jdk-24/test/jdk/java/util/Random/EquiDoublesTest.java

350 lines
12 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.test.lib.RandomFactory;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;
import java.util.Iterator;
import java.util.TreeSet;
import java.util.random.RandomGenerator;
import java.util.stream.DoubleStream;
import static org.junit.jupiter.api.Assertions.*;
import static org.junit.jupiter.params.provider.Arguments.arguments;
/**
* @test
* @bug 8302987
* @key randomness
*
* @summary Check consistency of RandomGenerator::equiDoubles
* @library /test/lib
* @run junit EquiDoublesTest
*
*/
public class EquiDoublesTest {
private static final int SAMPLES = 100_000;
/*
* A factor to use in the tight*() tests to make sure that
* all equidistant doubles are generated.
*/
private static final long SAFETY_FACTOR = 100L;
private static final RandomGenerator rnd = RandomFactory.getRandom();
private static double nextUp(double d, int steps) {
for (int i = 0; i < steps; ++i) {
d = Math.nextUp(d);
}
return d;
}
private static double nextDown(double d, int steps) {
for (int i = 0; i < steps; ++i) {
d = Math.nextDown(d);
}
return d;
}
static Arguments[] equi() {
return new Arguments[] {
arguments(0.0, 1e-9),
arguments(1.0, 1.1),
arguments(1.0e23, 1.1e23),
arguments(1.0e300, 1.1e300),
arguments(-1.2, 1.1),
arguments(-1.2e-30, 1.1e6),
arguments(-Double.MIN_VALUE, Double.MIN_VALUE),
arguments(-Double.MAX_VALUE, Double.MAX_VALUE),
};
}
@ParameterizedTest
@MethodSource
void equi(double l, double r) {
double[] minmax = new double[2];
resetMinmax(minmax);
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(l <= minmax[0]);
assertTrue(minmax[1] < r);
resetMinmax(minmax);
equi = rnd.equiDoubles(l, r, true, true);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(l <= minmax[0]);
assertTrue(minmax[1] <= r);
resetMinmax(minmax);
equi = rnd.equiDoubles(l, r, false, true);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(l < minmax[0]);
assertTrue(minmax[1] <= r);
resetMinmax(minmax);
equi = rnd.equiDoubles(l, r, false, false);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(l < minmax[0]);
assertTrue(minmax[1] < r);
/* with negated intervals */
resetMinmax(minmax);
equi = rnd.equiDoubles(-r, -l, true, false);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(-r <= minmax[0]);
assertTrue(minmax[1] < -l);
resetMinmax(minmax);
equi = rnd.equiDoubles(-r, -l, true, true);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(-r <= minmax[0]);
assertTrue(minmax[1] <= -l);
resetMinmax(minmax);
equi = rnd.equiDoubles(-r, -l, false, true);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(-r < minmax[0]);
assertTrue(minmax[1] <= -l);
resetMinmax(minmax);
equi = rnd.equiDoubles(-r, -l, false, false);
equi.limit(SAMPLES).forEach(d -> updateMinmax(minmax, d));
assertTrue(-r < minmax[0]);
assertTrue(minmax[1] < -l);
}
private void resetMinmax(double[] minmax) {
minmax[0] = Double.POSITIVE_INFINITY;
minmax[1] = Double.NEGATIVE_INFINITY;
}
private void updateMinmax(double[] minmax, double d) {
if (d < minmax[0]) {
minmax[0] = d;
}
if (d > minmax[1]) {
minmax[1] = d;
}
}
static Arguments[] tight() {
return new Arguments[] {
arguments(0.0, (short) 100),
arguments(1.0, (short) 100),
arguments(1.1, (short) 100),
arguments(1.0e23, (short) 100),
arguments(1.0e300, (short) 100),
arguments(-1.2, (short) 100),
arguments(-1.2e-30, (short) 100),
arguments(-Double.MIN_VALUE, (short) 100),
arguments(-Double.MIN_VALUE, (short) 2),
arguments(-Double.MAX_VALUE, (short) 2),
};
}
/*
* All equidistant doubles in a tight range are expected to be generated.
* The arguments must be chosen as to not overlap a value with irregular
* spacing around it.
*/
@ParameterizedTest
@MethodSource
void tight(double l, short steps) {
double r = nextUp(l, steps);
TreeSet<Double> set = new TreeSet<>();
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, false, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, false, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps - 1, set.size());
checkEquidistance(set);
/* with negated intervals */
set.clear();
equi = rnd.equiDoubles(-r, -l, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, false, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, false, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps - 1, set.size());
checkEquidistance(set);
}
static Arguments[] tightWithIrregularSpacing() {
return new Arguments[] {
arguments(0x1p-1, (short) 15, (short) 23),
arguments(0x1p0, (short) 17, (short) 5),
arguments(0x1p1, (short) 7, (short) 8),
arguments(0x1p-600, (short) 28, (short) 33),
arguments(0x1p600, (short) 9, (short) 19),
};
}
/*
* m must be a power of 2 greater than Double.MIN_NORMAL
*/
@ParameterizedTest
@MethodSource
void tightWithIrregularSpacing(double m, short lSteps, short rSteps) {
double l = nextDown(m, 2 * lSteps);
double r = nextUp(m, rSteps);
int steps = lSteps + rSteps;
TreeSet<Double> set = new TreeSet<>();
DoubleStream equi = rnd.equiDoubles(l, r, true, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, false, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(l, r, false, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps - 1, set.size());
checkEquidistance(set);
/* with negated intervals */
set.clear();
equi = rnd.equiDoubles(-r, -l, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, true, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps + 1, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, false, true);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps, set.size());
checkEquidistance(set);
set.clear();
equi = rnd.equiDoubles(-r, -l, false, false);
equi.limit(SAFETY_FACTOR * steps).forEach(set::add);
assertEquals(steps - 1, set.size());
checkEquidistance(set);
}
private void checkEquidistance(TreeSet<Double> set) {
if (set.size() < 3) {
return;
}
Iterator<Double> iter = set.iterator();
double prev = iter.next();
double curr = iter.next();
double delta = curr - prev;
while (iter.hasNext()) {
prev = curr;
curr = iter.next();
assertEquals(delta, curr - prev);
}
}
static Arguments[] empty() {
return new Arguments[] {
arguments(1.0),
arguments(-1.0),
arguments(0.0),
arguments(nextDown(Double.MAX_VALUE, 1)),
arguments(nextUp(-Double.MAX_VALUE, 1)),
};
}
@ParameterizedTest
@MethodSource
void empty(double l) {
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(l, l, true, false)
);
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(l, nextUp(l, 1), false, false)
);
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(nextDown(l, 1), l, false, false)
);
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(l, l, false, true)
);
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(l, nextDown(l, 1), true, true)
);
assertThrows(IllegalArgumentException.class,
() -> rnd.equiDoubles(nextUp(l, 1), l, true, true)
);
}
}