2007-12-01 00:00:00 +00:00
|
|
|
/*
|
|
|
|
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
|
|
|
|
// Optimization - Graph Style
|
|
|
|
|
|
|
|
|
|
|
|
class AbstractLockNode;
|
|
|
|
class AddNode;
|
|
|
|
class AddPNode;
|
|
|
|
class AliasInfo;
|
|
|
|
class AllocateArrayNode;
|
|
|
|
class AllocateNode;
|
|
|
|
class Block;
|
|
|
|
class Block_Array;
|
|
|
|
class BoolNode;
|
|
|
|
class BoxLockNode;
|
|
|
|
class CMoveNode;
|
|
|
|
class CallDynamicJavaNode;
|
|
|
|
class CallJavaNode;
|
|
|
|
class CallLeafNode;
|
|
|
|
class CallNode;
|
|
|
|
class CallRuntimeNode;
|
|
|
|
class CallStaticJavaNode;
|
|
|
|
class CatchNode;
|
|
|
|
class CatchProjNode;
|
|
|
|
class CheckCastPPNode;
|
|
|
|
class CmpNode;
|
|
|
|
class CodeBuffer;
|
|
|
|
class ConstraintCastNode;
|
|
|
|
class ConNode;
|
|
|
|
class CountedLoopNode;
|
|
|
|
class CountedLoopEndNode;
|
|
|
|
class FastLockNode;
|
|
|
|
class FastUnlockNode;
|
|
|
|
class IfNode;
|
|
|
|
class InitializeNode;
|
|
|
|
class JVMState;
|
|
|
|
class JumpNode;
|
|
|
|
class JumpProjNode;
|
|
|
|
class LoadNode;
|
|
|
|
class LoadStoreNode;
|
|
|
|
class LockNode;
|
|
|
|
class LoopNode;
|
|
|
|
class MachCallDynamicJavaNode;
|
|
|
|
class MachCallJavaNode;
|
|
|
|
class MachCallLeafNode;
|
|
|
|
class MachCallNode;
|
|
|
|
class MachCallRuntimeNode;
|
|
|
|
class MachCallStaticJavaNode;
|
|
|
|
class MachIfNode;
|
|
|
|
class MachNode;
|
|
|
|
class MachNullCheckNode;
|
|
|
|
class MachReturnNode;
|
|
|
|
class MachSafePointNode;
|
|
|
|
class MachSpillCopyNode;
|
|
|
|
class MachTempNode;
|
|
|
|
class Matcher;
|
|
|
|
class MemBarNode;
|
|
|
|
class MemNode;
|
|
|
|
class MergeMemNode;
|
|
|
|
class MulNode;
|
|
|
|
class MultiNode;
|
|
|
|
class MultiBranchNode;
|
|
|
|
class NeverBranchNode;
|
|
|
|
class Node;
|
|
|
|
class Node_Array;
|
|
|
|
class Node_List;
|
|
|
|
class Node_Stack;
|
|
|
|
class NullCheckNode;
|
|
|
|
class OopMap;
|
2008-02-29 09:57:18 -08:00
|
|
|
class ParmNode;
|
2007-12-01 00:00:00 +00:00
|
|
|
class PCTableNode;
|
|
|
|
class PhaseCCP;
|
|
|
|
class PhaseGVN;
|
|
|
|
class PhaseIterGVN;
|
|
|
|
class PhaseRegAlloc;
|
|
|
|
class PhaseTransform;
|
|
|
|
class PhaseValues;
|
|
|
|
class PhiNode;
|
|
|
|
class Pipeline;
|
|
|
|
class ProjNode;
|
|
|
|
class RegMask;
|
|
|
|
class RegionNode;
|
|
|
|
class RootNode;
|
|
|
|
class SafePointNode;
|
2008-03-13 16:06:34 -07:00
|
|
|
class SafePointScalarObjectNode;
|
2007-12-01 00:00:00 +00:00
|
|
|
class StartNode;
|
|
|
|
class State;
|
|
|
|
class StoreNode;
|
|
|
|
class SubNode;
|
|
|
|
class Type;
|
|
|
|
class TypeNode;
|
|
|
|
class UnlockNode;
|
|
|
|
class VectorSet;
|
|
|
|
class IfTrueNode;
|
|
|
|
class IfFalseNode;
|
|
|
|
typedef void (*NFunc)(Node&,void*);
|
|
|
|
extern "C" {
|
|
|
|
typedef int (*C_sort_func_t)(const void *, const void *);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The type of all node counts and indexes.
|
|
|
|
// It must hold at least 16 bits, but must also be fast to load and store.
|
|
|
|
// This type, if less than 32 bits, could limit the number of possible nodes.
|
|
|
|
// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
|
|
|
|
typedef unsigned int node_idx_t;
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef OPTO_DU_ITERATOR_ASSERT
|
|
|
|
#ifdef ASSERT
|
|
|
|
#define OPTO_DU_ITERATOR_ASSERT 1
|
|
|
|
#else
|
|
|
|
#define OPTO_DU_ITERATOR_ASSERT 0
|
|
|
|
#endif
|
|
|
|
#endif //OPTO_DU_ITERATOR_ASSERT
|
|
|
|
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
class DUIterator;
|
|
|
|
class DUIterator_Fast;
|
|
|
|
class DUIterator_Last;
|
|
|
|
#else
|
|
|
|
typedef uint DUIterator;
|
|
|
|
typedef Node** DUIterator_Fast;
|
|
|
|
typedef Node** DUIterator_Last;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Node Sentinel
|
|
|
|
#define NodeSentinel (Node*)-1
|
|
|
|
|
|
|
|
// Unknown count frequency
|
|
|
|
#define COUNT_UNKNOWN (-1.0f)
|
|
|
|
|
|
|
|
//------------------------------Node-------------------------------------------
|
|
|
|
// Nodes define actions in the program. They create values, which have types.
|
|
|
|
// They are both vertices in a directed graph and program primitives. Nodes
|
|
|
|
// are labeled; the label is the "opcode", the primitive function in the lambda
|
|
|
|
// calculus sense that gives meaning to the Node. Node inputs are ordered (so
|
|
|
|
// that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
|
|
|
|
// the Node's function. These inputs also define a Type equation for the Node.
|
|
|
|
// Solving these Type equations amounts to doing dataflow analysis.
|
|
|
|
// Control and data are uniformly represented in the graph. Finally, Nodes
|
|
|
|
// have a unique dense integer index which is used to index into side arrays
|
|
|
|
// whenever I have phase-specific information.
|
|
|
|
|
|
|
|
class Node {
|
|
|
|
// Lots of restrictions on cloning Nodes
|
|
|
|
Node(const Node&); // not defined; linker error to use these
|
|
|
|
Node &operator=(const Node &rhs);
|
|
|
|
|
|
|
|
public:
|
|
|
|
friend class Compile;
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
friend class DUIterator_Common;
|
|
|
|
friend class DUIterator;
|
|
|
|
friend class DUIterator_Fast;
|
|
|
|
friend class DUIterator_Last;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Because Nodes come and go, I define an Arena of Node structures to pull
|
|
|
|
// from. This should allow fast access to node creation & deletion. This
|
|
|
|
// field is a local cache of a value defined in some "program fragment" for
|
|
|
|
// which these Nodes are just a part of.
|
|
|
|
|
|
|
|
// New Operator that takes a Compile pointer, this will eventually
|
|
|
|
// be the "new" New operator.
|
|
|
|
inline void* operator new( size_t x, Compile* C) {
|
|
|
|
Node* n = (Node*)C->node_arena()->Amalloc_D(x);
|
|
|
|
#ifdef ASSERT
|
|
|
|
n->_in = (Node**)n; // magic cookie for assertion check
|
|
|
|
#endif
|
|
|
|
n->_out = (Node**)C;
|
|
|
|
return (void*)n;
|
|
|
|
}
|
|
|
|
|
|
|
|
// New Operator that takes a Compile pointer, this will eventually
|
|
|
|
// be the "new" New operator.
|
|
|
|
inline void* operator new( size_t x, Compile* C, int y) {
|
|
|
|
Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
|
|
|
|
n->_in = (Node**)(((char*)n) + x);
|
|
|
|
#ifdef ASSERT
|
|
|
|
n->_in[y-1] = n; // magic cookie for assertion check
|
|
|
|
#endif
|
|
|
|
n->_out = (Node**)C;
|
|
|
|
return (void*)n;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Delete is a NOP
|
|
|
|
void operator delete( void *ptr ) {}
|
|
|
|
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
|
|
|
|
void destruct();
|
|
|
|
|
|
|
|
// Create a new Node. Required is the number is of inputs required for
|
|
|
|
// semantic correctness.
|
|
|
|
Node( uint required );
|
|
|
|
|
|
|
|
// Create a new Node with given input edges.
|
|
|
|
// This version requires use of the "edge-count" new.
|
|
|
|
// E.g. new (C,3) FooNode( C, NULL, left, right );
|
|
|
|
Node( Node *n0 );
|
|
|
|
Node( Node *n0, Node *n1 );
|
|
|
|
Node( Node *n0, Node *n1, Node *n2 );
|
|
|
|
Node( Node *n0, Node *n1, Node *n2, Node *n3 );
|
|
|
|
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
|
|
|
|
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
|
|
|
|
Node( Node *n0, Node *n1, Node *n2, Node *n3,
|
|
|
|
Node *n4, Node *n5, Node *n6 );
|
|
|
|
|
|
|
|
// Clone an inherited Node given only the base Node type.
|
|
|
|
Node* clone() const;
|
|
|
|
|
|
|
|
// Clone a Node, immediately supplying one or two new edges.
|
|
|
|
// The first and second arguments, if non-null, replace in(1) and in(2),
|
|
|
|
// respectively.
|
|
|
|
Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
|
|
|
|
Node* nn = clone();
|
|
|
|
if (in1 != NULL) nn->set_req(1, in1);
|
|
|
|
if (in2 != NULL) nn->set_req(2, in2);
|
|
|
|
return nn;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Shared setup for the above constructors.
|
|
|
|
// Handles all interactions with Compile::current.
|
|
|
|
// Puts initial values in all Node fields except _idx.
|
|
|
|
// Returns the initial value for _idx, which cannot
|
|
|
|
// be initialized by assignment.
|
|
|
|
inline int Init(int req, Compile* C);
|
|
|
|
|
|
|
|
//----------------- input edge handling
|
|
|
|
protected:
|
|
|
|
friend class PhaseCFG; // Access to address of _in array elements
|
|
|
|
Node **_in; // Array of use-def references to Nodes
|
|
|
|
Node **_out; // Array of def-use references to Nodes
|
|
|
|
|
|
|
|
// Input edges are split into two catagories. Required edges are required
|
|
|
|
// for semantic correctness; order is important and NULLs are allowed.
|
|
|
|
// Precedence edges are used to help determine execution order and are
|
|
|
|
// added, e.g., for scheduling purposes. They are unordered and not
|
|
|
|
// duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
|
|
|
|
// are required, from _cnt to _max-1 are precedence edges.
|
|
|
|
node_idx_t _cnt; // Total number of required Node inputs.
|
|
|
|
|
|
|
|
node_idx_t _max; // Actual length of input array.
|
|
|
|
|
|
|
|
// Output edges are an unordered list of def-use edges which exactly
|
|
|
|
// correspond to required input edges which point from other nodes
|
|
|
|
// to this one. Thus the count of the output edges is the number of
|
|
|
|
// users of this node.
|
|
|
|
node_idx_t _outcnt; // Total number of Node outputs.
|
|
|
|
|
|
|
|
node_idx_t _outmax; // Actual length of output array.
|
|
|
|
|
|
|
|
// Grow the actual input array to the next larger power-of-2 bigger than len.
|
|
|
|
void grow( uint len );
|
|
|
|
// Grow the output array to the next larger power-of-2 bigger than len.
|
|
|
|
void out_grow( uint len );
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Each Node is assigned a unique small/dense number. This number is used
|
|
|
|
// to index into auxiliary arrays of data and bitvectors.
|
|
|
|
// It is declared const to defend against inadvertant assignment,
|
|
|
|
// since it is used by clients as a naked field.
|
|
|
|
const node_idx_t _idx;
|
|
|
|
|
|
|
|
// Get the (read-only) number of input edges
|
|
|
|
uint req() const { return _cnt; }
|
|
|
|
uint len() const { return _max; }
|
|
|
|
// Get the (read-only) number of output edges
|
|
|
|
uint outcnt() const { return _outcnt; }
|
|
|
|
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
// Iterate over the out-edges of this node. Deletions are illegal.
|
|
|
|
inline DUIterator outs() const;
|
|
|
|
// Use this when the out array might have changed to suppress asserts.
|
|
|
|
inline DUIterator& refresh_out_pos(DUIterator& i) const;
|
|
|
|
// Does the node have an out at this position? (Used for iteration.)
|
|
|
|
inline bool has_out(DUIterator& i) const;
|
|
|
|
inline Node* out(DUIterator& i) const;
|
|
|
|
// Iterate over the out-edges of this node. All changes are illegal.
|
|
|
|
inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
|
|
|
|
inline Node* fast_out(DUIterator_Fast& i) const;
|
|
|
|
// Iterate over the out-edges of this node, deleting one at a time.
|
|
|
|
inline DUIterator_Last last_outs(DUIterator_Last& min) const;
|
|
|
|
inline Node* last_out(DUIterator_Last& i) const;
|
|
|
|
// The inline bodies of all these methods are after the iterator definitions.
|
|
|
|
#else
|
|
|
|
// Iterate over the out-edges of this node. Deletions are illegal.
|
|
|
|
// This iteration uses integral indexes, to decouple from array reallocations.
|
|
|
|
DUIterator outs() const { return 0; }
|
|
|
|
// Use this when the out array might have changed to suppress asserts.
|
|
|
|
DUIterator refresh_out_pos(DUIterator i) const { return i; }
|
|
|
|
|
|
|
|
// Reference to the i'th output Node. Error if out of bounds.
|
|
|
|
Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
|
|
|
|
// Does the node have an out at this position? (Used for iteration.)
|
|
|
|
bool has_out(DUIterator i) const { return i < _outcnt; }
|
|
|
|
|
|
|
|
// Iterate over the out-edges of this node. All changes are illegal.
|
|
|
|
// This iteration uses a pointer internal to the out array.
|
|
|
|
DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
|
|
|
|
Node** out = _out;
|
|
|
|
// Assign a limit pointer to the reference argument:
|
|
|
|
max = out + (ptrdiff_t)_outcnt;
|
|
|
|
// Return the base pointer:
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
Node* fast_out(DUIterator_Fast i) const { return *i; }
|
|
|
|
// Iterate over the out-edges of this node, deleting one at a time.
|
|
|
|
// This iteration uses a pointer internal to the out array.
|
|
|
|
DUIterator_Last last_outs(DUIterator_Last& min) const {
|
|
|
|
Node** out = _out;
|
|
|
|
// Assign a limit pointer to the reference argument:
|
|
|
|
min = out;
|
|
|
|
// Return the pointer to the start of the iteration:
|
|
|
|
return out + (ptrdiff_t)_outcnt - 1;
|
|
|
|
}
|
|
|
|
Node* last_out(DUIterator_Last i) const { return *i; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Reference to the i'th input Node. Error if out of bounds.
|
|
|
|
Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
|
|
|
|
// Reference to the i'th output Node. Error if out of bounds.
|
|
|
|
// Use this accessor sparingly. We are going trying to use iterators instead.
|
|
|
|
Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
|
|
|
|
// Return the unique out edge.
|
|
|
|
Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
|
|
|
|
// Delete out edge at position 'i' by moving last out edge to position 'i'
|
|
|
|
void raw_del_out(uint i) {
|
|
|
|
assert(i < _outcnt,"oob");
|
|
|
|
assert(_outcnt > 0,"oob");
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
// Record that a change happened here.
|
|
|
|
debug_only(_last_del = _out[i]; ++_del_tick);
|
|
|
|
#endif
|
|
|
|
_out[i] = _out[--_outcnt];
|
|
|
|
// Smash the old edge so it can't be used accidentally.
|
|
|
|
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
bool is_dead() const;
|
|
|
|
#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Set a required input edge, also updates corresponding output edge
|
|
|
|
void add_req( Node *n ); // Append a NEW required input
|
|
|
|
void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
|
|
|
|
void del_req( uint idx ); // Delete required edge & compact
|
|
|
|
void ins_req( uint i, Node *n ); // Insert a NEW required input
|
|
|
|
void set_req( uint i, Node *n ) {
|
|
|
|
assert( is_not_dead(n), "can not use dead node");
|
|
|
|
assert( i < _cnt, "oob");
|
|
|
|
assert( !VerifyHashTableKeys || _hash_lock == 0,
|
|
|
|
"remove node from hash table before modifying it");
|
|
|
|
Node** p = &_in[i]; // cache this._in, across the del_out call
|
|
|
|
if (*p != NULL) (*p)->del_out((Node *)this);
|
|
|
|
(*p) = n;
|
|
|
|
if (n != NULL) n->add_out((Node *)this);
|
|
|
|
}
|
|
|
|
// Light version of set_req() to init inputs after node creation.
|
|
|
|
void init_req( uint i, Node *n ) {
|
|
|
|
assert( i == 0 && this == n ||
|
|
|
|
is_not_dead(n), "can not use dead node");
|
|
|
|
assert( i < _cnt, "oob");
|
|
|
|
assert( !VerifyHashTableKeys || _hash_lock == 0,
|
|
|
|
"remove node from hash table before modifying it");
|
|
|
|
assert( _in[i] == NULL, "sanity");
|
|
|
|
_in[i] = n;
|
|
|
|
if (n != NULL) n->add_out((Node *)this);
|
|
|
|
}
|
|
|
|
// Find first occurrence of n among my edges:
|
|
|
|
int find_edge(Node* n);
|
|
|
|
int replace_edge(Node* old, Node* neww);
|
|
|
|
// NULL out all inputs to eliminate incoming Def-Use edges.
|
|
|
|
// Return the number of edges between 'n' and 'this'
|
|
|
|
int disconnect_inputs(Node *n);
|
|
|
|
|
|
|
|
// Quickly, return true if and only if I am Compile::current()->top().
|
|
|
|
bool is_top() const {
|
|
|
|
assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
|
|
|
|
return (_out == NULL);
|
|
|
|
}
|
|
|
|
// Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
|
|
|
|
void setup_is_top();
|
|
|
|
|
|
|
|
// Strip away casting. (It is depth-limited.)
|
|
|
|
Node* uncast() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
static Node* uncast_helper(const Node* n);
|
|
|
|
|
|
|
|
// Add an output edge to the end of the list
|
|
|
|
void add_out( Node *n ) {
|
|
|
|
if (is_top()) return;
|
|
|
|
if( _outcnt == _outmax ) out_grow(_outcnt);
|
|
|
|
_out[_outcnt++] = n;
|
|
|
|
}
|
|
|
|
// Delete an output edge
|
|
|
|
void del_out( Node *n ) {
|
|
|
|
if (is_top()) return;
|
|
|
|
Node** outp = &_out[_outcnt];
|
|
|
|
// Find and remove n
|
|
|
|
do {
|
|
|
|
assert(outp > _out, "Missing Def-Use edge");
|
|
|
|
} while (*--outp != n);
|
|
|
|
*outp = _out[--_outcnt];
|
|
|
|
// Smash the old edge so it can't be used accidentally.
|
|
|
|
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
|
|
|
|
// Record that a change happened here.
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
debug_only(_last_del = n; ++_del_tick);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Globally replace this node by a given new node, updating all uses.
|
|
|
|
void replace_by(Node* new_node);
|
|
|
|
void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
|
|
|
|
// Find the one non-null required input. RegionNode only
|
|
|
|
Node *nonnull_req() const;
|
|
|
|
// Add or remove precedence edges
|
|
|
|
void add_prec( Node *n );
|
|
|
|
void rm_prec( uint i );
|
|
|
|
void set_prec( uint i, Node *n ) {
|
|
|
|
assert( is_not_dead(n), "can not use dead node");
|
|
|
|
assert( i >= _cnt, "not a precedence edge");
|
|
|
|
if (_in[i] != NULL) _in[i]->del_out((Node *)this);
|
|
|
|
_in[i] = n;
|
|
|
|
if (n != NULL) n->add_out((Node *)this);
|
|
|
|
}
|
|
|
|
// Set this node's index, used by cisc_version to replace current node
|
|
|
|
void set_idx(uint new_idx) {
|
|
|
|
const node_idx_t* ref = &_idx;
|
|
|
|
*(node_idx_t*)ref = new_idx;
|
|
|
|
}
|
|
|
|
// Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
|
|
|
|
void swap_edges(uint i1, uint i2) {
|
|
|
|
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
|
|
|
|
// Def-Use info is unchanged
|
|
|
|
Node* n1 = in(i1);
|
|
|
|
Node* n2 = in(i2);
|
|
|
|
_in[i1] = n2;
|
|
|
|
_in[i2] = n1;
|
|
|
|
// If this node is in the hash table, make sure it doesn't need a rehash.
|
|
|
|
assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterators over input Nodes for a Node X are written as:
|
|
|
|
// for( i = 0; i < X.req(); i++ ) ... X[i] ...
|
|
|
|
// NOTE: Required edges can contain embedded NULL pointers.
|
|
|
|
|
|
|
|
//----------------- Other Node Properties
|
|
|
|
|
|
|
|
// Generate class id for some ideal nodes to avoid virtual query
|
|
|
|
// methods is_<Node>().
|
|
|
|
// Class id is the set of bits corresponded to the node class and all its
|
|
|
|
// super classes so that queries for super classes are also valid.
|
|
|
|
// Subclasses of the same super class have different assigned bit
|
|
|
|
// (the third parameter in the macro DEFINE_CLASS_ID).
|
|
|
|
// Classes with deeper hierarchy are declared first.
|
|
|
|
// Classes with the same hierarchy depth are sorted by usage frequency.
|
|
|
|
//
|
|
|
|
// The query method masks the bits to cut off bits of subclasses
|
|
|
|
// and then compare the result with the class id
|
|
|
|
// (see the macro DEFINE_CLASS_QUERY below).
|
|
|
|
//
|
|
|
|
// Class_MachCall=30, ClassMask_MachCall=31
|
|
|
|
// 12 8 4 0
|
|
|
|
// 0 0 0 0 0 0 0 0 1 1 1 1 0
|
|
|
|
// | | | |
|
|
|
|
// | | | Bit_Mach=2
|
|
|
|
// | | Bit_MachReturn=4
|
|
|
|
// | Bit_MachSafePoint=8
|
|
|
|
// Bit_MachCall=16
|
|
|
|
//
|
|
|
|
// Class_CountedLoop=56, ClassMask_CountedLoop=63
|
|
|
|
// 12 8 4 0
|
|
|
|
// 0 0 0 0 0 0 0 1 1 1 0 0 0
|
|
|
|
// | | |
|
|
|
|
// | | Bit_Region=8
|
|
|
|
// | Bit_Loop=16
|
|
|
|
// Bit_CountedLoop=32
|
|
|
|
|
|
|
|
#define DEFINE_CLASS_ID(cl, supcl, subn) \
|
|
|
|
Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
|
|
|
|
Class_##cl = Class_##supcl + Bit_##cl , \
|
|
|
|
ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
|
|
|
|
|
|
|
|
// This enum is used only for C2 ideal and mach nodes with is_<node>() methods
|
|
|
|
// so that it's values fits into 16 bits.
|
|
|
|
enum NodeClasses {
|
|
|
|
Bit_Node = 0x0000,
|
|
|
|
Class_Node = 0x0000,
|
|
|
|
ClassMask_Node = 0xFFFF,
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Multi, Node, 0)
|
|
|
|
DEFINE_CLASS_ID(SafePoint, Multi, 0)
|
|
|
|
DEFINE_CLASS_ID(Call, SafePoint, 0)
|
|
|
|
DEFINE_CLASS_ID(CallJava, Call, 0)
|
|
|
|
DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
|
|
|
|
DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
|
|
|
|
DEFINE_CLASS_ID(CallRuntime, Call, 1)
|
|
|
|
DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
|
|
|
|
DEFINE_CLASS_ID(Allocate, Call, 2)
|
|
|
|
DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
|
|
|
|
DEFINE_CLASS_ID(AbstractLock, Call, 3)
|
|
|
|
DEFINE_CLASS_ID(Lock, AbstractLock, 0)
|
|
|
|
DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
|
|
|
|
DEFINE_CLASS_ID(MultiBranch, Multi, 1)
|
|
|
|
DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
|
|
|
|
DEFINE_CLASS_ID(Catch, PCTable, 0)
|
|
|
|
DEFINE_CLASS_ID(Jump, PCTable, 1)
|
|
|
|
DEFINE_CLASS_ID(If, MultiBranch, 1)
|
|
|
|
DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
|
|
|
|
DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
|
|
|
|
DEFINE_CLASS_ID(Start, Multi, 2)
|
|
|
|
DEFINE_CLASS_ID(MemBar, Multi, 3)
|
|
|
|
DEFINE_CLASS_ID(Initialize, MemBar, 0)
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Mach, Node, 1)
|
|
|
|
DEFINE_CLASS_ID(MachReturn, Mach, 0)
|
|
|
|
DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
|
|
|
|
DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
|
|
|
|
DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
|
|
|
|
DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
|
|
|
|
DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
|
|
|
|
DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
|
|
|
|
DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
|
|
|
|
DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
|
|
|
|
DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
|
|
|
|
DEFINE_CLASS_ID(MachIf, Mach, 3)
|
|
|
|
DEFINE_CLASS_ID(MachTemp, Mach, 4)
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Proj, Node, 2)
|
|
|
|
DEFINE_CLASS_ID(CatchProj, Proj, 0)
|
|
|
|
DEFINE_CLASS_ID(JumpProj, Proj, 1)
|
|
|
|
DEFINE_CLASS_ID(IfTrue, Proj, 2)
|
|
|
|
DEFINE_CLASS_ID(IfFalse, Proj, 3)
|
2008-02-29 09:57:18 -08:00
|
|
|
DEFINE_CLASS_ID(Parm, Proj, 4)
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Region, Node, 3)
|
|
|
|
DEFINE_CLASS_ID(Loop, Region, 0)
|
|
|
|
DEFINE_CLASS_ID(Root, Loop, 0)
|
|
|
|
DEFINE_CLASS_ID(CountedLoop, Loop, 1)
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Sub, Node, 4)
|
|
|
|
DEFINE_CLASS_ID(Cmp, Sub, 0)
|
|
|
|
DEFINE_CLASS_ID(FastLock, Cmp, 0)
|
|
|
|
DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Type, Node, 5)
|
|
|
|
DEFINE_CLASS_ID(Phi, Type, 0)
|
|
|
|
DEFINE_CLASS_ID(ConstraintCast, Type, 1)
|
|
|
|
DEFINE_CLASS_ID(CheckCastPP, Type, 2)
|
|
|
|
DEFINE_CLASS_ID(CMove, Type, 3)
|
2008-03-13 16:06:34 -07:00
|
|
|
DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
DEFINE_CLASS_ID(Mem, Node, 6)
|
|
|
|
DEFINE_CLASS_ID(Load, Mem, 0)
|
|
|
|
DEFINE_CLASS_ID(Store, Mem, 1)
|
|
|
|
DEFINE_CLASS_ID(LoadStore, Mem, 2)
|
|
|
|
|
|
|
|
DEFINE_CLASS_ID(MergeMem, Node, 7)
|
|
|
|
DEFINE_CLASS_ID(Bool, Node, 8)
|
|
|
|
DEFINE_CLASS_ID(AddP, Node, 9)
|
|
|
|
DEFINE_CLASS_ID(BoxLock, Node, 10)
|
|
|
|
DEFINE_CLASS_ID(Add, Node, 11)
|
|
|
|
DEFINE_CLASS_ID(Mul, Node, 12)
|
|
|
|
|
|
|
|
_max_classes = ClassMask_Mul
|
|
|
|
};
|
|
|
|
#undef DEFINE_CLASS_ID
|
|
|
|
|
|
|
|
// Flags are sorted by usage frequency.
|
|
|
|
enum NodeFlags {
|
|
|
|
Flag_is_Copy = 0x01, // should be first bit to avoid shift
|
|
|
|
Flag_is_Call = Flag_is_Copy << 1,
|
|
|
|
Flag_rematerialize = Flag_is_Call << 1,
|
|
|
|
Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
|
|
|
|
Flag_is_macro = Flag_needs_anti_dependence_check << 1,
|
|
|
|
Flag_is_Con = Flag_is_macro << 1,
|
|
|
|
Flag_is_cisc_alternate = Flag_is_Con << 1,
|
|
|
|
Flag_is_Branch = Flag_is_cisc_alternate << 1,
|
|
|
|
Flag_is_block_start = Flag_is_Branch << 1,
|
|
|
|
Flag_is_Goto = Flag_is_block_start << 1,
|
|
|
|
Flag_is_dead_loop_safe = Flag_is_Goto << 1,
|
|
|
|
Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
|
|
|
|
Flag_is_safepoint_node = Flag_may_be_short_branch << 1,
|
|
|
|
Flag_is_pc_relative = Flag_is_safepoint_node << 1,
|
|
|
|
Flag_is_Vector = Flag_is_pc_relative << 1,
|
|
|
|
_max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
|
|
|
|
};
|
|
|
|
|
|
|
|
private:
|
|
|
|
jushort _class_id;
|
|
|
|
jushort _flags;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
// These methods should be called from constructors only.
|
|
|
|
void init_class_id(jushort c) {
|
|
|
|
assert(c <= _max_classes, "invalid node class");
|
|
|
|
_class_id = c; // cast out const
|
|
|
|
}
|
|
|
|
void init_flags(jushort fl) {
|
|
|
|
assert(fl <= _max_flags, "invalid node flag");
|
|
|
|
_flags |= fl;
|
|
|
|
}
|
|
|
|
void clear_flag(jushort fl) {
|
|
|
|
assert(fl <= _max_flags, "invalid node flag");
|
|
|
|
_flags &= ~fl;
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
const jushort class_id() const { return _class_id; }
|
|
|
|
|
|
|
|
const jushort flags() const { return _flags; }
|
|
|
|
|
|
|
|
// Return a dense integer opcode number
|
|
|
|
virtual int Opcode() const;
|
|
|
|
|
|
|
|
// Virtual inherited Node size
|
|
|
|
virtual uint size_of() const;
|
|
|
|
|
|
|
|
// Other interesting Node properties
|
|
|
|
|
|
|
|
// Special case: is_Call() returns true for both CallNode and MachCallNode.
|
|
|
|
bool is_Call() const {
|
|
|
|
return (_flags & Flag_is_Call) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
|
|
|
|
assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
|
|
|
|
return (CallNode*)this;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define DEFINE_CLASS_QUERY(type) \
|
|
|
|
bool is_##type() const { \
|
|
|
|
return ((_class_id & ClassMask_##type) == Class_##type); \
|
|
|
|
} \
|
|
|
|
type##Node *as_##type() const { \
|
|
|
|
assert(is_##type(), "invalid node class"); \
|
|
|
|
return (type##Node*)this; \
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_CLASS_QUERY(AbstractLock)
|
|
|
|
DEFINE_CLASS_QUERY(Add)
|
|
|
|
DEFINE_CLASS_QUERY(AddP)
|
|
|
|
DEFINE_CLASS_QUERY(Allocate)
|
|
|
|
DEFINE_CLASS_QUERY(AllocateArray)
|
|
|
|
DEFINE_CLASS_QUERY(Bool)
|
|
|
|
DEFINE_CLASS_QUERY(BoxLock)
|
|
|
|
DEFINE_CLASS_QUERY(CallDynamicJava)
|
|
|
|
DEFINE_CLASS_QUERY(CallJava)
|
|
|
|
DEFINE_CLASS_QUERY(CallLeaf)
|
|
|
|
DEFINE_CLASS_QUERY(CallRuntime)
|
|
|
|
DEFINE_CLASS_QUERY(CallStaticJava)
|
|
|
|
DEFINE_CLASS_QUERY(Catch)
|
|
|
|
DEFINE_CLASS_QUERY(CatchProj)
|
|
|
|
DEFINE_CLASS_QUERY(CheckCastPP)
|
|
|
|
DEFINE_CLASS_QUERY(ConstraintCast)
|
|
|
|
DEFINE_CLASS_QUERY(CMove)
|
|
|
|
DEFINE_CLASS_QUERY(Cmp)
|
|
|
|
DEFINE_CLASS_QUERY(CountedLoop)
|
|
|
|
DEFINE_CLASS_QUERY(CountedLoopEnd)
|
|
|
|
DEFINE_CLASS_QUERY(FastLock)
|
|
|
|
DEFINE_CLASS_QUERY(FastUnlock)
|
|
|
|
DEFINE_CLASS_QUERY(If)
|
|
|
|
DEFINE_CLASS_QUERY(IfFalse)
|
|
|
|
DEFINE_CLASS_QUERY(IfTrue)
|
|
|
|
DEFINE_CLASS_QUERY(Initialize)
|
|
|
|
DEFINE_CLASS_QUERY(Jump)
|
|
|
|
DEFINE_CLASS_QUERY(JumpProj)
|
|
|
|
DEFINE_CLASS_QUERY(Load)
|
|
|
|
DEFINE_CLASS_QUERY(LoadStore)
|
|
|
|
DEFINE_CLASS_QUERY(Lock)
|
|
|
|
DEFINE_CLASS_QUERY(Loop)
|
|
|
|
DEFINE_CLASS_QUERY(Mach)
|
|
|
|
DEFINE_CLASS_QUERY(MachCall)
|
|
|
|
DEFINE_CLASS_QUERY(MachCallDynamicJava)
|
|
|
|
DEFINE_CLASS_QUERY(MachCallJava)
|
|
|
|
DEFINE_CLASS_QUERY(MachCallLeaf)
|
|
|
|
DEFINE_CLASS_QUERY(MachCallRuntime)
|
|
|
|
DEFINE_CLASS_QUERY(MachCallStaticJava)
|
|
|
|
DEFINE_CLASS_QUERY(MachIf)
|
|
|
|
DEFINE_CLASS_QUERY(MachNullCheck)
|
|
|
|
DEFINE_CLASS_QUERY(MachReturn)
|
|
|
|
DEFINE_CLASS_QUERY(MachSafePoint)
|
|
|
|
DEFINE_CLASS_QUERY(MachSpillCopy)
|
|
|
|
DEFINE_CLASS_QUERY(MachTemp)
|
|
|
|
DEFINE_CLASS_QUERY(Mem)
|
|
|
|
DEFINE_CLASS_QUERY(MemBar)
|
|
|
|
DEFINE_CLASS_QUERY(MergeMem)
|
|
|
|
DEFINE_CLASS_QUERY(Mul)
|
|
|
|
DEFINE_CLASS_QUERY(Multi)
|
|
|
|
DEFINE_CLASS_QUERY(MultiBranch)
|
2008-02-29 09:57:18 -08:00
|
|
|
DEFINE_CLASS_QUERY(Parm)
|
2007-12-01 00:00:00 +00:00
|
|
|
DEFINE_CLASS_QUERY(PCTable)
|
|
|
|
DEFINE_CLASS_QUERY(Phi)
|
|
|
|
DEFINE_CLASS_QUERY(Proj)
|
|
|
|
DEFINE_CLASS_QUERY(Region)
|
|
|
|
DEFINE_CLASS_QUERY(Root)
|
|
|
|
DEFINE_CLASS_QUERY(SafePoint)
|
2008-03-13 16:06:34 -07:00
|
|
|
DEFINE_CLASS_QUERY(SafePointScalarObject)
|
2007-12-01 00:00:00 +00:00
|
|
|
DEFINE_CLASS_QUERY(Start)
|
|
|
|
DEFINE_CLASS_QUERY(Store)
|
|
|
|
DEFINE_CLASS_QUERY(Sub)
|
|
|
|
DEFINE_CLASS_QUERY(Type)
|
|
|
|
DEFINE_CLASS_QUERY(Unlock)
|
|
|
|
|
|
|
|
#undef DEFINE_CLASS_QUERY
|
|
|
|
|
|
|
|
// duplicate of is_MachSpillCopy()
|
|
|
|
bool is_SpillCopy () const {
|
|
|
|
return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
|
|
|
|
bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
|
|
|
|
// The data node which is safe to leave in dead loop during IGVN optimization.
|
|
|
|
bool is_dead_loop_safe() const {
|
|
|
|
return is_Phi() || is_Proj() ||
|
|
|
|
(_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// is_Copy() returns copied edge index (0 or 1)
|
|
|
|
uint is_Copy() const { return (_flags & Flag_is_Copy); }
|
|
|
|
|
|
|
|
virtual bool is_CFG() const { return false; }
|
|
|
|
|
|
|
|
// If this node is control-dependent on a test, can it be
|
|
|
|
// rerouted to a dominating equivalent test? This is usually
|
|
|
|
// true of non-CFG nodes, but can be false for operations which
|
|
|
|
// depend for their correct sequencing on more than one test.
|
|
|
|
// (In that case, hoisting to a dominating test may silently
|
|
|
|
// skip some other important test.)
|
|
|
|
virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
|
|
|
|
|
|
|
|
// defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
|
|
|
|
bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
|
|
|
|
|
|
|
|
// When building basic blocks, I need to have a notion of block beginning
|
|
|
|
// Nodes, next block selector Nodes (block enders), and next block
|
|
|
|
// projections. These calls need to work on their machine equivalents. The
|
|
|
|
// Ideal beginning Nodes are RootNode, RegionNode and StartNode.
|
|
|
|
bool is_block_start() const {
|
|
|
|
if ( is_Region() )
|
|
|
|
return this == (const Node*)in(0);
|
|
|
|
else
|
|
|
|
return (_flags & Flag_is_block_start) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
|
|
|
|
// Goto and Return. This call also returns the block ending Node.
|
|
|
|
virtual const Node *is_block_proj() const;
|
|
|
|
|
|
|
|
// The node is a "macro" node which needs to be expanded before matching
|
|
|
|
bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
|
|
|
|
|
|
|
|
// Value is a vector of primitive values
|
|
|
|
bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
|
|
|
|
|
|
|
|
//----------------- Optimization
|
|
|
|
|
|
|
|
// Get the worst-case Type output for this Node.
|
|
|
|
virtual const class Type *bottom_type() const;
|
|
|
|
|
|
|
|
// If we find a better type for a node, try to record it permanently.
|
|
|
|
// Return true if this node actually changed.
|
|
|
|
// Be sure to do the hash_delete game in the "rehash" variant.
|
|
|
|
void raise_bottom_type(const Type* new_type);
|
|
|
|
|
|
|
|
// Get the address type with which this node uses and/or defs memory,
|
|
|
|
// or NULL if none. The address type is conservatively wide.
|
|
|
|
// Returns non-null for calls, membars, loads, stores, etc.
|
|
|
|
// Returns TypePtr::BOTTOM if the node touches memory "broadly".
|
|
|
|
virtual const class TypePtr *adr_type() const { return NULL; }
|
|
|
|
|
|
|
|
// Return an existing node which computes the same function as this node.
|
|
|
|
// The optimistic combined algorithm requires this to return a Node which
|
|
|
|
// is a small number of steps away (e.g., one of my inputs).
|
|
|
|
virtual Node *Identity( PhaseTransform *phase );
|
|
|
|
|
|
|
|
// Return the set of values this Node can take on at runtime.
|
|
|
|
virtual const Type *Value( PhaseTransform *phase ) const;
|
|
|
|
|
|
|
|
// Return a node which is more "ideal" than the current node.
|
|
|
|
// The invariants on this call are subtle. If in doubt, read the
|
|
|
|
// treatise in node.cpp above the default implemention AND TEST WITH
|
|
|
|
// +VerifyIterativeGVN!
|
|
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
|
|
|
|
|
|
// Some nodes have specific Ideal subgraph transformations only if they are
|
|
|
|
// unique users of specific nodes. Such nodes should be put on IGVN worklist
|
|
|
|
// for the transformations to happen.
|
|
|
|
bool has_special_unique_user() const;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
|
|
|
|
public:
|
|
|
|
|
|
|
|
// Idealize graph, using DU info. Done after constant propagation
|
|
|
|
virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
|
|
|
|
|
|
|
|
// See if there is valid pipeline info
|
|
|
|
static const Pipeline *pipeline_class();
|
|
|
|
virtual const Pipeline *pipeline() const;
|
|
|
|
|
|
|
|
// Compute the latency from the def to this instruction of the ith input node
|
|
|
|
uint latency(uint i);
|
|
|
|
|
|
|
|
// Hash & compare functions, for pessimistic value numbering
|
|
|
|
|
|
|
|
// If the hash function returns the special sentinel value NO_HASH,
|
|
|
|
// the node is guaranteed never to compare equal to any other node.
|
|
|
|
// If we accidently generate a hash with value NO_HASH the node
|
|
|
|
// won't go into the table and we'll lose a little optimization.
|
|
|
|
enum { NO_HASH = 0 };
|
|
|
|
virtual uint hash() const;
|
|
|
|
virtual uint cmp( const Node &n ) const;
|
|
|
|
|
|
|
|
// Operation appears to be iteratively computed (such as an induction variable)
|
|
|
|
// It is possible for this operation to return false for a loop-varying
|
|
|
|
// value, if it appears (by local graph inspection) to be computed by a simple conditional.
|
|
|
|
bool is_iteratively_computed();
|
|
|
|
|
|
|
|
// Determine if a node is Counted loop induction variable.
|
|
|
|
// The method is defined in loopnode.cpp.
|
|
|
|
const Node* is_loop_iv() const;
|
|
|
|
|
|
|
|
// Return a node with opcode "opc" and same inputs as "this" if one can
|
|
|
|
// be found; Otherwise return NULL;
|
|
|
|
Node* find_similar(int opc);
|
|
|
|
|
|
|
|
// Return the unique control out if only one. Null if none or more than one.
|
|
|
|
Node* unique_ctrl_out();
|
|
|
|
|
|
|
|
//----------------- Code Generation
|
|
|
|
|
|
|
|
// Ideal register class for Matching. Zero means unmatched instruction
|
|
|
|
// (these are cloned instead of converted to machine nodes).
|
|
|
|
virtual uint ideal_reg() const;
|
|
|
|
|
|
|
|
static const uint NotAMachineReg; // must be > max. machine register
|
|
|
|
|
|
|
|
// Do we Match on this edge index or not? Generally false for Control
|
|
|
|
// and true for everything else. Weird for calls & returns.
|
|
|
|
virtual uint match_edge(uint idx) const;
|
|
|
|
|
|
|
|
// Register class output is returned in
|
|
|
|
virtual const RegMask &out_RegMask() const;
|
|
|
|
// Register class input is expected in
|
|
|
|
virtual const RegMask &in_RegMask(uint) const;
|
|
|
|
// Should we clone rather than spill this instruction?
|
|
|
|
bool rematerialize() const;
|
|
|
|
|
|
|
|
// Return JVM State Object if this Node carries debug info, or NULL otherwise
|
|
|
|
virtual JVMState* jvms() const;
|
|
|
|
|
|
|
|
// Print as assembly
|
|
|
|
virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
|
|
|
|
// Emit bytes starting at parameter 'ptr'
|
|
|
|
// Bump 'ptr' by the number of output bytes
|
|
|
|
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
|
|
|
|
// Size of instruction in bytes
|
|
|
|
virtual uint size(PhaseRegAlloc *ra_) const;
|
|
|
|
|
|
|
|
// Convenience function to extract an integer constant from a node.
|
|
|
|
// If it is not an integer constant (either Con, CastII, or Mach),
|
|
|
|
// return value_if_unknown.
|
|
|
|
jint find_int_con(jint value_if_unknown) const {
|
|
|
|
const TypeInt* t = find_int_type();
|
|
|
|
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
|
|
|
|
}
|
|
|
|
// Return the constant, knowing it is an integer constant already
|
|
|
|
jint get_int() const {
|
|
|
|
const TypeInt* t = find_int_type();
|
|
|
|
guarantee(t != NULL, "must be con");
|
|
|
|
return t->get_con();
|
|
|
|
}
|
|
|
|
// Here's where the work is done. Can produce non-constant int types too.
|
|
|
|
const TypeInt* find_int_type() const;
|
|
|
|
|
|
|
|
// Same thing for long (and intptr_t, via type.hpp):
|
|
|
|
jlong get_long() const {
|
|
|
|
const TypeLong* t = find_long_type();
|
|
|
|
guarantee(t != NULL, "must be con");
|
|
|
|
return t->get_con();
|
|
|
|
}
|
|
|
|
jlong find_long_con(jint value_if_unknown) const {
|
|
|
|
const TypeLong* t = find_long_type();
|
|
|
|
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
|
|
|
|
}
|
|
|
|
const TypeLong* find_long_type() const;
|
|
|
|
|
|
|
|
// These guys are called by code generated by ADLC:
|
|
|
|
intptr_t get_ptr() const;
|
|
|
|
jdouble getd() const;
|
|
|
|
jfloat getf() const;
|
|
|
|
|
|
|
|
// Nodes which are pinned into basic blocks
|
|
|
|
virtual bool pinned() const { return false; }
|
|
|
|
|
|
|
|
// Nodes which use memory without consuming it, hence need antidependences
|
|
|
|
// More specifically, needs_anti_dependence_check returns true iff the node
|
|
|
|
// (a) does a load, and (b) does not perform a store (except perhaps to a
|
|
|
|
// stack slot or some other unaliased location).
|
|
|
|
bool needs_anti_dependence_check() const;
|
|
|
|
|
|
|
|
// Return which operand this instruction may cisc-spill. In other words,
|
|
|
|
// return operand position that can convert from reg to memory access
|
|
|
|
virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
|
|
|
|
bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
|
|
|
|
|
|
|
|
//----------------- Graph walking
|
|
|
|
public:
|
|
|
|
// Walk and apply member functions recursively.
|
|
|
|
// Supplied (this) pointer is root.
|
|
|
|
void walk(NFunc pre, NFunc post, void *env);
|
|
|
|
static void nop(Node &, void*); // Dummy empty function
|
|
|
|
static void packregion( Node &n, void* );
|
|
|
|
private:
|
|
|
|
void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
|
|
|
|
|
|
|
|
//----------------- Printing, etc
|
|
|
|
public:
|
|
|
|
#ifndef PRODUCT
|
|
|
|
Node* find(int idx) const; // Search the graph for the given idx.
|
|
|
|
Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
|
|
|
|
void dump() const; // Print this node,
|
|
|
|
void dump(int depth) const; // Print this node, recursively to depth d
|
|
|
|
void dump_ctrl(int depth) const; // Print control nodes, to depth d
|
|
|
|
virtual void dump_req() const; // Print required-edge info
|
|
|
|
virtual void dump_prec() const; // Print precedence-edge info
|
|
|
|
virtual void dump_out() const; // Print the output edge info
|
|
|
|
virtual void dump_spec(outputStream *st) const {}; // Print per-node info
|
|
|
|
void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
|
|
|
|
void verify() const; // Check Def-Use info for my subgraph
|
|
|
|
static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
|
|
|
|
|
|
|
|
// This call defines a class-unique string used to identify class instances
|
|
|
|
virtual const char *Name() const;
|
|
|
|
|
|
|
|
void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
|
|
|
|
// RegMask Print Functions
|
|
|
|
void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
|
|
|
|
void dump_out_regmask() { out_RegMask().dump(); }
|
|
|
|
static int _in_dump_cnt;
|
|
|
|
static bool in_dump() { return _in_dump_cnt > 0; }
|
|
|
|
void fast_dump() const {
|
|
|
|
tty->print("%4d: %-17s", _idx, Name());
|
|
|
|
for (uint i = 0; i < len(); i++)
|
|
|
|
if (in(i))
|
|
|
|
tty->print(" %4d", in(i)->_idx);
|
|
|
|
else
|
|
|
|
tty->print(" NULL");
|
|
|
|
tty->print("\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
|
|
void verify_construction();
|
|
|
|
bool verify_jvms(const JVMState* jvms) const;
|
|
|
|
int _debug_idx; // Unique value assigned to every node.
|
|
|
|
int debug_idx() const { return _debug_idx; }
|
|
|
|
void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
|
|
|
|
|
|
|
|
Node* _debug_orig; // Original version of this, if any.
|
|
|
|
Node* debug_orig() const { return _debug_orig; }
|
|
|
|
void set_debug_orig(Node* orig); // _debug_orig = orig
|
|
|
|
|
|
|
|
int _hash_lock; // Barrier to modifications of nodes in the hash table
|
|
|
|
void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
|
|
|
|
void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
|
|
|
|
|
|
|
|
static void init_NodeProperty();
|
|
|
|
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
const Node* _last_del; // The last deleted node.
|
|
|
|
uint _del_tick; // Bumped when a deletion happens..
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Iterators over DU info, and associated Node functions.
|
|
|
|
|
|
|
|
#if OPTO_DU_ITERATOR_ASSERT
|
|
|
|
|
|
|
|
// Common code for assertion checking on DU iterators.
|
|
|
|
class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
|
|
|
|
#ifdef ASSERT
|
|
|
|
protected:
|
|
|
|
bool _vdui; // cached value of VerifyDUIterators
|
|
|
|
const Node* _node; // the node containing the _out array
|
|
|
|
uint _outcnt; // cached node->_outcnt
|
|
|
|
uint _del_tick; // cached node->_del_tick
|
|
|
|
Node* _last; // last value produced by the iterator
|
|
|
|
|
|
|
|
void sample(const Node* node); // used by c'tor to set up for verifies
|
|
|
|
void verify(const Node* node, bool at_end_ok = false);
|
|
|
|
void verify_resync();
|
|
|
|
void reset(const DUIterator_Common& that);
|
|
|
|
|
|
|
|
// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
|
|
|
|
#define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
|
|
|
|
#else
|
|
|
|
#define I_VDUI_ONLY(i,x) { }
|
|
|
|
#endif //ASSERT
|
|
|
|
};
|
|
|
|
|
|
|
|
#define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
|
|
|
|
|
|
|
|
// Default DU iterator. Allows appends onto the out array.
|
|
|
|
// Allows deletion from the out array only at the current point.
|
|
|
|
// Usage:
|
|
|
|
// for (DUIterator i = x->outs(); x->has_out(i); i++) {
|
|
|
|
// Node* y = x->out(i);
|
|
|
|
// ...
|
|
|
|
// }
|
|
|
|
// Compiles in product mode to a unsigned integer index, which indexes
|
|
|
|
// onto a repeatedly reloaded base pointer of x->_out. The loop predicate
|
|
|
|
// also reloads x->_outcnt. If you delete, you must perform "--i" just
|
|
|
|
// before continuing the loop. You must delete only the last-produced
|
|
|
|
// edge. You must delete only a single copy of the last-produced edge,
|
|
|
|
// or else you must delete all copies at once (the first time the edge
|
|
|
|
// is produced by the iterator).
|
|
|
|
class DUIterator : public DUIterator_Common {
|
|
|
|
friend class Node;
|
|
|
|
|
|
|
|
// This is the index which provides the product-mode behavior.
|
|
|
|
// Whatever the product-mode version of the system does to the
|
|
|
|
// DUI index is done to this index. All other fields in
|
|
|
|
// this class are used only for assertion checking.
|
|
|
|
uint _idx;
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
uint _refresh_tick; // Records the refresh activity.
|
|
|
|
|
|
|
|
void sample(const Node* node); // Initialize _refresh_tick etc.
|
|
|
|
void verify(const Node* node, bool at_end_ok = false);
|
|
|
|
void verify_increment(); // Verify an increment operation.
|
|
|
|
void verify_resync(); // Verify that we can back up over a deletion.
|
|
|
|
void verify_finish(); // Verify that the loop terminated properly.
|
|
|
|
void refresh(); // Resample verification info.
|
|
|
|
void reset(const DUIterator& that); // Resample after assignment.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
DUIterator(const Node* node, int dummy_to_avoid_conversion)
|
|
|
|
{ _idx = 0; debug_only(sample(node)); }
|
|
|
|
|
|
|
|
public:
|
|
|
|
// initialize to garbage; clear _vdui to disable asserts
|
|
|
|
DUIterator()
|
|
|
|
{ /*initialize to garbage*/ debug_only(_vdui = false); }
|
|
|
|
|
|
|
|
void operator++(int dummy_to_specify_postfix_op)
|
|
|
|
{ _idx++; VDUI_ONLY(verify_increment()); }
|
|
|
|
|
|
|
|
void operator--()
|
|
|
|
{ VDUI_ONLY(verify_resync()); --_idx; }
|
|
|
|
|
|
|
|
~DUIterator()
|
|
|
|
{ VDUI_ONLY(verify_finish()); }
|
|
|
|
|
|
|
|
void operator=(const DUIterator& that)
|
|
|
|
{ _idx = that._idx; debug_only(reset(that)); }
|
|
|
|
};
|
|
|
|
|
|
|
|
DUIterator Node::outs() const
|
|
|
|
{ return DUIterator(this, 0); }
|
|
|
|
DUIterator& Node::refresh_out_pos(DUIterator& i) const
|
|
|
|
{ I_VDUI_ONLY(i, i.refresh()); return i; }
|
|
|
|
bool Node::has_out(DUIterator& i) const
|
|
|
|
{ I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
|
|
|
|
Node* Node::out(DUIterator& i) const
|
|
|
|
{ I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
|
|
|
|
|
|
|
|
|
|
|
|
// Faster DU iterator. Disallows insertions into the out array.
|
|
|
|
// Allows deletion from the out array only at the current point.
|
|
|
|
// Usage:
|
|
|
|
// for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
|
|
|
|
// Node* y = x->fast_out(i);
|
|
|
|
// ...
|
|
|
|
// }
|
|
|
|
// Compiles in product mode to raw Node** pointer arithmetic, with
|
|
|
|
// no reloading of pointers from the original node x. If you delete,
|
|
|
|
// you must perform "--i; --imax" just before continuing the loop.
|
|
|
|
// If you delete multiple copies of the same edge, you must decrement
|
|
|
|
// imax, but not i, multiple times: "--i, imax -= num_edges".
|
|
|
|
class DUIterator_Fast : public DUIterator_Common {
|
|
|
|
friend class Node;
|
|
|
|
friend class DUIterator_Last;
|
|
|
|
|
|
|
|
// This is the pointer which provides the product-mode behavior.
|
|
|
|
// Whatever the product-mode version of the system does to the
|
|
|
|
// DUI pointer is done to this pointer. All other fields in
|
|
|
|
// this class are used only for assertion checking.
|
|
|
|
Node** _outp;
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
void verify(const Node* node, bool at_end_ok = false);
|
|
|
|
void verify_limit();
|
|
|
|
void verify_resync();
|
|
|
|
void verify_relimit(uint n);
|
|
|
|
void reset(const DUIterator_Fast& that);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Note: offset must be signed, since -1 is sometimes passed
|
|
|
|
DUIterator_Fast(const Node* node, ptrdiff_t offset)
|
|
|
|
{ _outp = node->_out + offset; debug_only(sample(node)); }
|
|
|
|
|
|
|
|
public:
|
|
|
|
// initialize to garbage; clear _vdui to disable asserts
|
|
|
|
DUIterator_Fast()
|
|
|
|
{ /*initialize to garbage*/ debug_only(_vdui = false); }
|
|
|
|
|
|
|
|
void operator++(int dummy_to_specify_postfix_op)
|
|
|
|
{ _outp++; VDUI_ONLY(verify(_node, true)); }
|
|
|
|
|
|
|
|
void operator--()
|
|
|
|
{ VDUI_ONLY(verify_resync()); --_outp; }
|
|
|
|
|
|
|
|
void operator-=(uint n) // applied to the limit only
|
|
|
|
{ _outp -= n; VDUI_ONLY(verify_relimit(n)); }
|
|
|
|
|
|
|
|
bool operator<(DUIterator_Fast& limit) {
|
|
|
|
I_VDUI_ONLY(*this, this->verify(_node, true));
|
|
|
|
I_VDUI_ONLY(limit, limit.verify_limit());
|
|
|
|
return _outp < limit._outp;
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator=(const DUIterator_Fast& that)
|
|
|
|
{ _outp = that._outp; debug_only(reset(that)); }
|
|
|
|
};
|
|
|
|
|
|
|
|
DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
|
|
|
|
// Assign a limit pointer to the reference argument:
|
|
|
|
imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
|
|
|
|
// Return the base pointer:
|
|
|
|
return DUIterator_Fast(this, 0);
|
|
|
|
}
|
|
|
|
Node* Node::fast_out(DUIterator_Fast& i) const {
|
|
|
|
I_VDUI_ONLY(i, i.verify(this));
|
|
|
|
return debug_only(i._last=) *i._outp;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Faster DU iterator. Requires each successive edge to be removed.
|
|
|
|
// Does not allow insertion of any edges.
|
|
|
|
// Usage:
|
|
|
|
// for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
|
|
|
|
// Node* y = x->last_out(i);
|
|
|
|
// ...
|
|
|
|
// }
|
|
|
|
// Compiles in product mode to raw Node** pointer arithmetic, with
|
|
|
|
// no reloading of pointers from the original node x.
|
|
|
|
class DUIterator_Last : private DUIterator_Fast {
|
|
|
|
friend class Node;
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
void verify(const Node* node, bool at_end_ok = false);
|
|
|
|
void verify_limit();
|
|
|
|
void verify_step(uint num_edges);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Note: offset must be signed, since -1 is sometimes passed
|
|
|
|
DUIterator_Last(const Node* node, ptrdiff_t offset)
|
|
|
|
: DUIterator_Fast(node, offset) { }
|
|
|
|
|
|
|
|
void operator++(int dummy_to_specify_postfix_op) {} // do not use
|
|
|
|
void operator<(int) {} // do not use
|
|
|
|
|
|
|
|
public:
|
|
|
|
DUIterator_Last() { }
|
|
|
|
// initialize to garbage
|
|
|
|
|
|
|
|
void operator--()
|
|
|
|
{ _outp--; VDUI_ONLY(verify_step(1)); }
|
|
|
|
|
|
|
|
void operator-=(uint n)
|
|
|
|
{ _outp -= n; VDUI_ONLY(verify_step(n)); }
|
|
|
|
|
|
|
|
bool operator>=(DUIterator_Last& limit) {
|
|
|
|
I_VDUI_ONLY(*this, this->verify(_node, true));
|
|
|
|
I_VDUI_ONLY(limit, limit.verify_limit());
|
|
|
|
return _outp >= limit._outp;
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator=(const DUIterator_Last& that)
|
|
|
|
{ DUIterator_Fast::operator=(that); }
|
|
|
|
};
|
|
|
|
|
|
|
|
DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
|
|
|
|
// Assign a limit pointer to the reference argument:
|
|
|
|
imin = DUIterator_Last(this, 0);
|
|
|
|
// Return the initial pointer:
|
|
|
|
return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
|
|
|
|
}
|
|
|
|
Node* Node::last_out(DUIterator_Last& i) const {
|
|
|
|
I_VDUI_ONLY(i, i.verify(this));
|
|
|
|
return debug_only(i._last=) *i._outp;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //OPTO_DU_ITERATOR_ASSERT
|
|
|
|
|
|
|
|
#undef I_VDUI_ONLY
|
|
|
|
#undef VDUI_ONLY
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Map dense integer indices to Nodes. Uses classic doubling-array trick.
|
|
|
|
// Abstractly provides an infinite array of Node*'s, initialized to NULL.
|
|
|
|
// Note that the constructor just zeros things, and since I use Arena
|
|
|
|
// allocation I do not need a destructor to reclaim storage.
|
|
|
|
class Node_Array : public ResourceObj {
|
|
|
|
protected:
|
|
|
|
Arena *_a; // Arena to allocate in
|
|
|
|
uint _max;
|
|
|
|
Node **_nodes;
|
|
|
|
void grow( uint i ); // Grow array node to fit
|
|
|
|
public:
|
|
|
|
Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
|
|
|
|
_nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
|
|
|
|
for( int i = 0; i < OptoNodeListSize; i++ ) {
|
|
|
|
_nodes[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
|
|
|
|
Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
|
|
|
|
{ return (i<_max) ? _nodes[i] : (Node*)NULL; }
|
|
|
|
Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
|
|
|
|
Node **adr() { return _nodes; }
|
|
|
|
// Extend the mapping: index i maps to Node *n.
|
|
|
|
void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
|
|
|
|
void insert( uint i, Node *n );
|
|
|
|
void remove( uint i ); // Remove, preserving order
|
|
|
|
void sort( C_sort_func_t func);
|
|
|
|
void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
|
|
|
|
void clear(); // Set all entries to NULL, keep storage
|
|
|
|
uint Size() const { return _max; }
|
|
|
|
void dump() const;
|
|
|
|
};
|
|
|
|
|
|
|
|
class Node_List : public Node_Array {
|
|
|
|
uint _cnt;
|
|
|
|
public:
|
|
|
|
Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
|
|
|
|
Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
|
|
|
|
void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
|
|
|
|
void remove( uint i ) { Node_Array::remove(i); _cnt--; }
|
|
|
|
void push( Node *b ) { map(_cnt++,b); }
|
|
|
|
void yank( Node *n ); // Find and remove
|
|
|
|
Node *pop() { return _nodes[--_cnt]; }
|
|
|
|
Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
|
|
|
|
void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
|
|
|
|
uint size() const { return _cnt; }
|
|
|
|
void dump() const;
|
|
|
|
};
|
|
|
|
|
|
|
|
//------------------------------Unique_Node_List-------------------------------
|
|
|
|
class Unique_Node_List : public Node_List {
|
|
|
|
VectorSet _in_worklist;
|
|
|
|
uint _clock_index; // Index in list where to pop from next
|
|
|
|
public:
|
|
|
|
Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
|
|
|
|
Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
|
|
|
|
|
|
|
|
void remove( Node *n );
|
|
|
|
bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
|
|
|
|
VectorSet &member_set(){ return _in_worklist; }
|
|
|
|
|
|
|
|
void push( Node *b ) {
|
|
|
|
if( !_in_worklist.test_set(b->_idx) )
|
|
|
|
Node_List::push(b);
|
|
|
|
}
|
|
|
|
Node *pop() {
|
|
|
|
if( _clock_index >= size() ) _clock_index = 0;
|
|
|
|
Node *b = at(_clock_index);
|
|
|
|
map( _clock_index++, Node_List::pop());
|
|
|
|
_in_worklist >>= b->_idx;
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
Node *remove( uint i ) {
|
|
|
|
Node *b = Node_List::at(i);
|
|
|
|
_in_worklist >>= b->_idx;
|
|
|
|
map(i,Node_List::pop());
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
|
|
|
|
void clear() {
|
|
|
|
_in_worklist.Clear(); // Discards storage but grows automatically
|
|
|
|
Node_List::clear();
|
|
|
|
_clock_index = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used after parsing to remove useless nodes before Iterative GVN
|
|
|
|
void remove_useless_nodes(VectorSet &useful);
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void print_set() const { _in_worklist.print(); }
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
// Inline definition of Compile::record_for_igvn must be deferred to this point.
|
|
|
|
inline void Compile::record_for_igvn(Node* n) {
|
|
|
|
_for_igvn->push(n);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------Node_Stack-------------------------------------
|
|
|
|
class Node_Stack {
|
|
|
|
protected:
|
|
|
|
struct INode {
|
|
|
|
Node *node; // Processed node
|
|
|
|
uint indx; // Index of next node's child
|
|
|
|
};
|
|
|
|
INode *_inode_top; // tos, stack grows up
|
|
|
|
INode *_inode_max; // End of _inodes == _inodes + _max
|
|
|
|
INode *_inodes; // Array storage for the stack
|
|
|
|
Arena *_a; // Arena to allocate in
|
|
|
|
void grow();
|
|
|
|
public:
|
|
|
|
Node_Stack(int size) {
|
|
|
|
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
|
|
|
|
_a = Thread::current()->resource_area();
|
|
|
|
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
|
|
|
|
_inode_max = _inodes + max;
|
|
|
|
_inode_top = _inodes - 1; // stack is empty
|
|
|
|
}
|
|
|
|
|
|
|
|
Node_Stack(Arena *a, int size) : _a(a) {
|
|
|
|
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
|
|
|
|
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
|
|
|
|
_inode_max = _inodes + max;
|
|
|
|
_inode_top = _inodes - 1; // stack is empty
|
|
|
|
}
|
|
|
|
|
|
|
|
void pop() {
|
|
|
|
assert(_inode_top >= _inodes, "node stack underflow");
|
|
|
|
--_inode_top;
|
|
|
|
}
|
|
|
|
void push(Node *n, uint i) {
|
|
|
|
++_inode_top;
|
|
|
|
if (_inode_top >= _inode_max) grow();
|
|
|
|
INode *top = _inode_top; // optimization
|
|
|
|
top->node = n;
|
|
|
|
top->indx = i;
|
|
|
|
}
|
|
|
|
Node *node() const {
|
|
|
|
return _inode_top->node;
|
|
|
|
}
|
|
|
|
Node* node_at(uint i) const {
|
|
|
|
assert(_inodes + i <= _inode_top, "in range");
|
|
|
|
return _inodes[i].node;
|
|
|
|
}
|
|
|
|
uint index() const {
|
|
|
|
return _inode_top->indx;
|
|
|
|
}
|
|
|
|
void set_node(Node *n) {
|
|
|
|
_inode_top->node = n;
|
|
|
|
}
|
|
|
|
void set_index(uint i) {
|
|
|
|
_inode_top->indx = i;
|
|
|
|
}
|
|
|
|
uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
|
2008-03-06 20:58:16 -08:00
|
|
|
uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
|
2007-12-01 00:00:00 +00:00
|
|
|
bool is_nonempty() const { return (_inode_top >= _inodes); }
|
|
|
|
bool is_empty() const { return (_inode_top < _inodes); }
|
|
|
|
void clear() { _inode_top = _inodes - 1; } // retain storage
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------Node_Notes--------------------------------------
|
|
|
|
// Debugging or profiling annotations loosely and sparsely associated
|
|
|
|
// with some nodes. See Compile::node_notes_at for the accessor.
|
|
|
|
class Node_Notes VALUE_OBJ_CLASS_SPEC {
|
|
|
|
JVMState* _jvms;
|
|
|
|
|
|
|
|
public:
|
|
|
|
Node_Notes(JVMState* jvms = NULL) {
|
|
|
|
_jvms = jvms;
|
|
|
|
}
|
|
|
|
|
|
|
|
JVMState* jvms() { return _jvms; }
|
|
|
|
void set_jvms(JVMState* x) { _jvms = x; }
|
|
|
|
|
|
|
|
// True if there is nothing here.
|
|
|
|
bool is_clear() {
|
|
|
|
return (_jvms == NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make there be nothing here.
|
|
|
|
void clear() {
|
|
|
|
_jvms = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make a new, clean node notes.
|
|
|
|
static Node_Notes* make(Compile* C) {
|
|
|
|
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
|
|
|
|
nn->clear();
|
|
|
|
return nn;
|
|
|
|
}
|
|
|
|
|
|
|
|
Node_Notes* clone(Compile* C) {
|
|
|
|
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
|
|
|
|
(*nn) = (*this);
|
|
|
|
return nn;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Absorb any information from source.
|
|
|
|
bool update_from(Node_Notes* source) {
|
|
|
|
bool changed = false;
|
|
|
|
if (source != NULL) {
|
|
|
|
if (source->jvms() != NULL) {
|
|
|
|
set_jvms(source->jvms());
|
|
|
|
changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return changed;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Inlined accessors for Compile::node_nodes that require the preceding class:
|
|
|
|
inline Node_Notes*
|
|
|
|
Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
|
|
|
|
int idx, bool can_grow) {
|
|
|
|
assert(idx >= 0, "oob");
|
|
|
|
int block_idx = (idx >> _log2_node_notes_block_size);
|
|
|
|
int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
|
|
|
|
if (grow_by >= 0) {
|
|
|
|
if (!can_grow) return NULL;
|
|
|
|
grow_node_notes(arr, grow_by + 1);
|
|
|
|
}
|
|
|
|
// (Every element of arr is a sub-array of length _node_notes_block_size.)
|
|
|
|
return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
Compile::set_node_notes_at(int idx, Node_Notes* value) {
|
|
|
|
if (value == NULL || value->is_clear())
|
|
|
|
return false; // nothing to write => write nothing
|
|
|
|
Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
|
|
|
|
assert(loc != NULL, "");
|
|
|
|
return loc->update_from(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------TypeNode---------------------------------------
|
|
|
|
// Node with a Type constant.
|
|
|
|
class TypeNode : public Node {
|
|
|
|
protected:
|
|
|
|
virtual uint hash() const; // Check the type
|
|
|
|
virtual uint cmp( const Node &n ) const;
|
|
|
|
virtual uint size_of() const; // Size is bigger
|
|
|
|
const Type* const _type;
|
|
|
|
public:
|
|
|
|
void set_type(const Type* t) {
|
|
|
|
assert(t != NULL, "sanity");
|
|
|
|
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
|
|
|
|
*(const Type**)&_type = t; // cast away const-ness
|
|
|
|
// If this node is in the hash table, make sure it doesn't need a rehash.
|
|
|
|
assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
|
|
|
|
}
|
|
|
|
const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
|
|
|
|
TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
|
|
|
|
init_class_id(Class_Type);
|
|
|
|
}
|
|
|
|
virtual const Type *Value( PhaseTransform *phase ) const;
|
|
|
|
virtual const Type *bottom_type() const;
|
|
|
|
virtual uint ideal_reg() const;
|
|
|
|
#ifndef PRODUCT
|
|
|
|
virtual void dump_spec(outputStream *st) const;
|
|
|
|
#endif
|
|
|
|
};
|