jdk-24/test/micro/org/openjdk/bench/vm/floatingpoint/DremFrem.java

230 lines
9.4 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2023, Azul Systems, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.vm.floatingpoint;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OperationsPerInvocation;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.infra.Blackhole;
import java.util.Random;
import java.util.concurrent.TimeUnit;
/**
* Tests for float and double modulo.
* Testcase is based on: https://github.com/cirosantilli/java-cheat/blob/c5ffd8ea19c5620ce752b6c98b2d3579be2bef98/Nan.java
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
public class DremFrem {
private static final int DEFAULT_X_RANGE = 1 << 11;
private static final int DEFAULT_Y_RANGE = 1 << 11;
private static boolean regressionValue = false;
@Benchmark
@OperationsPerInvocation(DEFAULT_X_RANGE * DEFAULT_Y_RANGE)
public void calcFloatJava(Blackhole bh) {
for (int i = 0; i < DEFAULT_X_RANGE; i++) {
for (int j = DEFAULT_Y_RANGE; j > 0; j--) {
float x = i;
float y = j;
boolean result = (13.0F * x * x * x) % y == 1.0F;
regressionValue = regressionValue & result;
}
}
}
@Benchmark
@OperationsPerInvocation(DEFAULT_X_RANGE * DEFAULT_Y_RANGE)
public void calcDoubleJava(Blackhole bh) {
for (int i = 0; i < DEFAULT_X_RANGE; i++) {
for (int j = DEFAULT_Y_RANGE; j > 0; j--) {
double x = i;
double y = j;
boolean result = (13.0D * x * x * x) % y == 1.0D;
regressionValue = regressionValue & result;
}
}
}
@SuppressWarnings("divzero")
public void cornercaseFloatJava_divzero(Blackhole bh) {
assert Float.isNaN(10 / 0);
assert Float.isNaN(10 / 0);
}
@Benchmark
@OperationsPerInvocation(DEFAULT_X_RANGE * DEFAULT_Y_RANGE)
public void cornercaseFloatJava(Blackhole bh) {
for (int i = 0; i < DEFAULT_X_RANGE * DEFAULT_Y_RANGE; i++) {
// Generate some NaNs.
float nan = Float.NaN;
float zero_div_zero = 0.0f / 0.0f;
float sqrt_negative = (float)Math.sqrt(-1.0);
float log_negative = (float)Math.log(-1.0);
float inf_minus_inf = Float.POSITIVE_INFINITY - Float.POSITIVE_INFINITY;
float inf_times_zero = Float.POSITIVE_INFINITY * 0.0f;
float quiet_nan1 = Float.intBitsToFloat(0x7fc00001);
float quiet_nan2 = Float.intBitsToFloat(0x7fc00002);
float signaling_nan1 = Float.intBitsToFloat(0x7fa00001);
float signaling_nan2 = Float.intBitsToFloat(0x7fa00002);
float nan_minus = -nan;
// Generate some infinities.
float positive_inf = Float.POSITIVE_INFINITY;
float negative_inf = Float.NEGATIVE_INFINITY;
float one_div_zero = 1.0f / 0.0f;
float log_zero = (float)Math.log(0.0);
// Double check that they are actually NaNs.
assert Float.isNaN(nan);
assert Float.isNaN(zero_div_zero);
assert Float.isNaN(sqrt_negative);
assert Float.isNaN(inf_minus_inf);
assert Float.isNaN(inf_times_zero);
assert Float.isNaN(quiet_nan1);
assert Float.isNaN(quiet_nan2);
assert Float.isNaN(signaling_nan1);
assert Float.isNaN(signaling_nan2);
assert Float.isNaN(nan_minus);
assert Float.isNaN(log_negative);
// Double check that they are infinities.
assert Float.isInfinite(positive_inf);
assert Float.isInfinite(negative_inf);
assert !Float.isNaN(positive_inf);
assert !Float.isNaN(negative_inf);
assert one_div_zero == positive_inf;
assert log_zero == negative_inf;
// Double check infinities.
assert Float.isNaN(positive_inf / 10);
assert Float.isNaN(negative_inf / 10);
cornercaseFloatJava_divzero(bh);
assert (+10 / positive_inf) == +10;
assert (+10 / negative_inf) == +10;
assert (-10 / positive_inf) == -10;
assert (-10 / negative_inf) == -10;
// NaN comparisons always fail.
// Therefore, all tests that we will do afterwards will be just isNaN.
assert !(1.0f < nan);
assert !(1.0f == nan);
assert !(1.0f > nan);
assert !(nan == nan);
// NaN propagate through most operations.
assert Float.isNaN(nan + 1.0f);
assert Float.isNaN(1.0f + nan);
assert Float.isNaN(nan + nan);
assert Float.isNaN(nan / 1.0f);
assert Float.isNaN(1.0f / nan);
assert Float.isNaN((float)Math.sqrt((double)nan));
}
}
@SuppressWarnings("divzero")
public void cornercaseDoubleJava_divzero(Blackhole bh) {
assert Double.isNaN(10 / 0);
assert Double.isNaN(10 / 0);
}
@Benchmark
@OperationsPerInvocation(DEFAULT_X_RANGE * DEFAULT_Y_RANGE)
public void cornercaseDoubleJava(Blackhole bh) {
for (int i = 0; i < DEFAULT_X_RANGE * DEFAULT_Y_RANGE; i++) {
// Generate some NaNs.
double nan = Double.NaN;
double zero_div_zero = 0.0f / 0.0f;
double sqrt_negative = (double)Math.sqrt(-1.0);
double log_negative = (double)Math.log(-1.0);
double inf_minus_inf = Double.POSITIVE_INFINITY - Double.POSITIVE_INFINITY;
double inf_times_zero = Double.POSITIVE_INFINITY * 0.0f;
double quiet_nan1 = Double.longBitsToDouble(0x7ffc000000000001L);
double quiet_nan2 = Double.longBitsToDouble(0x7ffc000000000002L);
double signaling_nan1 = Double.longBitsToDouble(0x7ffa000000000001L);
double signaling_nan2 = Double.longBitsToDouble(0x7ffa000000000002L);
double nan_minus = -nan;
// Generate some infinities.
double positive_inf = Double.POSITIVE_INFINITY;
double negative_inf = Double.NEGATIVE_INFINITY;
double one_div_zero = 1.0d / 0.0f;
double log_zero = (double)Math.log(0.0);
// Double check that they are actually NaNs.
assert Double.isNaN(nan);
assert Double.isNaN(zero_div_zero);
assert Double.isNaN(sqrt_negative);
assert Double.isNaN(inf_minus_inf);
assert Double.isNaN(inf_times_zero);
assert Double.isNaN(quiet_nan1);
assert Double.isNaN(quiet_nan2);
assert Double.isNaN(signaling_nan1);
assert Double.isNaN(signaling_nan2);
assert Double.isNaN(nan_minus);
assert Double.isNaN(log_negative);
// Double check that they are infinities.
assert Double.isInfinite(positive_inf);
assert Double.isInfinite(negative_inf);
assert !Double.isNaN(positive_inf);
assert !Double.isNaN(negative_inf);
assert one_div_zero == positive_inf;
assert log_zero == negative_inf;
// Double check infinities.
assert Double.isNaN(positive_inf / 10);
assert Double.isNaN(negative_inf / 10);
cornercaseDoubleJava_divzero(bh);
assert (+10 / positive_inf) == +10;
assert (+10 / negative_inf) == +10;
assert (-10 / positive_inf) == -10;
assert (-10 / negative_inf) == -10;
// NaN comparisons always fail.
// Therefore, all tests that we will do afterwards will be just isNaN.
assert !(1.0d < nan);
assert !(1.0d == nan);
assert !(1.0d > nan);
assert !(nan == nan);
// NaN propagate through most operations.
assert Double.isNaN(nan + 1.0d);
assert Double.isNaN(1.0d + nan);
assert Double.isNaN(nan + nan);
assert Double.isNaN(nan / 1.0d);
assert Double.isNaN(1.0d / nan);
assert Double.isNaN((double)Math.sqrt((double)nan));
}
}
}