jdk-24/hotspot/src/share/vm/opto/matcher.cpp

2125 lines
80 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_matcher.cpp.incl"
OptoReg::Name OptoReg::c_frame_pointer;
const int Matcher::base2reg[Type::lastype] = {
Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0,
Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
0, 0/*abio*/,
Op_RegP /* Return address */, 0, /* the memories */
Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
0 /*bottom*/
};
const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
RegMask Matcher::mreg2regmask[_last_Mach_Reg];
RegMask Matcher::STACK_ONLY_mask;
RegMask Matcher::c_frame_ptr_mask;
const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
//---------------------------Matcher-------------------------------------------
Matcher::Matcher( Node_List &proj_list ) :
PhaseTransform( Phase::Ins_Select ),
#ifdef ASSERT
_old2new_map(C->comp_arena()),
#endif
_shared_constants(C->comp_arena()),
_reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
_swallowed(swallowed),
_begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
_end_inst_chain_rule(_END_INST_CHAIN_RULE),
_must_clone(must_clone), _proj_list(proj_list),
_register_save_policy(register_save_policy),
_c_reg_save_policy(c_reg_save_policy),
_register_save_type(register_save_type),
_ruleName(ruleName),
_allocation_started(false),
_states_arena(Chunk::medium_size),
_visited(&_states_arena),
_shared(&_states_arena),
_dontcare(&_states_arena) {
C->set_matcher(this);
idealreg2spillmask[Op_RegI] = NULL;
idealreg2spillmask[Op_RegL] = NULL;
idealreg2spillmask[Op_RegF] = NULL;
idealreg2spillmask[Op_RegD] = NULL;
idealreg2spillmask[Op_RegP] = NULL;
idealreg2debugmask[Op_RegI] = NULL;
idealreg2debugmask[Op_RegL] = NULL;
idealreg2debugmask[Op_RegF] = NULL;
idealreg2debugmask[Op_RegD] = NULL;
idealreg2debugmask[Op_RegP] = NULL;
}
//------------------------------warp_incoming_stk_arg------------------------
// This warps a VMReg into an OptoReg::Name
OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
OptoReg::Name warped;
if( reg->is_stack() ) { // Stack slot argument?
warped = OptoReg::add(_old_SP, reg->reg2stack() );
warped = OptoReg::add(warped, C->out_preserve_stack_slots());
if( warped >= _in_arg_limit )
_in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
if (!RegMask::can_represent(warped)) {
// the compiler cannot represent this method's calling sequence
C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
return OptoReg::Bad;
}
return warped;
}
return OptoReg::as_OptoReg(reg);
}
//---------------------------compute_old_SP------------------------------------
OptoReg::Name Compile::compute_old_SP() {
int fixed = fixed_slots();
int preserve = in_preserve_stack_slots();
return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
}
#ifdef ASSERT
void Matcher::verify_new_nodes_only(Node* xroot) {
// Make sure that the new graph only references new nodes
ResourceMark rm;
Unique_Node_List worklist;
VectorSet visited(Thread::current()->resource_area());
worklist.push(xroot);
while (worklist.size() > 0) {
Node* n = worklist.pop();
visited <<= n->_idx;
assert(C->node_arena()->contains(n), "dead node");
for (uint j = 0; j < n->req(); j++) {
Node* in = n->in(j);
if (in != NULL) {
assert(C->node_arena()->contains(in), "dead node");
if (!visited.test(in->_idx)) {
worklist.push(in);
}
}
}
}
}
#endif
//---------------------------match---------------------------------------------
void Matcher::match( ) {
// One-time initialization of some register masks.
init_spill_mask( C->root()->in(1) );
_return_addr_mask = return_addr();
#ifdef _LP64
// Pointers take 2 slots in 64-bit land
_return_addr_mask.Insert(OptoReg::add(return_addr(),1));
#endif
// Map a Java-signature return type into return register-value
// machine registers for 0, 1 and 2 returned values.
const TypeTuple *range = C->tf()->range();
if( range->cnt() > TypeFunc::Parms ) { // If not a void function
// Get ideal-register return type
int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
// Get machine return register
uint sop = C->start()->Opcode();
OptoRegPair regs = return_value(ireg, false);
// And mask for same
_return_value_mask = RegMask(regs.first());
if( OptoReg::is_valid(regs.second()) )
_return_value_mask.Insert(regs.second());
}
// ---------------
// Frame Layout
// Need the method signature to determine the incoming argument types,
// because the types determine which registers the incoming arguments are
// in, and this affects the matched code.
const TypeTuple *domain = C->tf()->domain();
uint argcnt = domain->cnt() - TypeFunc::Parms;
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
_parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
_calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
uint i;
for( i = 0; i<argcnt; i++ ) {
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
}
// Pass array of ideal registers and length to USER code (from the AD file)
// that will convert this to an array of register numbers.
const StartNode *start = C->start();
start->calling_convention( sig_bt, vm_parm_regs, argcnt );
#ifdef ASSERT
// Sanity check users' calling convention. Real handy while trying to
// get the initial port correct.
{ for (uint i = 0; i<argcnt; i++) {
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
_parm_regs[i].set_bad();
continue;
}
VMReg parm_reg = vm_parm_regs[i].first();
assert(parm_reg->is_valid(), "invalid arg?");
if (parm_reg->is_reg()) {
OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
assert(can_be_java_arg(opto_parm_reg) ||
C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
opto_parm_reg == inline_cache_reg(),
"parameters in register must be preserved by runtime stubs");
}
for (uint j = 0; j < i; j++) {
assert(parm_reg != vm_parm_regs[j].first(),
"calling conv. must produce distinct regs");
}
}
}
#endif
// Do some initial frame layout.
// Compute the old incoming SP (may be called FP) as
// OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
_old_SP = C->compute_old_SP();
assert( is_even(_old_SP), "must be even" );
// Compute highest incoming stack argument as
// _old_SP + out_preserve_stack_slots + incoming argument size.
_in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
assert( is_even(_in_arg_limit), "out_preserve must be even" );
for( i = 0; i < argcnt; i++ ) {
// Permit args to have no register
_calling_convention_mask[i].Clear();
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
continue;
}
// calling_convention returns stack arguments as a count of
// slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
// the allocators point of view, taking into account all the
// preserve area, locks & pad2.
OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
if( OptoReg::is_valid(reg1))
_calling_convention_mask[i].Insert(reg1);
OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
if( OptoReg::is_valid(reg2))
_calling_convention_mask[i].Insert(reg2);
// Saved biased stack-slot register number
_parm_regs[i].set_pair(reg2, reg1);
}
// Finally, make sure the incoming arguments take up an even number of
// words, in case the arguments or locals need to contain doubleword stack
// slots. The rest of the system assumes that stack slot pairs (in
// particular, in the spill area) which look aligned will in fact be
// aligned relative to the stack pointer in the target machine. Double
// stack slots will always be allocated aligned.
_new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
// Compute highest outgoing stack argument as
// _new_SP + out_preserve_stack_slots + max(outgoing argument size).
_out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
assert( is_even(_out_arg_limit), "out_preserve must be even" );
if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
// the compiler cannot represent this method's calling sequence
C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
}
if (C->failing()) return; // bailed out on incoming arg failure
// ---------------
// Collect roots of matcher trees. Every node for which
// _shared[_idx] is cleared is guaranteed to not be shared, and thus
// can be a valid interior of some tree.
find_shared( C->root() );
find_shared( C->top() );
C->print_method("Before Matching", 2);
// Swap out to old-space; emptying new-space
Arena *old = C->node_arena()->move_contents(C->old_arena());
// Save debug and profile information for nodes in old space:
_old_node_note_array = C->node_note_array();
if (_old_node_note_array != NULL) {
C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
(C->comp_arena(), _old_node_note_array->length(),
0, NULL));
}
// Pre-size the new_node table to avoid the need for range checks.
grow_new_node_array(C->unique());
// Reset node counter so MachNodes start with _idx at 0
int nodes = C->unique(); // save value
C->set_unique(0);
// Recursively match trees from old space into new space.
// Correct leaves of new-space Nodes; they point to old-space.
_visited.Clear(); // Clear visit bits for xform call
C->set_cached_top_node(xform( C->top(), nodes ));
if (!C->failing()) {
Node* xroot = xform( C->root(), 1 );
if (xroot == NULL) {
Matcher::soft_match_failure(); // recursive matching process failed
C->record_method_not_compilable("instruction match failed");
} else {
// During matching shared constants were attached to C->root()
// because xroot wasn't available yet, so transfer the uses to
// the xroot.
for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
Node* n = C->root()->fast_out(j);
if (C->node_arena()->contains(n)) {
assert(n->in(0) == C->root(), "should be control user");
n->set_req(0, xroot);
--j;
--jmax;
}
}
C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
#ifdef ASSERT
verify_new_nodes_only(xroot);
#endif
}
}
if (C->top() == NULL || C->root() == NULL) {
C->record_method_not_compilable("graph lost"); // %%% cannot happen?
}
if (C->failing()) {
// delete old;
old->destruct_contents();
return;
}
assert( C->top(), "" );
assert( C->root(), "" );
validate_null_checks();
// Now smoke old-space
NOT_DEBUG( old->destruct_contents() );
// ------------------------
// Set up save-on-entry registers
Fixup_Save_On_Entry( );
}
//------------------------------Fixup_Save_On_Entry----------------------------
// The stated purpose of this routine is to take care of save-on-entry
// registers. However, the overall goal of the Match phase is to convert into
// machine-specific instructions which have RegMasks to guide allocation.
// So what this procedure really does is put a valid RegMask on each input
// to the machine-specific variations of all Return, TailCall and Halt
// instructions. It also adds edgs to define the save-on-entry values (and of
// course gives them a mask).
static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
// Do all the pre-defined register masks
rms[TypeFunc::Control ] = RegMask::Empty;
rms[TypeFunc::I_O ] = RegMask::Empty;
rms[TypeFunc::Memory ] = RegMask::Empty;
rms[TypeFunc::ReturnAdr] = ret_adr;
rms[TypeFunc::FramePtr ] = fp;
return rms;
}
//---------------------------init_first_stack_mask-----------------------------
// Create the initial stack mask used by values spilling to the stack.
// Disallow any debug info in outgoing argument areas by setting the
// initial mask accordingly.
void Matcher::init_first_stack_mask() {
// Allocate storage for spill masks as masks for the appropriate load type.
RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*10);
idealreg2spillmask[Op_RegI] = &rms[0];
idealreg2spillmask[Op_RegL] = &rms[1];
idealreg2spillmask[Op_RegF] = &rms[2];
idealreg2spillmask[Op_RegD] = &rms[3];
idealreg2spillmask[Op_RegP] = &rms[4];
idealreg2debugmask[Op_RegI] = &rms[5];
idealreg2debugmask[Op_RegL] = &rms[6];
idealreg2debugmask[Op_RegF] = &rms[7];
idealreg2debugmask[Op_RegD] = &rms[8];
idealreg2debugmask[Op_RegP] = &rms[9];
OptoReg::Name i;
// At first, start with the empty mask
C->FIRST_STACK_mask().Clear();
// Add in the incoming argument area
OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
C->FIRST_STACK_mask().Insert(i);
// Add in all bits past the outgoing argument area
guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
"must be able to represent all call arguments in reg mask");
init = _out_arg_limit;
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
C->FIRST_STACK_mask().Insert(i);
// Finally, set the "infinite stack" bit.
C->FIRST_STACK_mask().set_AllStack();
// Make spill masks. Registers for their class, plus FIRST_STACK_mask.
*idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
// Make up debug masks. Any spill slot plus callee-save registers.
// Caller-save registers are assumed to be trashable by the various
// inline-cache fixup routines.
*idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
*idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
*idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
*idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
*idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
// Prevent stub compilations from attempting to reference
// callee-saved registers from debug info
bool exclude_soe = !Compile::current()->is_method_compilation();
for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
// registers the caller has to save do not work
if( _register_save_policy[i] == 'C' ||
_register_save_policy[i] == 'A' ||
(_register_save_policy[i] == 'E' && exclude_soe) ) {
idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
idealreg2debugmask[Op_RegF]->Remove(i); // masks
idealreg2debugmask[Op_RegD]->Remove(i);
idealreg2debugmask[Op_RegP]->Remove(i);
}
}
}
//---------------------------is_save_on_entry----------------------------------
bool Matcher::is_save_on_entry( int reg ) {
return
_register_save_policy[reg] == 'E' ||
_register_save_policy[reg] == 'A' || // Save-on-entry register?
// Also save argument registers in the trampolining stubs
(C->save_argument_registers() && is_spillable_arg(reg));
}
//---------------------------Fixup_Save_On_Entry-------------------------------
void Matcher::Fixup_Save_On_Entry( ) {
init_first_stack_mask();
Node *root = C->root(); // Short name for root
// Count number of save-on-entry registers.
uint soe_cnt = number_of_saved_registers();
uint i;
// Find the procedure Start Node
StartNode *start = C->start();
assert( start, "Expect a start node" );
// Save argument registers in the trampolining stubs
if( C->save_argument_registers() )
for( i = 0; i < _last_Mach_Reg; i++ )
if( is_spillable_arg(i) )
soe_cnt++;
// Input RegMask array shared by all Returns.
// The type for doubles and longs has a count of 2, but
// there is only 1 returned value
uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Returns have 0 or 1 returned values depending on call signature.
// Return register is specified by return_value in the AD file.
if (ret_edge_cnt > TypeFunc::Parms)
ret_rms[TypeFunc::Parms+0] = _return_value_mask;
// Input RegMask array shared by all Rethrows.
uint reth_edge_cnt = TypeFunc::Parms+1;
RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Rethrow takes exception oop only, but in the argument 0 slot.
reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
#ifdef _LP64
// Need two slots for ptrs in 64-bit land
reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
#endif
// Input RegMask array shared by all TailCalls
uint tail_call_edge_cnt = TypeFunc::Parms+2;
RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Input RegMask array shared by all TailJumps
uint tail_jump_edge_cnt = TypeFunc::Parms+2;
RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// TailCalls have 2 returned values (target & moop), whose masks come
// from the usual MachNode/MachOper mechanism. Find a sample
// TailCall to extract these masks and put the correct masks into
// the tail_call_rms array.
for( i=1; i < root->req(); i++ ) {
MachReturnNode *m = root->in(i)->as_MachReturn();
if( m->ideal_Opcode() == Op_TailCall ) {
tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
break;
}
}
// TailJumps have 2 returned values (target & ex_oop), whose masks come
// from the usual MachNode/MachOper mechanism. Find a sample
// TailJump to extract these masks and put the correct masks into
// the tail_jump_rms array.
for( i=1; i < root->req(); i++ ) {
MachReturnNode *m = root->in(i)->as_MachReturn();
if( m->ideal_Opcode() == Op_TailJump ) {
tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
break;
}
}
// Input RegMask array shared by all Halts
uint halt_edge_cnt = TypeFunc::Parms;
RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Capture the return input masks into each exit flavor
for( i=1; i < root->req(); i++ ) {
MachReturnNode *exit = root->in(i)->as_MachReturn();
switch( exit->ideal_Opcode() ) {
case Op_Return : exit->_in_rms = ret_rms; break;
case Op_Rethrow : exit->_in_rms = reth_rms; break;
case Op_TailCall : exit->_in_rms = tail_call_rms; break;
case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
case Op_Halt : exit->_in_rms = halt_rms; break;
default : ShouldNotReachHere();
}
}
// Next unused projection number from Start.
int proj_cnt = C->tf()->domain()->cnt();
// Do all the save-on-entry registers. Make projections from Start for
// them, and give them a use at the exit points. To the allocator, they
// look like incoming register arguments.
for( i = 0; i < _last_Mach_Reg; i++ ) {
if( is_save_on_entry(i) ) {
// Add the save-on-entry to the mask array
ret_rms [ ret_edge_cnt] = mreg2regmask[i];
reth_rms [ reth_edge_cnt] = mreg2regmask[i];
tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
// Halts need the SOE registers, but only in the stack as debug info.
// A just-prior uncommon-trap or deoptimization will use the SOE regs.
halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
Node *mproj;
// Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
// into a single RegD.
if( (i&1) == 0 &&
_register_save_type[i ] == Op_RegF &&
_register_save_type[i+1] == Op_RegF &&
is_save_on_entry(i+1) ) {
// Add other bit for double
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
proj_cnt += 2; // Skip 2 for doubles
}
else if( (i&1) == 1 && // Else check for high half of double
_register_save_type[i-1] == Op_RegF &&
_register_save_type[i ] == Op_RegF &&
is_save_on_entry(i-1) ) {
ret_rms [ ret_edge_cnt] = RegMask::Empty;
reth_rms [ reth_edge_cnt] = RegMask::Empty;
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
halt_rms [ halt_edge_cnt] = RegMask::Empty;
mproj = C->top();
}
// Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
// into a single RegL.
else if( (i&1) == 0 &&
_register_save_type[i ] == Op_RegI &&
_register_save_type[i+1] == Op_RegI &&
is_save_on_entry(i+1) ) {
// Add other bit for long
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
proj_cnt += 2; // Skip 2 for longs
}
else if( (i&1) == 1 && // Else check for high half of long
_register_save_type[i-1] == Op_RegI &&
_register_save_type[i ] == Op_RegI &&
is_save_on_entry(i-1) ) {
ret_rms [ ret_edge_cnt] = RegMask::Empty;
reth_rms [ reth_edge_cnt] = RegMask::Empty;
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
halt_rms [ halt_edge_cnt] = RegMask::Empty;
mproj = C->top();
} else {
// Make a projection for it off the Start
mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
}
ret_edge_cnt ++;
reth_edge_cnt ++;
tail_call_edge_cnt ++;
tail_jump_edge_cnt ++;
halt_edge_cnt ++;
// Add a use of the SOE register to all exit paths
for( uint j=1; j < root->req(); j++ )
root->in(j)->add_req(mproj);
} // End of if a save-on-entry register
} // End of for all machine registers
}
//------------------------------init_spill_mask--------------------------------
void Matcher::init_spill_mask( Node *ret ) {
if( idealreg2regmask[Op_RegI] ) return; // One time only init
OptoReg::c_frame_pointer = c_frame_pointer();
c_frame_ptr_mask = c_frame_pointer();
#ifdef _LP64
// pointers are twice as big
c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
#endif
// Start at OptoReg::stack0()
STACK_ONLY_mask.Clear();
OptoReg::Name init = OptoReg::stack2reg(0);
// STACK_ONLY_mask is all stack bits
OptoReg::Name i;
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
STACK_ONLY_mask.Insert(i);
// Also set the "infinite stack" bit.
STACK_ONLY_mask.set_AllStack();
// Copy the register names over into the shared world
for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
// SharedInfo::regName[i] = regName[i];
// Handy RegMasks per machine register
mreg2regmask[i].Insert(i);
}
// Grab the Frame Pointer
Node *fp = ret->in(TypeFunc::FramePtr);
Node *mem = ret->in(TypeFunc::Memory);
const TypePtr* atp = TypePtr::BOTTOM;
// Share frame pointer while making spill ops
set_shared(fp);
// Compute generic short-offset Loads
MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
assert(spillI != NULL && spillL != NULL && spillF != NULL &&
spillD != NULL && spillP != NULL, "");
// Get the ADLC notion of the right regmask, for each basic type.
idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
}
#ifdef ASSERT
static void match_alias_type(Compile* C, Node* n, Node* m) {
if (!VerifyAliases) return; // do not go looking for trouble by default
const TypePtr* nat = n->adr_type();
const TypePtr* mat = m->adr_type();
int nidx = C->get_alias_index(nat);
int midx = C->get_alias_index(mat);
// Detune the assert for cases like (AndI 0xFF (LoadB p)).
if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
for (uint i = 1; i < n->req(); i++) {
Node* n1 = n->in(i);
const TypePtr* n1at = n1->adr_type();
if (n1at != NULL) {
nat = n1at;
nidx = C->get_alias_index(n1at);
}
}
}
// %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
switch (n->Opcode()) {
case Op_PrefetchRead:
case Op_PrefetchWrite:
nidx = Compile::AliasIdxRaw;
nat = TypeRawPtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
switch (n->Opcode()) {
case Op_ClearArray:
midx = Compile::AliasIdxRaw;
mat = TypeRawPtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
switch (n->Opcode()) {
case Op_Return:
case Op_Rethrow:
case Op_Halt:
case Op_TailCall:
case Op_TailJump:
nidx = Compile::AliasIdxBot;
nat = TypePtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
switch (n->Opcode()) {
case Op_StrComp:
case Op_MemBarVolatile:
case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
nidx = Compile::AliasIdxTop;
nat = NULL;
break;
}
}
if (nidx != midx) {
if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
n->dump();
m->dump();
}
assert(C->subsume_loads() && C->must_alias(nat, midx),
"must not lose alias info when matching");
}
}
#endif
//------------------------------MStack-----------------------------------------
// State and MStack class used in xform() and find_shared() iterative methods.
enum Node_State { Pre_Visit, // node has to be pre-visited
Visit, // visit node
Post_Visit, // post-visit node
Alt_Post_Visit // alternative post-visit path
};
class MStack: public Node_Stack {
public:
MStack(int size) : Node_Stack(size) { }
void push(Node *n, Node_State ns) {
Node_Stack::push(n, (uint)ns);
}
void push(Node *n, Node_State ns, Node *parent, int indx) {
++_inode_top;
if ((_inode_top + 1) >= _inode_max) grow();
_inode_top->node = parent;
_inode_top->indx = (uint)indx;
++_inode_top;
_inode_top->node = n;
_inode_top->indx = (uint)ns;
}
Node *parent() {
pop();
return node();
}
Node_State state() const {
return (Node_State)index();
}
void set_state(Node_State ns) {
set_index((uint)ns);
}
};
//------------------------------xform------------------------------------------
// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
// Node in new-space. Given a new-space Node, recursively walk his children.
Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
Node *Matcher::xform( Node *n, int max_stack ) {
// Use one stack to keep both: child's node/state and parent's node/index
MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
while (mstack.is_nonempty()) {
n = mstack.node(); // Leave node on stack
Node_State nstate = mstack.state();
if (nstate == Visit) {
mstack.set_state(Post_Visit);
Node *oldn = n;
// Old-space or new-space check
if (!C->node_arena()->contains(n)) {
// Old space!
Node* m;
if (has_new_node(n)) { // Not yet Label/Reduced
m = new_node(n);
} else {
if (!is_dontcare(n)) { // Matcher can match this guy
// Calls match special. They match alone with no children.
// Their children, the incoming arguments, match normally.
m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
if (C->failing()) return NULL;
if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
} else { // Nothing the matcher cares about
if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
// Convert to machine-dependent projection
m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
if (m->in(0) != NULL) // m might be top
collect_null_checks(m);
} else { // Else just a regular 'ol guy
m = n->clone(); // So just clone into new-space
// Def-Use edges will be added incrementally as Uses
// of this node are matched.
assert(m->outcnt() == 0, "no Uses of this clone yet");
}
}
set_new_node(n, m); // Map old to new
if (_old_node_note_array != NULL) {
Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
n->_idx);
C->set_node_notes_at(m->_idx, nn);
}
debug_only(match_alias_type(C, n, m));
}
n = m; // n is now a new-space node
mstack.set_node(n);
}
// New space!
if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
int i;
// Put precedence edges on stack first (match them last).
for (i = oldn->req(); (uint)i < oldn->len(); i++) {
Node *m = oldn->in(i);
if (m == NULL) break;
// set -1 to call add_prec() instead of set_req() during Step1
mstack.push(m, Visit, n, -1);
}
// For constant debug info, I'd rather have unmatched constants.
int cnt = n->req();
JVMState* jvms = n->jvms();
int debug_cnt = jvms ? jvms->debug_start() : cnt;
// Now do only debug info. Clone constants rather than matching.
// Constants are represented directly in the debug info without
// the need for executable machine instructions.
// Monitor boxes are also represented directly.
for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
Node *m = n->in(i); // Get input
int op = m->Opcode();
assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
if( op == Op_ConI || op == Op_ConP ||
op == Op_ConF || op == Op_ConD || op == Op_ConL
// || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
) {
m = m->clone();
mstack.push(m, Post_Visit, n, i); // Don't neet to visit
mstack.push(m->in(0), Visit, m, 0);
} else {
mstack.push(m, Visit, n, i);
}
}
// And now walk his children, and convert his inputs to new-space.
for( ; i >= 0; --i ) { // For all normal inputs do
Node *m = n->in(i); // Get input
if(m != NULL)
mstack.push(m, Visit, n, i);
}
}
else if (nstate == Post_Visit) {
// Set xformed input
Node *p = mstack.parent();
if (p != NULL) { // root doesn't have parent
int i = (int)mstack.index();
if (i >= 0)
p->set_req(i, n); // required input
else if (i == -1)
p->add_prec(n); // precedence input
else
ShouldNotReachHere();
}
mstack.pop(); // remove processed node from stack
}
else {
ShouldNotReachHere();
}
} // while (mstack.is_nonempty())
return n; // Return new-space Node
}
//------------------------------warp_outgoing_stk_arg------------------------
OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
// Convert outgoing argument location to a pre-biased stack offset
if (reg->is_stack()) {
OptoReg::Name warped = reg->reg2stack();
// Adjust the stack slot offset to be the register number used
// by the allocator.
warped = OptoReg::add(begin_out_arg_area, warped);
// Keep track of the largest numbered stack slot used for an arg.
// Largest used slot per call-site indicates the amount of stack
// that is killed by the call.
if( warped >= out_arg_limit_per_call )
out_arg_limit_per_call = OptoReg::add(warped,1);
if (!RegMask::can_represent(warped)) {
C->record_method_not_compilable_all_tiers("unsupported calling sequence");
return OptoReg::Bad;
}
return warped;
}
return OptoReg::as_OptoReg(reg);
}
//------------------------------match_sfpt-------------------------------------
// Helper function to match call instructions. Calls match special.
// They match alone with no children. Their children, the incoming
// arguments, match normally.
MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
MachSafePointNode *msfpt = NULL;
MachCallNode *mcall = NULL;
uint cnt;
// Split out case for SafePoint vs Call
CallNode *call;
const TypeTuple *domain;
ciMethod* method = NULL;
if( sfpt->is_Call() ) {
call = sfpt->as_Call();
domain = call->tf()->domain();
cnt = domain->cnt();
// Match just the call, nothing else
MachNode *m = match_tree(call);
if (C->failing()) return NULL;
if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
// Copy data from the Ideal SafePoint to the machine version
mcall = m->as_MachCall();
mcall->set_tf( call->tf());
mcall->set_entry_point(call->entry_point());
mcall->set_cnt( call->cnt());
if( mcall->is_MachCallJava() ) {
MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
const CallJavaNode *call_java = call->as_CallJava();
method = call_java->method();
mcall_java->_method = method;
mcall_java->_bci = call_java->_bci;
mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
if( mcall_java->is_MachCallStaticJava() )
mcall_java->as_MachCallStaticJava()->_name =
call_java->as_CallStaticJava()->_name;
if( mcall_java->is_MachCallDynamicJava() )
mcall_java->as_MachCallDynamicJava()->_vtable_index =
call_java->as_CallDynamicJava()->_vtable_index;
}
else if( mcall->is_MachCallRuntime() ) {
mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
}
msfpt = mcall;
}
// This is a non-call safepoint
else {
call = NULL;
domain = NULL;
MachNode *mn = match_tree(sfpt);
if (C->failing()) return NULL;
msfpt = mn->as_MachSafePoint();
cnt = TypeFunc::Parms;
}
// Advertise the correct memory effects (for anti-dependence computation).
msfpt->set_adr_type(sfpt->adr_type());
// Allocate a private array of RegMasks. These RegMasks are not shared.
msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
// Empty them all.
memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
// Do all the pre-defined non-Empty register masks
msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
// Place first outgoing argument can possibly be put.
OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
assert( is_even(begin_out_arg_area), "" );
// Compute max outgoing register number per call site.
OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
// Calls to C may hammer extra stack slots above and beyond any arguments.
// These are usually backing store for register arguments for varargs.
if( call != NULL && call->is_CallRuntime() )
out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
// Do the normal argument list (parameters) register masks
int argcnt = cnt - TypeFunc::Parms;
if( argcnt > 0 ) { // Skip it all if we have no args
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
int i;
for( i = 0; i < argcnt; i++ ) {
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
}
// V-call to pick proper calling convention
call->calling_convention( sig_bt, parm_regs, argcnt );
#ifdef ASSERT
// Sanity check users' calling convention. Really handy during
// the initial porting effort. Fairly expensive otherwise.
{ for (int i = 0; i<argcnt; i++) {
if( !parm_regs[i].first()->is_valid() &&
!parm_regs[i].second()->is_valid() ) continue;
VMReg reg1 = parm_regs[i].first();
VMReg reg2 = parm_regs[i].second();
for (int j = 0; j < i; j++) {
if( !parm_regs[j].first()->is_valid() &&
!parm_regs[j].second()->is_valid() ) continue;
VMReg reg3 = parm_regs[j].first();
VMReg reg4 = parm_regs[j].second();
if( !reg1->is_valid() ) {
assert( !reg2->is_valid(), "valid halvsies" );
} else if( !reg3->is_valid() ) {
assert( !reg4->is_valid(), "valid halvsies" );
} else {
assert( reg1 != reg2, "calling conv. must produce distinct regs");
assert( reg1 != reg3, "calling conv. must produce distinct regs");
assert( reg1 != reg4, "calling conv. must produce distinct regs");
assert( reg2 != reg3, "calling conv. must produce distinct regs");
assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
assert( reg3 != reg4, "calling conv. must produce distinct regs");
}
}
}
}
#endif
// Visit each argument. Compute its outgoing register mask.
// Return results now can have 2 bits returned.
// Compute max over all outgoing arguments both per call-site
// and over the entire method.
for( i = 0; i < argcnt; i++ ) {
// Address of incoming argument mask to fill in
RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
if( !parm_regs[i].first()->is_valid() &&
!parm_regs[i].second()->is_valid() ) {
continue; // Avoid Halves
}
// Grab first register, adjust stack slots and insert in mask.
OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
if (OptoReg::is_valid(reg1))
rm->Insert( reg1 );
// Grab second register (if any), adjust stack slots and insert in mask.
OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
if (OptoReg::is_valid(reg2))
rm->Insert( reg2 );
} // End of for all arguments
// Compute number of stack slots needed to restore stack in case of
// Pascal-style argument popping.
mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
}
// Compute the max stack slot killed by any call. These will not be
// available for debug info, and will be used to adjust FIRST_STACK_mask
// after all call sites have been visited.
if( _out_arg_limit < out_arg_limit_per_call)
_out_arg_limit = out_arg_limit_per_call;
if (mcall) {
// Kill the outgoing argument area, including any non-argument holes and
// any legacy C-killed slots. Use Fat-Projections to do the killing.
// Since the max-per-method covers the max-per-call-site and debug info
// is excluded on the max-per-method basis, debug info cannot land in
// this killed area.
uint r_cnt = mcall->tf()->range()->cnt();
MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
} else {
for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
proj->_rout.Insert(OptoReg::Name(i));
}
if( proj->_rout.is_NotEmpty() )
_proj_list.push(proj);
}
// Transfer the safepoint information from the call to the mcall
// Move the JVMState list
msfpt->set_jvms(sfpt->jvms());
for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
jvms->set_map(sfpt);
}
// Debug inputs begin just after the last incoming parameter
assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
(mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
// Move the OopMap
msfpt->_oop_map = sfpt->_oop_map;
// Registers killed by the call are set in the local scheduling pass
// of Global Code Motion.
return msfpt;
}
//---------------------------match_tree----------------------------------------
// Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
// of the whole-sale conversion from Ideal to Mach Nodes. Also used for
// making GotoNodes while building the CFG and in init_spill_mask() to identify
// a Load's result RegMask for memoization in idealreg2regmask[]
MachNode *Matcher::match_tree( const Node *n ) {
assert( n->Opcode() != Op_Phi, "cannot match" );
assert( !n->is_block_start(), "cannot match" );
// Set the mark for all locally allocated State objects.
// When this call returns, the _states_arena arena will be reset
// freeing all State objects.
ResourceMark rm( &_states_arena );
LabelRootDepth = 0;
// StoreNodes require their Memory input to match any LoadNodes
Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
// State object for root node of match tree
// Allocate it on _states_arena - stack allocation can cause stack overflow.
State *s = new (&_states_arena) State;
s->_kids[0] = NULL;
s->_kids[1] = NULL;
s->_leaf = (Node*)n;
// Label the input tree, allocating labels from top-level arena
Label_Root( n, s, n->in(0), mem );
if (C->failing()) return NULL;
// The minimum cost match for the whole tree is found at the root State
uint mincost = max_juint;
uint cost = max_juint;
uint i;
for( i = 0; i < NUM_OPERANDS; i++ ) {
if( s->valid(i) && // valid entry and
s->_cost[i] < cost && // low cost and
s->_rule[i] >= NUM_OPERANDS ) // not an operand
cost = s->_cost[mincost=i];
}
if (mincost == max_juint) {
#ifndef PRODUCT
tty->print("No matching rule for:");
s->dump();
#endif
Matcher::soft_match_failure();
return NULL;
}
// Reduce input tree based upon the state labels to machine Nodes
MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
#ifdef ASSERT
_old2new_map.map(n->_idx, m);
#endif
// Add any Matcher-ignored edges
uint cnt = n->req();
uint start = 1;
if( mem != (Node*)1 ) start = MemNode::Memory+1;
if( n->Opcode() == Op_AddP ) {
assert( mem == (Node*)1, "" );
start = AddPNode::Base+1;
}
for( i = start; i < cnt; i++ ) {
if( !n->match_edge(i) ) {
if( i < m->req() )
m->ins_req( i, n->in(i) );
else
m->add_req( n->in(i) );
}
}
return m;
}
//------------------------------match_into_reg---------------------------------
// Choose to either match this Node in a register or part of the current
// match tree. Return true for requiring a register and false for matching
// as part of the current match tree.
static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
const Type *t = m->bottom_type();
if( t->singleton() ) {
// Never force constants into registers. Allow them to match as
// constants or registers. Copies of the same value will share
// the same register. See find_shared_constant.
return false;
} else { // Not a constant
// Stop recursion if they have different Controls.
// Slot 0 of constants is not really a Control.
if( control && m->in(0) && control != m->in(0) ) {
// Actually, we can live with the most conservative control we
// find, if it post-dominates the others. This allows us to
// pick up load/op/store trees where the load can float a little
// above the store.
Node *x = control;
const uint max_scan = 6; // Arbitrary scan cutoff
uint j;
for( j=0; j<max_scan; j++ ) {
if( x->is_Region() ) // Bail out at merge points
return true;
x = x->in(0);
if( x == m->in(0) ) // Does 'control' post-dominate
break; // m->in(0)? If so, we can use it
}
if( j == max_scan ) // No post-domination before scan end?
return true; // Then break the match tree up
}
}
// Not forceably cloning. If shared, put it into a register.
return shared;
}
//------------------------------Instruction Selection--------------------------
// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
// ideal nodes to machine instructions. Trees are delimited by shared Nodes,
// things the Matcher does not match (e.g., Memory), and things with different
// Controls (hence forced into different blocks). We pass in the Control
// selected for this entire State tree.
// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
// Store and the Load must have identical Memories (as well as identical
// pointers). Since the Matcher does not have anything for Memory (and
// does not handle DAGs), I have to match the Memory input myself. If the
// Tree root is a Store, I require all Loads to have the identical memory.
Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
// Since Label_Root is a recursive function, its possible that we might run
// out of stack space. See bugs 6272980 & 6227033 for more info.
LabelRootDepth++;
if (LabelRootDepth > MaxLabelRootDepth) {
C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
return NULL;
}
uint care = 0; // Edges matcher cares about
uint cnt = n->req();
uint i = 0;
// Examine children for memory state
// Can only subsume a child into your match-tree if that child's memory state
// is not modified along the path to another input.
// It is unsafe even if the other inputs are separate roots.
Node *input_mem = NULL;
for( i = 1; i < cnt; i++ ) {
if( !n->match_edge(i) ) continue;
Node *m = n->in(i); // Get ith input
assert( m, "expect non-null children" );
if( m->is_Load() ) {
if( input_mem == NULL ) {
input_mem = m->in(MemNode::Memory);
} else if( input_mem != m->in(MemNode::Memory) ) {
input_mem = NodeSentinel;
}
}
}
for( i = 1; i < cnt; i++ ){// For my children
if( !n->match_edge(i) ) continue;
Node *m = n->in(i); // Get ith input
// Allocate states out of a private arena
State *s = new (&_states_arena) State;
svec->_kids[care++] = s;
assert( care <= 2, "binary only for now" );
// Recursively label the State tree.
s->_kids[0] = NULL;
s->_kids[1] = NULL;
s->_leaf = m;
// Check for leaves of the State Tree; things that cannot be a part of
// the current tree. If it finds any, that value is matched as a
// register operand. If not, then the normal matching is used.
if( match_into_reg(n, m, control, i, is_shared(m)) ||
//
// Stop recursion if this is LoadNode and the root of this tree is a
// StoreNode and the load & store have different memories.
((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
// Can NOT include the match of a subtree when its memory state
// is used by any of the other subtrees
(input_mem == NodeSentinel) ) {
#ifndef PRODUCT
// Print when we exclude matching due to different memory states at input-loads
if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
&& !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
tty->print_cr("invalid input_mem");
}
#endif
// Switch to a register-only opcode; this value must be in a register
// and cannot be subsumed as part of a larger instruction.
s->DFA( m->ideal_reg(), m );
} else {
// If match tree has no control and we do, adopt it for entire tree
if( control == NULL && m->in(0) != NULL && m->req() > 1 )
control = m->in(0); // Pick up control
// Else match as a normal part of the match tree.
control = Label_Root(m,s,control,mem);
if (C->failing()) return NULL;
}
}
// Call DFA to match this node, and return
svec->DFA( n->Opcode(), n );
#ifdef ASSERT
uint x;
for( x = 0; x < _LAST_MACH_OPER; x++ )
if( svec->valid(x) )
break;
if (x >= _LAST_MACH_OPER) {
n->dump();
svec->dump();
assert( false, "bad AD file" );
}
#endif
return control;
}
// Con nodes reduced using the same rule can share their MachNode
// which reduces the number of copies of a constant in the final
// program. The register allocator is free to split uses later to
// split live ranges.
MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
if (!leaf->is_Con()) return NULL;
// See if this Con has already been reduced using this rule.
if (_shared_constants.Size() <= leaf->_idx) return NULL;
MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
if (last != NULL && rule == last->rule()) {
// Get the new space root.
Node* xroot = new_node(C->root());
if (xroot == NULL) {
// This shouldn't happen give the order of matching.
return NULL;
}
// Shared constants need to have their control be root so they
// can be scheduled properly.
Node* control = last->in(0);
if (control != xroot) {
if (control == NULL || control == C->root()) {
last->set_req(0, xroot);
} else {
assert(false, "unexpected control");
return NULL;
}
}
return last;
}
return NULL;
}
//------------------------------ReduceInst-------------------------------------
// Reduce a State tree (with given Control) into a tree of MachNodes.
// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
// complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
// Each MachNode has a number of complicated MachOper operands; each
// MachOper also covers a further tree of Ideal Nodes.
// The root of the Ideal match tree is always an instruction, so we enter
// the recursion here. After building the MachNode, we need to recurse
// the tree checking for these cases:
// (1) Child is an instruction -
// Build the instruction (recursively), add it as an edge.
// Build a simple operand (register) to hold the result of the instruction.
// (2) Child is an interior part of an instruction -
// Skip over it (do nothing)
// (3) Child is the start of a operand -
// Build the operand, place it inside the instruction
// Call ReduceOper.
MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
assert( rule >= NUM_OPERANDS, "called with operand rule" );
MachNode* shared_con = find_shared_constant(s->_leaf, rule);
if (shared_con != NULL) {
return shared_con;
}
// Build the object to represent this state & prepare for recursive calls
MachNode *mach = s->MachNodeGenerator( rule, C );
mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
assert( mach->_opnds[0] != NULL, "Missing result operand" );
Node *leaf = s->_leaf;
// Check for instruction or instruction chain rule
if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
// Instruction
mach->add_req( leaf->in(0) ); // Set initial control
// Reduce interior of complex instruction
ReduceInst_Interior( s, rule, mem, mach, 1 );
} else {
// Instruction chain rules are data-dependent on their inputs
mach->add_req(0); // Set initial control to none
ReduceInst_Chain_Rule( s, rule, mem, mach );
}
// If a Memory was used, insert a Memory edge
if( mem != (Node*)1 )
mach->ins_req(MemNode::Memory,mem);
// If the _leaf is an AddP, insert the base edge
if( leaf->Opcode() == Op_AddP )
mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
uint num_proj = _proj_list.size();
// Perform any 1-to-many expansions required
MachNode *ex = mach->Expand(s,_proj_list);
if( ex != mach ) {
assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
if( ex->in(1)->is_Con() )
ex->in(1)->set_req(0, C->root());
// Remove old node from the graph
for( uint i=0; i<mach->req(); i++ ) {
mach->set_req(i,NULL);
}
}
// PhaseChaitin::fixup_spills will sometimes generate spill code
// via the matcher. By the time, nodes have been wired into the CFG,
// and any further nodes generated by expand rules will be left hanging
// in space, and will not get emitted as output code. Catch this.
// Also, catch any new register allocation constraints ("projections")
// generated belatedly during spill code generation.
if (_allocation_started) {
guarantee(ex == mach, "no expand rules during spill generation");
guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
}
if (leaf->is_Con()) {
// Record the con for sharing
_shared_constants.map(leaf->_idx, ex);
}
return ex;
}
void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
// 'op' is what I am expecting to receive
int op = _leftOp[rule];
// Operand type to catch childs result
// This is what my child will give me.
int opnd_class_instance = s->_rule[op];
// Choose between operand class or not.
// This is what I will recieve.
int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
// New rule for child. Chase operand classes to get the actual rule.
int newrule = s->_rule[catch_op];
if( newrule < NUM_OPERANDS ) {
// Chain from operand or operand class, may be output of shared node
assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
"Bad AD file: Instruction chain rule must chain from operand");
// Insert operand into array of operands for this instruction
mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
ReduceOper( s, newrule, mem, mach );
} else {
// Chain from the result of an instruction
assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
Node *mem1 = (Node*)1;
mach->add_req( ReduceInst(s, newrule, mem1) );
}
return;
}
uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
if( s->_leaf->is_Load() ) {
Node *mem2 = s->_leaf->in(MemNode::Memory);
assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
mem = mem2;
}
if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
if( mach->in(0) == NULL )
mach->set_req(0, s->_leaf->in(0));
}
// Now recursively walk the state tree & add operand list.
for( uint i=0; i<2; i++ ) { // binary tree
State *newstate = s->_kids[i];
if( newstate == NULL ) break; // Might only have 1 child
// 'op' is what I am expecting to receive
int op;
if( i == 0 ) {
op = _leftOp[rule];
} else {
op = _rightOp[rule];
}
// Operand type to catch childs result
// This is what my child will give me.
int opnd_class_instance = newstate->_rule[op];
// Choose between operand class or not.
// This is what I will receive.
int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
// New rule for child. Chase operand classes to get the actual rule.
int newrule = newstate->_rule[catch_op];
if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
// Operand/operandClass
// Insert operand into array of operands for this instruction
mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
ReduceOper( newstate, newrule, mem, mach );
} else { // Child is internal operand or new instruction
if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
// internal operand --> call ReduceInst_Interior
// Interior of complex instruction. Do nothing but recurse.
num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
} else {
// instruction --> call build operand( ) to catch result
// --> ReduceInst( newrule )
mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
Node *mem1 = (Node*)1;
mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
}
}
assert( mach->_opnds[num_opnds-1], "" );
}
return num_opnds;
}
// This routine walks the interior of possible complex operands.
// At each point we check our children in the match tree:
// (1) No children -
// We are a leaf; add _leaf field as an input to the MachNode
// (2) Child is an internal operand -
// Skip over it ( do nothing )
// (3) Child is an instruction -
// Call ReduceInst recursively and
// and instruction as an input to the MachNode
void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
assert( rule < _LAST_MACH_OPER, "called with operand rule" );
State *kid = s->_kids[0];
assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
// Leaf? And not subsumed?
if( kid == NULL && !_swallowed[rule] ) {
mach->add_req( s->_leaf ); // Add leaf pointer
return; // Bail out
}
if( s->_leaf->is_Load() ) {
assert( mem == (Node*)1, "multiple Memories being matched at once?" );
mem = s->_leaf->in(MemNode::Memory);
}
if( s->_leaf->in(0) && s->_leaf->req() > 1) {
if( !mach->in(0) )
mach->set_req(0,s->_leaf->in(0));
else {
assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
}
}
for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
int newrule;
if( i == 0 )
newrule = kid->_rule[_leftOp[rule]];
else
newrule = kid->_rule[_rightOp[rule]];
if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
// Internal operand; recurse but do nothing else
ReduceOper( kid, newrule, mem, mach );
} else { // Child is a new instruction
// Reduce the instruction, and add a direct pointer from this
// machine instruction to the newly reduced one.
Node *mem1 = (Node*)1;
mach->add_req( ReduceInst( kid, newrule, mem1 ) );
}
}
}
// -------------------------------------------------------------------------
// Java-Java calling convention
// (what you use when Java calls Java)
//------------------------------find_receiver----------------------------------
// For a given signature, return the OptoReg for parameter 0.
OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
VMRegPair regs;
BasicType sig_bt = T_OBJECT;
calling_convention(&sig_bt, &regs, 1, is_outgoing);
// Return argument 0 register. In the LP64 build pointers
// take 2 registers, but the VM wants only the 'main' name.
return OptoReg::as_OptoReg(regs.first());
}
// A method-klass-holder may be passed in the inline_cache_reg
// and then expanded into the inline_cache_reg and a method_oop register
// defined in ad_<arch>.cpp
//------------------------------find_shared------------------------------------
// Set bits if Node is shared or otherwise a root
void Matcher::find_shared( Node *n ) {
// Allocate stack of size C->unique() * 2 to avoid frequent realloc
MStack mstack(C->unique() * 2);
mstack.push(n, Visit); // Don't need to pre-visit root node
while (mstack.is_nonempty()) {
n = mstack.node(); // Leave node on stack
Node_State nstate = mstack.state();
if (nstate == Pre_Visit) {
if (is_visited(n)) { // Visited already?
// Node is shared and has no reason to clone. Flag it as shared.
// This causes it to match into a register for the sharing.
set_shared(n); // Flag as shared and
mstack.pop(); // remove node from stack
continue;
}
nstate = Visit; // Not already visited; so visit now
}
if (nstate == Visit) {
mstack.set_state(Post_Visit);
set_visited(n); // Flag as visited now
bool mem_op = false;
switch( n->Opcode() ) { // Handle some opcodes special
case Op_Phi: // Treat Phis as shared roots
case Op_Parm:
case Op_Proj: // All handled specially during matching
case Op_SafePointScalarObject:
2007-12-01 00:00:00 +00:00
set_shared(n);
set_dontcare(n);
break;
case Op_If:
case Op_CountedLoopEnd:
mstack.set_state(Alt_Post_Visit); // Alternative way
// Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
// with matching cmp/branch in 1 instruction. The Matcher needs the
// Bool and CmpX side-by-side, because it can only get at constants
// that are at the leaves of Match trees, and the Bool's condition acts
// as a constant here.
mstack.push(n->in(1), Visit); // Clone the Bool
mstack.push(n->in(0), Pre_Visit); // Visit control input
continue; // while (mstack.is_nonempty())
case Op_ConvI2D: // These forms efficiently match with a prior
case Op_ConvI2F: // Load but not a following Store
if( n->in(1)->is_Load() && // Prior load
n->outcnt() == 1 && // Not already shared
n->unique_out()->is_Store() ) // Following store
set_shared(n); // Force it to be a root
break;
case Op_ReverseBytesI:
case Op_ReverseBytesL:
if( n->in(1)->is_Load() && // Prior load
n->outcnt() == 1 ) // Not already shared
set_shared(n); // Force it to be a root
break;
case Op_BoxLock: // Cant match until we get stack-regs in ADLC
case Op_IfFalse:
case Op_IfTrue:
case Op_MachProj:
case Op_MergeMem:
case Op_Catch:
case Op_CatchProj:
case Op_CProj:
case Op_JumpProj:
case Op_JProj:
case Op_NeverBranch:
set_dontcare(n);
break;
case Op_Jump:
mstack.push(n->in(1), Visit); // Switch Value
mstack.push(n->in(0), Pre_Visit); // Visit Control input
continue; // while (mstack.is_nonempty())
case Op_StrComp:
set_shared(n); // Force result into register (it will be anyways)
break;
case Op_ConP: { // Convert pointers above the centerline to NUL
TypeNode *tn = n->as_Type(); // Constants derive from type nodes
const TypePtr* tp = tn->type()->is_ptr();
if (tp->_ptr == TypePtr::AnyNull) {
tn->set_type(TypePtr::NULL_PTR);
}
break;
}
case Op_Binary: // These are introduced in the Post_Visit state.
ShouldNotReachHere();
break;
case Op_StoreB: // Do match these, despite no ideal reg
case Op_StoreC:
case Op_StoreCM:
case Op_StoreD:
case Op_StoreF:
case Op_StoreI:
case Op_StoreL:
case Op_StoreP:
case Op_Store16B:
case Op_Store8B:
case Op_Store4B:
case Op_Store8C:
case Op_Store4C:
case Op_Store2C:
case Op_Store4I:
case Op_Store2I:
case Op_Store2L:
case Op_Store4F:
case Op_Store2F:
case Op_Store2D:
case Op_ClearArray:
case Op_SafePoint:
mem_op = true;
break;
case Op_LoadB:
case Op_LoadC:
case Op_LoadD:
case Op_LoadF:
case Op_LoadI:
case Op_LoadKlass:
case Op_LoadL:
case Op_LoadS:
case Op_LoadP:
case Op_LoadRange:
case Op_LoadD_unaligned:
case Op_LoadL_unaligned:
case Op_Load16B:
case Op_Load8B:
case Op_Load4B:
case Op_Load4C:
case Op_Load2C:
case Op_Load8C:
case Op_Load8S:
case Op_Load4S:
case Op_Load2S:
case Op_Load4I:
case Op_Load2I:
case Op_Load2L:
case Op_Load4F:
case Op_Load2F:
case Op_Load2D:
mem_op = true;
// Must be root of match tree due to prior load conflict
if( C->subsume_loads() == false ) {
set_shared(n);
}
// Fall into default case
default:
if( !n->ideal_reg() )
set_dontcare(n); // Unmatchable Nodes
} // end_switch
for(int i = n->req() - 1; i >= 0; --i) { // For my children
Node *m = n->in(i); // Get ith input
if (m == NULL) continue; // Ignore NULLs
uint mop = m->Opcode();
// Must clone all producers of flags, or we will not match correctly.
// Suppose a compare setting int-flags is shared (e.g., a switch-tree)
// then it will match into an ideal Op_RegFlags. Alas, the fp-flags
// are also there, so we may match a float-branch to int-flags and
// expect the allocator to haul the flags from the int-side to the
// fp-side. No can do.
if( _must_clone[mop] ) {
mstack.push(m, Visit);
continue; // for(int i = ...)
}
// Clone addressing expressions as they are "free" in most instructions
if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
Node *off = m->in(AddPNode::Offset);
if( off->is_Con() ) {
set_visited(m); // Flag as visited now
Node *adr = m->in(AddPNode::Address);
// Intel, ARM and friends can handle 2 adds in addressing mode
if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
// AtomicAdd is not an addressing expression.
// Cheap to find it by looking for screwy base.
!adr->in(AddPNode::Base)->is_top() ) {
set_visited(adr); // Flag as visited now
Node *shift = adr->in(AddPNode::Offset);
// Check for shift by small constant as well
if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
shift->in(2)->get_int() <= 3 ) {
set_visited(shift); // Flag as visited now
mstack.push(shift->in(2), Visit);
#ifdef _LP64
// Allow Matcher to match the rule which bypass
// ConvI2L operation for an array index on LP64
// if the index value is positive.
if( shift->in(1)->Opcode() == Op_ConvI2L &&
shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
set_visited(shift->in(1)); // Flag as visited now
mstack.push(shift->in(1)->in(1), Pre_Visit);
} else
#endif
mstack.push(shift->in(1), Pre_Visit);
} else {
mstack.push(shift, Pre_Visit);
}
mstack.push(adr->in(AddPNode::Address), Pre_Visit);
mstack.push(adr->in(AddPNode::Base), Pre_Visit);
} else { // Sparc, Alpha, PPC and friends
mstack.push(adr, Pre_Visit);
}
// Clone X+offset as it also folds into most addressing expressions
mstack.push(off, Visit);
mstack.push(m->in(AddPNode::Base), Pre_Visit);
continue; // for(int i = ...)
} // if( off->is_Con() )
} // if( mem_op &&
mstack.push(m, Pre_Visit);
} // for(int i = ...)
}
else if (nstate == Alt_Post_Visit) {
mstack.pop(); // Remove node from stack
// We cannot remove the Cmp input from the Bool here, as the Bool may be
// shared and all users of the Bool need to move the Cmp in parallel.
// This leaves both the Bool and the If pointing at the Cmp. To
// prevent the Matcher from trying to Match the Cmp along both paths
// BoolNode::match_edge always returns a zero.
// We reorder the Op_If in a pre-order manner, so we can visit without
// accidently sharing the Cmp (the Bool and the If make 2 users).
n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
}
else if (nstate == Post_Visit) {
mstack.pop(); // Remove node from stack
// Now hack a few special opcodes
switch( n->Opcode() ) { // Handle some opcodes special
case Op_StorePConditional:
case Op_StoreLConditional:
case Op_CompareAndSwapI:
case Op_CompareAndSwapL:
case Op_CompareAndSwapP: { // Convert trinary to binary-tree
Node *newval = n->in(MemNode::ValueIn );
Node *oldval = n->in(LoadStoreNode::ExpectedIn);
Node *pair = new (C, 3) BinaryNode( oldval, newval );
n->set_req(MemNode::ValueIn,pair);
n->del_req(LoadStoreNode::ExpectedIn);
break;
}
case Op_CMoveD: // Convert trinary to binary-tree
case Op_CMoveF:
case Op_CMoveI:
case Op_CMoveL:
case Op_CMoveP: {
// Restructure into a binary tree for Matching. It's possible that
// we could move this code up next to the graph reshaping for IfNodes
// or vice-versa, but I do not want to debug this for Ladybird.
// 10/2/2000 CNC.
Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
n->set_req(1,pair1);
Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
n->set_req(2,pair2);
n->del_req(3);
break;
}
default:
break;
}
}
else {
ShouldNotReachHere();
}
} // end of while (mstack.is_nonempty())
}
#ifdef ASSERT
// machine-independent root to machine-dependent root
void Matcher::dump_old2new_map() {
_old2new_map.dump();
}
#endif
//---------------------------collect_null_checks-------------------------------
// Find null checks in the ideal graph; write a machine-specific node for
// it. Used by later implicit-null-check handling. Actually collects
// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
// value being tested.
void Matcher::collect_null_checks( Node *proj ) {
Node *iff = proj->in(0);
if( iff->Opcode() == Op_If ) {
// During matching If's have Bool & Cmp side-by-side
BoolNode *b = iff->in(1)->as_Bool();
Node *cmp = iff->in(2);
if( cmp->Opcode() == Op_CmpP ) {
if( cmp->in(2)->bottom_type() == TypePtr::NULL_PTR ) {
if( proj->Opcode() == Op_IfTrue ) {
extern int all_null_checks_found;
all_null_checks_found++;
if( b->_test._test == BoolTest::ne ) {
_null_check_tests.push(proj);
_null_check_tests.push(cmp->in(1));
}
} else {
assert( proj->Opcode() == Op_IfFalse, "" );
if( b->_test._test == BoolTest::eq ) {
_null_check_tests.push(proj);
_null_check_tests.push(cmp->in(1));
}
}
}
}
}
}
//---------------------------validate_null_checks------------------------------
// Its possible that the value being NULL checked is not the root of a match
// tree. If so, I cannot use the value in an implicit null check.
void Matcher::validate_null_checks( ) {
uint cnt = _null_check_tests.size();
for( uint i=0; i < cnt; i+=2 ) {
Node *test = _null_check_tests[i];
Node *val = _null_check_tests[i+1];
if (has_new_node(val)) {
// Is a match-tree root, so replace with the matched value
_null_check_tests.map(i+1, new_node(val));
} else {
// Yank from candidate list
_null_check_tests.map(i+1,_null_check_tests[--cnt]);
_null_check_tests.map(i,_null_check_tests[--cnt]);
_null_check_tests.pop();
_null_check_tests.pop();
i-=2;
}
}
}
// Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
// acting as an Acquire and thus we don't need an Acquire here. We
// retain the Node to act as a compiler ordering barrier.
bool Matcher::prior_fast_lock( const Node *acq ) {
Node *r = acq->in(0);
if( !r->is_Region() || r->req() <= 1 ) return false;
Node *proj = r->in(1);
if( !proj->is_Proj() ) return false;
Node *call = proj->in(0);
if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
return false;
return true;
}
// Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
// acting as a Release and thus we don't need a Release here. We
// retain the Node to act as a compiler ordering barrier.
bool Matcher::post_fast_unlock( const Node *rel ) {
Compile *C = Compile::current();
assert( rel->Opcode() == Op_MemBarRelease, "" );
const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
DUIterator_Fast imax, i = mem->fast_outs(imax);
Node *ctrl = NULL;
while( true ) {
ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
assert( ctrl->is_Proj(), "only projections here" );
ProjNode *proj = (ProjNode*)ctrl;
if( proj->_con == TypeFunc::Control &&
!C->node_arena()->contains(ctrl) ) // Unmatched old-space only
break;
i++;
}
Node *iff = NULL;
for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
Node *x = ctrl->fast_out(j);
if( x->is_If() && x->req() > 1 &&
!C->node_arena()->contains(x) ) { // Unmatched old-space only
iff = x;
break;
}
}
if( !iff ) return false;
Node *bol = iff->in(1);
// The iff might be some random subclass of If or bol might be Con-Top
if (!bol->is_Bool()) return false;
assert( bol->req() > 1, "" );
return (bol->in(1)->Opcode() == Op_FastUnlock);
}
// Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
// atomic instruction acting as a store_load barrier without any
// intervening volatile load, and thus we don't need a barrier here.
// We retain the Node to act as a compiler ordering barrier.
bool Matcher::post_store_load_barrier(const Node *vmb) {
Compile *C = Compile::current();
assert( vmb->is_MemBar(), "" );
assert( vmb->Opcode() != Op_MemBarAcquire, "" );
const MemBarNode *mem = (const MemBarNode*)vmb;
// Get the Proj node, ctrl, that can be used to iterate forward
Node *ctrl = NULL;
DUIterator_Fast imax, i = mem->fast_outs(imax);
while( true ) {
ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
assert( ctrl->is_Proj(), "only projections here" );
ProjNode *proj = (ProjNode*)ctrl;
if( proj->_con == TypeFunc::Control &&
!C->node_arena()->contains(ctrl) ) // Unmatched old-space only
break;
i++;
}
for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
Node *x = ctrl->fast_out(j);
int xop = x->Opcode();
// We don't need current barrier if we see another or a lock
// before seeing volatile load.
//
// Op_Fastunlock previously appeared in the Op_* list below.
// With the advent of 1-0 lock operations we're no longer guaranteed
// that a monitor exit operation contains a serializing instruction.
if (xop == Op_MemBarVolatile ||
xop == Op_FastLock ||
xop == Op_CompareAndSwapL ||
xop == Op_CompareAndSwapP ||
xop == Op_CompareAndSwapI)
return true;
if (x->is_MemBar()) {
// We must retain this membar if there is an upcoming volatile
// load, which will be preceded by acquire membar.
if (xop == Op_MemBarAcquire)
return false;
// For other kinds of barriers, check by pretending we
// are them, and seeing if we can be removed.
else
return post_store_load_barrier((const MemBarNode*)x);
}
// Delicate code to detect case of an upcoming fastlock block
if( x->is_If() && x->req() > 1 &&
!C->node_arena()->contains(x) ) { // Unmatched old-space only
Node *iff = x;
Node *bol = iff->in(1);
// The iff might be some random subclass of If or bol might be Con-Top
if (!bol->is_Bool()) return false;
assert( bol->req() > 1, "" );
return (bol->in(1)->Opcode() == Op_FastUnlock);
}
// probably not necessary to check for these
if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
return false;
}
return false;
}
//=============================================================================
//---------------------------State---------------------------------------------
State::State(void) {
#ifdef ASSERT
_id = 0;
_kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
_leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
//memset(_cost, -1, sizeof(_cost));
//memset(_rule, -1, sizeof(_rule));
#endif
memset(_valid, 0, sizeof(_valid));
}
#ifdef ASSERT
State::~State() {
_id = 99;
_kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
_leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
memset(_cost, -3, sizeof(_cost));
memset(_rule, -3, sizeof(_rule));
}
#endif
#ifndef PRODUCT
//---------------------------dump----------------------------------------------
void State::dump() {
tty->print("\n");
dump(0);
}
void State::dump(int depth) {
for( int j = 0; j < depth; j++ )
tty->print(" ");
tty->print("--N: ");
_leaf->dump();
uint i;
for( i = 0; i < _LAST_MACH_OPER; i++ )
// Check for valid entry
if( valid(i) ) {
for( int j = 0; j < depth; j++ )
tty->print(" ");
assert(_cost[i] != max_juint, "cost must be a valid value");
assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
tty->print_cr("%s %d %s",
ruleName[i], _cost[i], ruleName[_rule[i]] );
}
tty->print_cr("");
for( i=0; i<2; i++ )
if( _kids[i] )
_kids[i]->dump(depth+1);
}
#endif