jdk-24/test/hotspot/jtreg/compiler/vectorization/runner/LoopArrayIndexComputeTest.java

400 lines
13 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2022, 2023, Arm Limited. All rights reserved.
* Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary Vectorization test on loop array index computation
* @library /test/lib /
*
* @build jdk.test.whitebox.WhiteBox
* compiler.vectorization.runner.VectorizationTestRunner
*
* @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox
* @run main/othervm -Xbootclasspath/a:.
* -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI
* compiler.vectorization.runner.LoopArrayIndexComputeTest
*
* @requires (os.simpleArch == "x64") | (os.simpleArch == "aarch64")
* @requires vm.compiler2.enabled
*/
package compiler.vectorization.runner;
import compiler.lib.ir_framework.*;
import java.util.Random;
public class LoopArrayIndexComputeTest extends VectorizationTestRunner {
private static final int SIZE = 6543;
private int[] ints;
private short[] shorts;
private char[] chars;
private byte[] bytes;
private boolean[] booleans;
private int inv1;
private int inv2;
public LoopArrayIndexComputeTest() {
ints = new int[SIZE];
shorts = new short[SIZE];
chars = new char[SIZE];
bytes = new byte[SIZE];
booleans = new boolean[SIZE];
for (int i = 0; i < SIZE; i++) {
ints[i] = 499 * i;
shorts[i] = (short) (-13 * i + 5);
chars[i] = (char) (i << 3);
bytes[i] = (byte) (i >> 2 + 3);
booleans[i] = (i % 5 == 0);
}
Random ran = new Random(10);
inv1 = Math.abs(ran.nextInt() % 10) + 1;
inv2 = Math.abs(ran.nextInt() % 10) + 1;
}
// ---------------- Linear Indexes ----------------
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.ADD_VI, ">0"})
public int[] indexPlusConstant() {
int[] res = new int[SIZE];
for (int i = 0; i < SIZE / 2; i++) {
res[i + 1] = ints[i + 1] + 999;
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"},
counts = {IRNode.MUL_VI, ">0"})
public int[] indexMinusConstant() {
int[] res = new int[SIZE];
for (int i = SIZE / 2; i < SIZE; i++) {
res[i - 49] = ints[i - 49] * i;
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"},
counts = {IRNode.MUL_VI, ">0"})
public int[] indexPlusInvariant() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 4; i++) {
res[i + inv1] *= ints[i + inv1];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"},
counts = {IRNode.MUL_VI, ">0"})
public int[] indexMinusInvariant() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = SIZE / 3; i < SIZE / 2; i++) {
res[i - inv2] *= (ints[i - inv2] + (i >> 2));
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"},
counts = {IRNode.MUL_VI, ">0"})
public int[] indexWithInvariantAndConstant() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 10; i < SIZE / 4; i++) {
res[i + inv1 - 1] *= (ints[i + inv1 - 1] + 1);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.SUB_VI, ">0"})
public int[] indexWithTwoInvariants() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 10; i < SIZE / 4; i++) {
res[i + inv1 + inv2] -= ints[i + inv1 + inv2];
}
return res;
}
@Test
// No true dependency in read-forward case.
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
applyIf = {"AlignVector", "false"},
counts = {IRNode.STORE_VECTOR, ">0"})
public int[] indexWithDifferentConstantsPos() {
int[] res = new int[SIZE];
for (int i = 0; i < SIZE / 4; i++) {
res[i] = ints[i + 1];
}
return res;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public int[] indexWithDifferentConstantsNeg() {
int[] res = new int[SIZE];
for (int i = 1; i < SIZE / 4; i++) {
res[i] = ints[i - 1];
}
return res;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public int[] indexWithDifferentInvariants() {
int[] res = new int[SIZE];
for (int i = SIZE / 4; i < SIZE / 2; i++) {
res[i + inv1] = ints[i - inv2];
}
return res;
}
@Test
public int indexWithDifferentConstantsLoadOnly() {
int res1 = 0;
int res2 = 0;
for (int i = 0; i < SIZE / 4; i++) {
res1 += ints[i + 2];
res2 += ints[i + 15];
}
return res1 * res2;
}
@Test
public int indexWithDifferentInvariantsLoadOnly() {
int res1 = 0;
int res2 = 0;
for (int i = SIZE / 4; i < SIZE / 2; i++) {
res1 += ints[i + inv1];
res2 += ints[i - inv2];
}
return res1 * res2;
}
@Test
public int[] scaledIndex() {
int[] res = new int[SIZE];
for (int i = 0; i < SIZE / 3; i++) {
res[2 * i] = ints[2 * i];
}
return res;
}
@Test
public int[] scaledIndexWithConstantOffset() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 4; i++) {
res[2 * i + 3] *= ints[2 * i + 3];
}
return res;
}
@Test
public int[] scaledIndexWithInvariantOffset() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 4; i++) {
res[2 * i + inv1] *= ints[2 * i + inv1];
}
return res;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public int[] sameArrayWithDifferentIndex() {
int[] res = new int[SIZE];
System.arraycopy(ints, 0, res, 0, SIZE);
for (int i = 1, j = 0; i < 100; i++, j++) {
res[i] += res[j];
}
return res;
}
// ---------------- Subword Type Arrays ----------------
@Test
// No true dependency in read-forward case.
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
applyIf = {"AlignVector", "false"},
counts = {IRNode.STORE_VECTOR, ">0"})
public short[] shortArrayWithDependencePos() {
short[] res = new short[SIZE];
System.arraycopy(shorts, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 2; i++) {
res[i] *= shorts[i + 1];
}
return res;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public short[] shortArrayWithDependenceNeg() {
short[] res = new short[SIZE];
System.arraycopy(shorts, 0, res, 0, SIZE);
for (int i = 1; i < SIZE / 2; i++) {
res[i] *= shorts[i - 1];
}
return res;
}
@Test
// No true dependency in read-forward case.
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
applyIf = {"AlignVector", "false"},
counts = {IRNode.STORE_VECTOR, ">0",
IRNode.MUL_VS, ">0"}) // expect maximum size
public char[] charArrayWithDependencePos() {
char[] res = new char[SIZE];
System.arraycopy(chars, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 2; i++) {
res[i] *= chars[i + 2];
}
return res;
}
@Test
// Data dependency at distance 2: restrict vector size to 2
@IR(applyIfCPUFeatureOr = {"sse2", "true"},
counts = {IRNode.STORE_VECTOR, ">0",
IRNode.MUL_VS, IRNode.VECTOR_SIZE_2, ">0"}) // size 2 only
public char[] charArrayWithDependenceNeg() {
char[] res = new char[SIZE];
System.arraycopy(chars, 0, res, 0, SIZE);
for (int i = 2; i < SIZE / 2; i++) {
res[i] *= chars[i - 2];
}
return res;
}
@Test
// No true dependency in read-forward case.
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
applyIf = {"AlignVector", "false"},
counts = {IRNode.STORE_VECTOR, ">0"})
public byte[] byteArrayWithDependencePos() {
byte[] res = new byte[SIZE];
System.arraycopy(bytes, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 2; i++) {
res[i] += bytes[i + 3];
}
return res;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public byte[] byteArrayWithDependenceNeg() {
byte[] res = new byte[SIZE];
System.arraycopy(bytes, 0, res, 0, SIZE);
for (int i = 3; i < SIZE / 2; i++) {
res[i] *= bytes[i - 3];
}
return res;
}
@Test
// No true dependency in read-forward case.
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
applyIf = {"AlignVector", "false"},
counts = {IRNode.STORE_VECTOR, ">0"})
public boolean[] booleanArrayWithDependencePos() {
boolean[] res = new boolean[SIZE];
System.arraycopy(booleans, 0, res, 0, SIZE);
for (int i = 0; i < SIZE / 2; i++) {
res[i] |= booleans[i + 4];
}
return res;
}
@Test
// Data dependency at distance 4: restrict vector size to 4
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.STORE_VECTOR, ">0",
IRNode.OR_VB, IRNode.VECTOR_SIZE_4, ">0"}) // size 4 only
public boolean[] booleanArrayWithDependenceNeg() {
boolean[] res = new boolean[SIZE];
System.arraycopy(booleans, 0, res, 0, SIZE);
for (int i = 4; i < SIZE / 2; i++) {
res[i] |= booleans[i - 4];
}
return res;
}
// ---------------- Multiple Operations ----------------
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.STORE_VECTOR, ">0"})
public int[] differentIndexWithDifferentTypes() {
int[] res1 = new int[SIZE];
short[] res2 = new short[SIZE];
for (int i = 0; i < SIZE / 2; i++) {
res1[i + 1] = ints[i + 1];
res2[i + inv2] = shorts[i + inv2];
}
return res1;
}
@Test
// Note that this case cannot be vectorized due to data dependence.
@IR(failOn = {IRNode.STORE_VECTOR})
public int[] differentIndexWithSameType() {
int[] res1 = new int[SIZE];
int[] res2 = new int[SIZE];
for (int i = 0; i < SIZE / 2; i++) {
res1[i + 3] = ints[i + 3];
res2[i + inv1] = ints[i + inv1];
}
return res2;
}
}