350 lines
12 KiB
Java
350 lines
12 KiB
Java
|
/*
|
||
|
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
import jdk.test.lib.RandomFactory;
|
||
|
import org.junit.jupiter.params.ParameterizedTest;
|
||
|
import org.junit.jupiter.params.provider.Arguments;
|
||
|
import org.junit.jupiter.params.provider.MethodSource;
|
||
|
|
||
|
import java.util.Iterator;
|
||
|
import java.util.TreeSet;
|
||
|
import java.util.random.RandomGenerator;
|
||
|
import java.util.stream.DoubleStream;
|
||
|
|
||
|
import static org.junit.jupiter.api.Assertions.*;
|
||
|
import static org.junit.jupiter.params.provider.Arguments.arguments;
|
||
|
|
||
|
/**
|
||
|
* @test
|
||
|
* @bug 8302987
|
||
|
* @key randomness
|
||
|
*
|
||
|
* @summary Check consistency of RandomGenerator::equiDoubles
|
||
|
* @library /test/lib
|
||
|
* @run junit EquiDoublesTest
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
public class EquiDoublesTest {
|
||
|
|
||
|
private static final int SAMPLES = 100_000;
|
||
|
|
||
|
/*
|
||
|
* A factor to use in the tight*() tests to make sure that
|
||
|
* all equidistant doubles are generated.
|
||
|
*/
|
||
|
private static final long SAFETY_FACTOR = 100L;
|
||
|
private static final RandomGenerator rnd = RandomFactory.getRandom();
|
||
|
|
||
|
private static double nextUp(double d, int steps) {
|
||
|
for (int i = 0; i < steps; ++i) {
|
||
|
d = Math.nextUp(d);
|
||
|
}
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
private static double nextDown(double d, int steps) {
|
||
|
for (int i = 0; i < steps; ++i) {
|
||
|
d = Math.nextDown(d);
|
||
|
}
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
static Arguments[] equi() {
|
||
|
return new Arguments[] {
|
||
|
arguments(0.0, 1e-9),
|
||
|
arguments(1.0, 1.1),
|
||
|
arguments(1.0e23, 1.1e23),
|
||
|
arguments(1.0e300, 1.1e300),
|
||
|
arguments(-1.2, 1.1),
|
||
|
arguments(-1.2e-30, 1.1e6),
|
||
|
arguments(-Double.MIN_VALUE, Double.MIN_VALUE),
|
||
|
arguments(-Double.MAX_VALUE, Double.MAX_VALUE),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
@ParameterizedTest
|
||
|
@MethodSource
|
||
|
void equi(double l, double r) {
|
||
|
double[] minmax = new double[2];
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(l <= minmax[0]);
|
||
|
assertTrue(minmax[1] < r);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(l, r, true, true);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(l <= minmax[0]);
|
||
|
assertTrue(minmax[1] <= r);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(l, r, false, true);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(l < minmax[0]);
|
||
|
assertTrue(minmax[1] <= r);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(l, r, false, false);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(l < minmax[0]);
|
||
|
assertTrue(minmax[1] < r);
|
||
|
|
||
|
/* with negated intervals */
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(-r, -l, true, false);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(-r <= minmax[0]);
|
||
|
assertTrue(minmax[1] < -l);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(-r, -l, true, true);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(-r <= minmax[0]);
|
||
|
assertTrue(minmax[1] <= -l);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(-r, -l, false, true);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(-r < minmax[0]);
|
||
|
assertTrue(minmax[1] <= -l);
|
||
|
|
||
|
resetMinmax(minmax);
|
||
|
equi = rnd.equiDoubles(-r, -l, false, false);
|
||
|
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
|
||
|
assertTrue(-r < minmax[0]);
|
||
|
assertTrue(minmax[1] < -l);
|
||
|
}
|
||
|
|
||
|
private void resetMinmax(double[] minmax) {
|
||
|
minmax[0] = Double.POSITIVE_INFINITY;
|
||
|
minmax[1] = Double.NEGATIVE_INFINITY;
|
||
|
}
|
||
|
|
||
|
private void updateMinmax(double[] minmax, double d) {
|
||
|
if (d < minmax[0]) {
|
||
|
minmax[0] = d;
|
||
|
}
|
||
|
if (d > minmax[1]) {
|
||
|
minmax[1] = d;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Arguments[] tight() {
|
||
|
return new Arguments[] {
|
||
|
arguments(0.0, (short) 100),
|
||
|
arguments(1.0, (short) 100),
|
||
|
arguments(1.1, (short) 100),
|
||
|
arguments(1.0e23, (short) 100),
|
||
|
arguments(1.0e300, (short) 100),
|
||
|
arguments(-1.2, (short) 100),
|
||
|
arguments(-1.2e-30, (short) 100),
|
||
|
arguments(-Double.MIN_VALUE, (short) 100),
|
||
|
|
||
|
arguments(-Double.MIN_VALUE, (short) 2),
|
||
|
arguments(-Double.MAX_VALUE, (short) 2),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* All equidistant doubles in a tight range are expected to be generated.
|
||
|
* The arguments must be chosen as to not overlap a value with irregular
|
||
|
* spacing around it.
|
||
|
*/
|
||
|
@ParameterizedTest
|
||
|
@MethodSource
|
||
|
void tight(double l, short steps) {
|
||
|
double r = nextUp(l, steps);
|
||
|
|
||
|
TreeSet<Double> set = new TreeSet<>();
|
||
|
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, false, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, false, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps - 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
/* with negated intervals */
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, false, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, false, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps - 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
}
|
||
|
|
||
|
static Arguments[] tightWithIrregularSpacing() {
|
||
|
return new Arguments[] {
|
||
|
arguments(0x1p-1, (short) 15, (short) 23),
|
||
|
arguments(0x1p0, (short) 17, (short) 5),
|
||
|
arguments(0x1p1, (short) 7, (short) 8),
|
||
|
arguments(0x1p-600, (short) 28, (short) 33),
|
||
|
arguments(0x1p600, (short) 9, (short) 19),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* m must be a power of 2 greater than Double.MIN_NORMAL
|
||
|
*/
|
||
|
@ParameterizedTest
|
||
|
@MethodSource
|
||
|
void tightWithIrregularSpacing(double m, short lSteps, short rSteps) {
|
||
|
double l = nextDown(m, 2 * lSteps);
|
||
|
double r = nextUp(m, rSteps);
|
||
|
int steps = lSteps + rSteps;
|
||
|
|
||
|
TreeSet<Double> set = new TreeSet<>();
|
||
|
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, false, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(l, r, false, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps - 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
/* with negated intervals */
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, true, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps + 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, false, true);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps, set.size());
|
||
|
checkEquidistance(set);
|
||
|
|
||
|
set.clear();
|
||
|
equi = rnd.equiDoubles(-r, -l, false, false);
|
||
|
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
|
||
|
assertEquals(steps - 1, set.size());
|
||
|
checkEquidistance(set);
|
||
|
}
|
||
|
|
||
|
private void checkEquidistance(TreeSet<Double> set) {
|
||
|
if (set.size() < 3) {
|
||
|
return;
|
||
|
}
|
||
|
Iterator<Double> iter = set.iterator();
|
||
|
double prev = iter.next();
|
||
|
double curr = iter.next();
|
||
|
double delta = curr - prev;
|
||
|
while (iter.hasNext()) {
|
||
|
prev = curr;
|
||
|
curr = iter.next();
|
||
|
assertEquals(delta, curr - prev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Arguments[] empty() {
|
||
|
return new Arguments[] {
|
||
|
arguments(1.0),
|
||
|
arguments(-1.0),
|
||
|
arguments(0.0),
|
||
|
arguments(nextDown(Double.MAX_VALUE, 1)),
|
||
|
arguments(nextUp(-Double.MAX_VALUE, 1)),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
@ParameterizedTest
|
||
|
@MethodSource
|
||
|
void empty(double l) {
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(l, l, true, false)
|
||
|
);
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(l, nextUp(l, 1), false, false)
|
||
|
);
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(nextDown(l, 1), l, false, false)
|
||
|
);
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(l, l, false, true)
|
||
|
);
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(l, nextDown(l, 1), true, true)
|
||
|
);
|
||
|
assertThrows(IllegalArgumentException.class,
|
||
|
() -> rnd.equiDoubles(nextUp(l, 1), l, true, true)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
}
|