2018-11-16 23:39:51 +01:00
|
|
|
/*
|
2020-01-21 14:23:01 -08:00
|
|
|
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
|
2018-11-16 23:39:51 +01:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*/
|
|
|
|
package org.openjdk.bench.vm.compiler;
|
|
|
|
|
|
|
|
import org.openjdk.jmh.annotations.Benchmark;
|
|
|
|
import org.openjdk.jmh.annotations.BenchmarkMode;
|
|
|
|
import org.openjdk.jmh.annotations.Mode;
|
|
|
|
import org.openjdk.jmh.annotations.OutputTimeUnit;
|
|
|
|
import org.openjdk.jmh.annotations.Scope;
|
|
|
|
import org.openjdk.jmh.annotations.Setup;
|
|
|
|
import org.openjdk.jmh.annotations.State;
|
|
|
|
|
|
|
|
import java.util.Random;
|
|
|
|
import java.util.concurrent.TimeUnit;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests speed of division and remainder calculations.
|
|
|
|
*/
|
|
|
|
@BenchmarkMode(Mode.AverageTime)
|
|
|
|
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
|
|
|
@State(Scope.Thread)
|
|
|
|
public class DivRem {
|
|
|
|
|
|
|
|
private static final int ARRAYSIZE = 500;
|
|
|
|
|
|
|
|
/* instance fields for the constant int division tests. */
|
|
|
|
public int[] intValues, intValues2;
|
|
|
|
|
|
|
|
/* instance fields for the constant long division tests. */
|
|
|
|
public long[] longValues, longValues2;
|
|
|
|
|
|
|
|
/* instance fields for the tests using the testdr-method. */
|
|
|
|
public long[] drLongValues1, drLongValues2;
|
|
|
|
|
|
|
|
public long[] drLongValuesAsInts1, drLongValuesAsInts2;
|
|
|
|
|
|
|
|
@Setup
|
|
|
|
public void setupSubclass() {
|
|
|
|
Random r = new Random(4711);
|
|
|
|
|
|
|
|
intValues = new int[ARRAYSIZE];
|
|
|
|
intValues2 = new int[ARRAYSIZE];
|
|
|
|
longValues = new long[ARRAYSIZE];
|
|
|
|
longValues2 = new long[ARRAYSIZE];
|
|
|
|
|
|
|
|
for (int i = 0; i < ARRAYSIZE; i++) {
|
|
|
|
intValues[i] = r.nextInt();
|
|
|
|
if (intValues[i] == 0) {
|
|
|
|
intValues[i] = 5353;
|
|
|
|
}
|
|
|
|
intValues2[i] = r.nextInt();
|
|
|
|
|
|
|
|
longValues[i] = r.nextLong();
|
|
|
|
if (longValues[i] == 0) {
|
|
|
|
longValues[i] = 5353L;
|
|
|
|
}
|
|
|
|
longValues2[i] = r.nextLong();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* generate random longs for 32-64 tests */
|
|
|
|
|
|
|
|
drLongValues1 = new long[ARRAYSIZE];
|
|
|
|
drLongValues2 = new long[ARRAYSIZE];
|
|
|
|
drLongValuesAsInts1 = new long[ARRAYSIZE];
|
|
|
|
drLongValuesAsInts2 = new long[ARRAYSIZE];
|
|
|
|
for (int i = 0; i < ARRAYSIZE; i++) {
|
|
|
|
long l = r.nextLong();
|
|
|
|
if (l == 0L) {
|
|
|
|
l++;
|
|
|
|
}
|
|
|
|
drLongValues1[i] = l;
|
|
|
|
drLongValuesAsInts1[i] = (long) (int) l;
|
|
|
|
l = r.nextLong();
|
|
|
|
if (l == 0L) {
|
|
|
|
l++;
|
|
|
|
}
|
|
|
|
drLongValues2[i] = l;
|
|
|
|
drLongValuesAsInts2[i] = (long) (int) l;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests integer division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to
|
|
|
|
* a multiplication instead.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public int testIntDivConstantDivisor() {
|
|
|
|
int dummy = 0;
|
|
|
|
for (int i = 0; i < intValues.length; i++) {
|
|
|
|
dummy += intValues[i] / 49;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a
|
|
|
|
* multiplication instead.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public long testLongDivConstantDivisor() {
|
|
|
|
long dummy = 0;
|
|
|
|
for (int i = 0; i < longValues.length; i++) {
|
|
|
|
dummy += longValues[i] / 49L + longValues[i] / 0x4949494949L;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests integer remainder with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to
|
|
|
|
* two multiplications instead.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public int testIntRemConstantDivisor() {
|
|
|
|
int dummy = 0;
|
|
|
|
for (int i = 0; i < intValues.length; i++) {
|
|
|
|
dummy += intValues[i] % 49;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a
|
|
|
|
* multiplication instead.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public long testLongRemConstantDivisor() {
|
|
|
|
long dummy = 0;
|
|
|
|
for (int i = 0; i < longValues.length; i++) {
|
|
|
|
dummy += longValues[i] % 49L + longValues[i] % 0x4949494949L;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests integer division with a variable divisor. This benchmark is mainly here to be a comparison against the
|
|
|
|
* benchmark that performs both divisions and remainder calculations.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public int testIntDivVariableDivisor() {
|
|
|
|
int dummy = 0;
|
|
|
|
for (int i = 0; i < intValues.length; i++) {
|
|
|
|
dummy += intValues2[i] / intValues[i];
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests integer division and remainder with a variable divisor. Both calculations are performed with the same
|
|
|
|
* divisor, so a JVM should not have to perform two complex calculations. Either a division followed by a
|
|
|
|
* multiplication, or on X86 using idiv, where the reminder is also returned from the idiv instruction.
|
|
|
|
*/
|
|
|
|
@Benchmark
|
|
|
|
public int testIntDivRemVariableDivisor() {
|
|
|
|
int dummy = 0;
|
|
|
|
for (int i = 0; i < intValues.length; i++) {
|
|
|
|
dummy += intValues2[i] / intValues[i];
|
|
|
|
dummy += intValues2[i] % intValues[i];
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public long test64DivRem64() {
|
|
|
|
long dummy = 0;
|
|
|
|
for (int i = 0; i < drLongValues1.length; i++) {
|
|
|
|
long l1 = drLongValues1[i];
|
|
|
|
long l2 = drLongValues2[i];
|
|
|
|
dummy += l1 / l2;
|
|
|
|
dummy += l1 % l2;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public long test32DivRem32() {
|
|
|
|
long dummy = 0;
|
|
|
|
for (int i = 0; i < drLongValuesAsInts1.length; i++) {
|
|
|
|
long l1 = drLongValuesAsInts1[i];
|
|
|
|
long l2 = drLongValuesAsInts2[i];
|
|
|
|
dummy += l1 / l2;
|
|
|
|
dummy += l1 % l2;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public long test64DivRem32() {
|
|
|
|
long dummy = 0;
|
|
|
|
for (int i = 0; i < drLongValues1.length; i++) {
|
|
|
|
long l1 = drLongValues1[i];
|
|
|
|
long l2 = drLongValuesAsInts2[i];
|
|
|
|
dummy += l1 / l2;
|
|
|
|
dummy += l1 % l2;
|
|
|
|
}
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
}
|