jdk-24/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp

237 lines
8.4 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/workgroup.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
// Closure used for updating remembered sets and recording references that
// point into the collection set while the mutator is running.
// Assumed to be only executed concurrently with the mutator. Yields via
// SuspendibleThreadSet after every card.
class G1RefineCardConcurrentlyClosure: public G1CardTableEntryClosure {
public:
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
if (SuspendibleThreadSet::should_yield()) {
// Caller will actually yield.
return false;
}
// Otherwise, we finished successfully; return true.
return true;
}
};
G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset, bool permanent) :
// Dirty card queues are always active, so we create them with their
// active field set to true.
PtrQueue(qset, permanent, true /* active */)
{ }
G1DirtyCardQueue::~G1DirtyCardQueue() {
if (!is_permanent()) {
flush();
}
}
G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) :
PtrQueueSet(notify_when_complete),
_shared_dirty_card_queue(this, true /* permanent */),
_free_ids(NULL),
_processed_buffers_mut(0),
_processed_buffers_rs_thread(0),
_cur_par_buffer_node(NULL)
{
_all_active = true;
}
G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
delete _free_ids;
}
// Determines how many mutator threads can process the buffers in parallel.
uint G1DirtyCardQueueSet::num_par_ids() {
return (uint)os::initial_active_processor_count();
}
void G1DirtyCardQueueSet::initialize(Monitor* cbl_mon,
BufferNode::Allocator* allocator,
Mutex* lock,
bool init_free_ids) {
PtrQueueSet::initialize(cbl_mon, allocator);
_shared_dirty_card_queue.set_lock(lock);
if (init_free_ids) {
_free_ids = new G1FreeIdSet(0, num_par_ids());
}
}
void G1DirtyCardQueueSet::handle_zero_index_for_thread(JavaThread* t) {
G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
}
bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl,
BufferNode* node,
bool consume,
uint worker_i) {
if (cl == NULL) return true;
bool result = true;
void** buf = BufferNode::make_buffer_from_node(node);
size_t i = node->index();
size_t limit = buffer_size();
for ( ; i < limit; ++i) {
jbyte* card_ptr = static_cast<jbyte*>(buf[i]);
assert(card_ptr != NULL, "invariant");
if (!cl->do_card_ptr(card_ptr, worker_i)) {
result = false; // Incomplete processing.
break;
}
}
if (consume) {
assert(i <= buffer_size(), "invariant");
node->set_index(i);
}
return result;
}
#ifndef ASSERT
#define assert_fully_consumed(node, buffer_size)
#else
#define assert_fully_consumed(node, buffer_size) \
do { \
size_t _afc_index = (node)->index(); \
size_t _afc_size = (buffer_size); \
assert(_afc_index == _afc_size, \
"Buffer was not fully consumed as claimed: index: " \
SIZE_FORMAT ", size: " SIZE_FORMAT, \
_afc_index, _afc_size); \
} while (0)
#endif // ASSERT
bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
guarantee(_free_ids != NULL, "must be");
uint worker_i = _free_ids->claim_par_id(); // temporarily claim an id
G1RefineCardConcurrentlyClosure cl;
bool result = apply_closure_to_buffer(&cl, node, true, worker_i);
_free_ids->release_par_id(worker_i); // release the id
if (result) {
assert_fully_consumed(node, buffer_size());
Atomic::inc(&_processed_buffers_mut);
}
return result;
}
bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_i, size_t stop_at) {
G1RefineCardConcurrentlyClosure cl;
return apply_closure_to_completed_buffer(&cl, worker_i, stop_at, false);
}
bool G1DirtyCardQueueSet::apply_closure_during_gc(G1CardTableEntryClosure* cl, uint worker_i) {
assert_at_safepoint();
return apply_closure_to_completed_buffer(cl, worker_i, 0, true);
}
bool G1DirtyCardQueueSet::apply_closure_to_completed_buffer(G1CardTableEntryClosure* cl,
uint worker_i,
size_t stop_at,
bool during_pause) {
assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause");
BufferNode* nd = get_completed_buffer(stop_at);
if (nd == NULL) {
return false;
} else {
if (apply_closure_to_buffer(cl, nd, true, worker_i)) {
assert_fully_consumed(nd, buffer_size());
// Done with fully processed buffer.
deallocate_buffer(nd);
Atomic::inc(&_processed_buffers_rs_thread);
} else {
// Return partially processed buffer to the queue.
guarantee(!during_pause, "Should never stop early");
enqueue_completed_buffer(nd);
}
return true;
}
}
void G1DirtyCardQueueSet::par_apply_closure_to_all_completed_buffers(G1CardTableEntryClosure* cl) {
BufferNode* nd = _cur_par_buffer_node;
while (nd != NULL) {
BufferNode* next = nd->next();
BufferNode* actual = Atomic::cmpxchg(next, &_cur_par_buffer_node, nd);
if (actual == nd) {
bool b = apply_closure_to_buffer(cl, nd, false);
guarantee(b, "Should not stop early.");
nd = next;
} else {
nd = actual;
}
}
}
void G1DirtyCardQueueSet::abandon_logs() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
abandon_completed_buffers();
// Since abandon is done only at safepoints, we can safely manipulate
// these queues.
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
G1ThreadLocalData::dirty_card_queue(t).reset();
}
shared_dirty_card_queue()->reset();
}
void G1DirtyCardQueueSet::concatenate_log(G1DirtyCardQueue& dcq) {
if (!dcq.is_empty()) {
dcq.flush();
}
}
void G1DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
size_t old_limit = max_completed_buffers();
set_max_completed_buffers(MaxCompletedBuffersUnlimited);
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
concatenate_log(G1ThreadLocalData::dirty_card_queue(t));
}
concatenate_log(_shared_dirty_card_queue);
set_max_completed_buffers(old_limit);
}