL f1() means this is a virtual entry so bail out
// We are assuming that the vtable index does not need change.
return false;
}
if ((oop)_f1 == old_method) {
_f1 = new_method;
if (RC_TRACE_IN_RANGE(0x00100000, 0x00400000)) {
if (!(*trace_name_printed)) {
// RC_TRACE_MESG macro has an embedded ResourceMark
RC_TRACE_MESG(("adjust: name=%s",
Klass::cast(old_method->method_holder())->external_name()));
*trace_name_printed = true;
}
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00400000, ("cpc entry update: %s(%s)",
new_method->name()->as_C_string(),
new_method->signature()->as_C_string()));
}
return true;
}
return false;
}
bool ConstantPoolCacheEntry::is_interesting_method_entry(klassOop k) {
if (!is_method_entry()) {
// not a method entry so not interesting by default
return false;
}
methodOop m = NULL;
if (is_vfinal()) {
// virtual and final so _f2 contains method ptr instead of vtable index
m = (methodOop)_f2;
} else if ((oop)_f1 == NULL) {
// NULL _f1 means this is a virtual entry so also not interesting
return false;
} else {
if (!((oop)_f1)->is_method()) {
// _f1 can also contain a klassOop for an interface
return false;
}
m = (methodOop)_f1;
}
assert(m != NULL && m->is_method(), "sanity check");
if (m == NULL || !m->is_method() || m->method_holder() != k) {
// robustness for above sanity checks or method is not in
// the interesting class
return false;
}
// the method is in the interesting class so the entry is interesting
return true;
}
void ConstantPoolCacheEntry::print(outputStream* st, int index) const {
// print separator
if (index == 0) tty->print_cr(" -------------");
// print entry
tty->print_cr("%3d (%08x) [%02x|%02x|%5d]", index, this, bytecode_2(), bytecode_1(), constant_pool_index());
tty->print_cr(" [ %08x]", (address)(oop)_f1);
tty->print_cr(" [ %08x]", _f2);
tty->print_cr(" [ %08x]", _flags);
tty->print_cr(" -------------");
}
void ConstantPoolCacheEntry::verify(outputStream* st) const {
// not implemented yet
}
// Implementation of ConstantPoolCache
void constantPoolCacheOopDesc::initialize(intArray& inverse_index_map) {
assert(inverse_index_map.length() == length(), "inverse index map must have same length as cache");
for (int i = 0; i < length(); i++) entry_at(i)->set_initial_state(inverse_index_map[i]);
}
// RedefineClasses() API support:
// If any entry of this constantPoolCache points to any of
// old_methods, replace it with the corresponding new_method.
void constantPoolCacheOopDesc::adjust_method_entries(methodOop* old_methods, methodOop* new_methods,
int methods_length, bool * trace_name_printed) {
if (methods_length == 0) {
// nothing to do if there are no methods
return;
}
// get shorthand for the interesting class
klassOop old_holder = old_methods[0]->method_holder();
for (int i = 0; i < length(); i++) {
if (!entry_at(i)->is_interesting_method_entry(old_holder)) {
// skip uninteresting methods
continue;
}
// The constantPoolCache contains entries for several different
// things, but we only care about methods. In fact, we only care
// about methods in the same class as the one that contains the
// old_methods. At this point, we have an interesting entry.
for (int j = 0; j < methods_length; j++) {
methodOop old_method = old_methods[j];
methodOop new_method = new_methods[j];
if (entry_at(i)->adjust_method_entry(old_method, new_method,
trace_name_printed)) {
// current old_method matched this entry and we updated it so
// break out and get to the next interesting entry if there one
break;
}
}
}
}