2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2013-12-24 11:48:39 -08:00
|
|
|
* Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
2010-05-27 19:08:38 -07:00
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
2007-12-01 00:00:00 +00:00
|
|
|
*/
|
|
|
|
|
2010-11-23 13:22:55 -08:00
|
|
|
#ifndef SHARE_VM_OPTO_SUPERWORD_HPP
|
|
|
|
#define SHARE_VM_OPTO_SUPERWORD_HPP
|
|
|
|
|
|
|
|
#include "opto/loopnode.hpp"
|
|
|
|
#include "opto/node.hpp"
|
|
|
|
#include "opto/phaseX.hpp"
|
|
|
|
#include "opto/vectornode.hpp"
|
|
|
|
#include "utilities/growableArray.hpp"
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
//
|
|
|
|
// S U P E R W O R D T R A N S F O R M
|
|
|
|
//
|
|
|
|
// SuperWords are short, fixed length vectors.
|
|
|
|
//
|
|
|
|
// Algorithm from:
|
|
|
|
//
|
|
|
|
// Exploiting SuperWord Level Parallelism with
|
|
|
|
// Multimedia Instruction Sets
|
|
|
|
// by
|
|
|
|
// Samuel Larsen and Saman Amarasighe
|
|
|
|
// MIT Laboratory for Computer Science
|
|
|
|
// date
|
|
|
|
// May 2000
|
|
|
|
// published in
|
|
|
|
// ACM SIGPLAN Notices
|
|
|
|
// Proceedings of ACM PLDI '00, Volume 35 Issue 5
|
|
|
|
//
|
|
|
|
// Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
|
|
|
|
// s1,...,sn are independent isomorphic statements in a basic
|
|
|
|
// block.
|
|
|
|
//
|
|
|
|
// Definition 3.2 A PackSet is a set of Packs.
|
|
|
|
//
|
|
|
|
// Definition 3.3 A Pair is a Pack of size two, where the
|
|
|
|
// first statement is considered the left element, and the
|
|
|
|
// second statement is considered the right element.
|
|
|
|
|
|
|
|
class SWPointer;
|
|
|
|
class OrderedPair;
|
|
|
|
|
|
|
|
// ========================= Dependence Graph =====================
|
|
|
|
|
|
|
|
class DepMem;
|
|
|
|
|
|
|
|
//------------------------------DepEdge---------------------------
|
|
|
|
// An edge in the dependence graph. The edges incident to a dependence
|
|
|
|
// node are threaded through _next_in for incoming edges and _next_out
|
|
|
|
// for outgoing edges.
|
|
|
|
class DepEdge : public ResourceObj {
|
|
|
|
protected:
|
|
|
|
DepMem* _pred;
|
|
|
|
DepMem* _succ;
|
|
|
|
DepEdge* _next_in; // list of in edges, null terminated
|
|
|
|
DepEdge* _next_out; // list of out edges, null terminated
|
|
|
|
|
|
|
|
public:
|
|
|
|
DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
|
|
|
|
_pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
|
|
|
|
|
|
|
|
DepEdge* next_in() { return _next_in; }
|
|
|
|
DepEdge* next_out() { return _next_out; }
|
|
|
|
DepMem* pred() { return _pred; }
|
|
|
|
DepMem* succ() { return _succ; }
|
|
|
|
|
|
|
|
void print();
|
|
|
|
};
|
|
|
|
|
|
|
|
//------------------------------DepMem---------------------------
|
|
|
|
// A node in the dependence graph. _in_head starts the threaded list of
|
|
|
|
// incoming edges, and _out_head starts the list of outgoing edges.
|
|
|
|
class DepMem : public ResourceObj {
|
|
|
|
protected:
|
|
|
|
Node* _node; // Corresponding ideal node
|
|
|
|
DepEdge* _in_head; // Head of list of in edges, null terminated
|
|
|
|
DepEdge* _out_head; // Head of list of out edges, null terminated
|
|
|
|
|
|
|
|
public:
|
|
|
|
DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
|
|
|
|
|
|
|
|
Node* node() { return _node; }
|
|
|
|
DepEdge* in_head() { return _in_head; }
|
|
|
|
DepEdge* out_head() { return _out_head; }
|
|
|
|
void set_in_head(DepEdge* hd) { _in_head = hd; }
|
|
|
|
void set_out_head(DepEdge* hd) { _out_head = hd; }
|
|
|
|
|
|
|
|
int in_cnt(); // Incoming edge count
|
|
|
|
int out_cnt(); // Outgoing edge count
|
|
|
|
|
|
|
|
void print();
|
|
|
|
};
|
|
|
|
|
|
|
|
//------------------------------DepGraph---------------------------
|
|
|
|
class DepGraph VALUE_OBJ_CLASS_SPEC {
|
|
|
|
protected:
|
|
|
|
Arena* _arena;
|
|
|
|
GrowableArray<DepMem*> _map;
|
|
|
|
DepMem* _root;
|
|
|
|
DepMem* _tail;
|
|
|
|
|
|
|
|
public:
|
|
|
|
DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) {
|
|
|
|
_root = new (_arena) DepMem(NULL);
|
|
|
|
_tail = new (_arena) DepMem(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
DepMem* root() { return _root; }
|
|
|
|
DepMem* tail() { return _tail; }
|
|
|
|
|
|
|
|
// Return dependence node corresponding to an ideal node
|
|
|
|
DepMem* dep(Node* node) { return _map.at(node->_idx); }
|
|
|
|
|
|
|
|
// Make a new dependence graph node for an ideal node.
|
|
|
|
DepMem* make_node(Node* node);
|
|
|
|
|
|
|
|
// Make a new dependence graph edge dprec->dsucc
|
|
|
|
DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
|
|
|
|
|
|
|
|
DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); }
|
|
|
|
DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); }
|
|
|
|
DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); }
|
|
|
|
|
|
|
|
void init() { _map.clear(); } // initialize
|
|
|
|
|
|
|
|
void print(Node* n) { dep(n)->print(); }
|
|
|
|
void print(DepMem* d) { d->print(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
//------------------------------DepPreds---------------------------
|
|
|
|
// Iterator over predecessors in the dependence graph and
|
|
|
|
// non-memory-graph inputs of ideal nodes.
|
|
|
|
class DepPreds : public StackObj {
|
|
|
|
private:
|
|
|
|
Node* _n;
|
|
|
|
int _next_idx, _end_idx;
|
|
|
|
DepEdge* _dep_next;
|
|
|
|
Node* _current;
|
|
|
|
bool _done;
|
|
|
|
|
|
|
|
public:
|
|
|
|
DepPreds(Node* n, DepGraph& dg);
|
|
|
|
Node* current() { return _current; }
|
|
|
|
bool done() { return _done; }
|
|
|
|
void next();
|
|
|
|
};
|
|
|
|
|
|
|
|
//------------------------------DepSuccs---------------------------
|
|
|
|
// Iterator over successors in the dependence graph and
|
|
|
|
// non-memory-graph outputs of ideal nodes.
|
|
|
|
class DepSuccs : public StackObj {
|
|
|
|
private:
|
|
|
|
Node* _n;
|
|
|
|
int _next_idx, _end_idx;
|
|
|
|
DepEdge* _dep_next;
|
|
|
|
Node* _current;
|
|
|
|
bool _done;
|
|
|
|
|
|
|
|
public:
|
|
|
|
DepSuccs(Node* n, DepGraph& dg);
|
|
|
|
Node* current() { return _current; }
|
|
|
|
bool done() { return _done; }
|
|
|
|
void next();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ========================= SuperWord =====================
|
|
|
|
|
|
|
|
// -----------------------------SWNodeInfo---------------------------------
|
|
|
|
// Per node info needed by SuperWord
|
|
|
|
class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
|
|
|
|
public:
|
|
|
|
int _alignment; // memory alignment for a node
|
|
|
|
int _depth; // Max expression (DAG) depth from block start
|
|
|
|
const Type* _velt_type; // vector element type
|
|
|
|
Node_List* _my_pack; // pack containing this node
|
|
|
|
|
|
|
|
SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
|
|
|
|
static const SWNodeInfo initial;
|
|
|
|
};
|
|
|
|
|
|
|
|
// -----------------------------SuperWord---------------------------------
|
|
|
|
// Transforms scalar operations into packed (superword) operations.
|
|
|
|
class SuperWord : public ResourceObj {
|
|
|
|
private:
|
|
|
|
PhaseIdealLoop* _phase;
|
|
|
|
Arena* _arena;
|
|
|
|
PhaseIterGVN &_igvn;
|
|
|
|
|
|
|
|
enum consts { top_align = -1, bottom_align = -666 };
|
|
|
|
|
|
|
|
GrowableArray<Node_List*> _packset; // Packs for the current block
|
|
|
|
|
|
|
|
GrowableArray<int> _bb_idx; // Map from Node _idx to index within block
|
|
|
|
|
|
|
|
GrowableArray<Node*> _block; // Nodes in current block
|
|
|
|
GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside
|
|
|
|
GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes
|
|
|
|
GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes
|
|
|
|
|
|
|
|
GrowableArray<SWNodeInfo> _node_info; // Info needed per node
|
|
|
|
|
|
|
|
MemNode* _align_to_ref; // Memory reference that pre-loop will align to
|
|
|
|
|
|
|
|
GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
|
|
|
|
|
|
|
|
DepGraph _dg; // Dependence graph
|
|
|
|
|
|
|
|
// Scratch pads
|
|
|
|
VectorSet _visited; // Visited set
|
|
|
|
VectorSet _post_visited; // Post-visited set
|
|
|
|
Node_Stack _n_idx_list; // List of (node,index) pairs
|
|
|
|
GrowableArray<Node*> _nlist; // List of nodes
|
|
|
|
GrowableArray<Node*> _stk; // Stack of nodes
|
|
|
|
|
|
|
|
public:
|
|
|
|
SuperWord(PhaseIdealLoop* phase);
|
|
|
|
|
|
|
|
void transform_loop(IdealLoopTree* lpt);
|
|
|
|
|
|
|
|
// Accessors for SWPointer
|
|
|
|
PhaseIdealLoop* phase() { return _phase; }
|
|
|
|
IdealLoopTree* lpt() { return _lpt; }
|
|
|
|
PhiNode* iv() { return _iv; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
IdealLoopTree* _lpt; // Current loop tree node
|
|
|
|
LoopNode* _lp; // Current LoopNode
|
|
|
|
Node* _bb; // Current basic block
|
|
|
|
PhiNode* _iv; // Induction var
|
|
|
|
|
|
|
|
// Accessors
|
|
|
|
Arena* arena() { return _arena; }
|
|
|
|
|
|
|
|
Node* bb() { return _bb; }
|
|
|
|
void set_bb(Node* bb) { _bb = bb; }
|
|
|
|
|
|
|
|
void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
|
|
|
|
|
|
|
|
LoopNode* lp() { return _lp; }
|
|
|
|
void set_lp(LoopNode* lp) { _lp = lp;
|
|
|
|
_iv = lp->as_CountedLoop()->phi()->as_Phi(); }
|
|
|
|
int iv_stride() { return lp()->as_CountedLoop()->stride_con(); }
|
|
|
|
|
2012-06-19 15:12:56 -07:00
|
|
|
int vector_width(Node* n) {
|
|
|
|
BasicType bt = velt_basic_type(n);
|
|
|
|
return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
|
|
|
|
}
|
|
|
|
int vector_width_in_bytes(Node* n) {
|
|
|
|
BasicType bt = velt_basic_type(n);
|
|
|
|
return vector_width(n)*type2aelembytes(bt);
|
2012-06-15 01:25:19 -07:00
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
MemNode* align_to_ref() { return _align_to_ref; }
|
|
|
|
void set_align_to_ref(MemNode* m) { _align_to_ref = m; }
|
|
|
|
|
|
|
|
Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
|
|
|
|
|
|
|
|
// block accessors
|
|
|
|
bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
|
|
|
|
int bb_idx(Node* n) { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
|
|
|
|
void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
|
|
|
|
|
|
|
|
// visited set accessors
|
|
|
|
void visited_clear() { _visited.Clear(); }
|
|
|
|
void visited_set(Node* n) { return _visited.set(bb_idx(n)); }
|
|
|
|
int visited_test(Node* n) { return _visited.test(bb_idx(n)); }
|
|
|
|
int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); }
|
|
|
|
void post_visited_clear() { _post_visited.Clear(); }
|
|
|
|
void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
|
|
|
|
int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
|
|
|
|
|
|
|
|
// Ensure node_info contains element "i"
|
|
|
|
void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
|
|
|
|
|
|
|
|
// memory alignment for a node
|
|
|
|
int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; }
|
|
|
|
void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
|
|
|
|
|
|
|
|
// Max expression (DAG) depth from beginning of the block for each node
|
|
|
|
int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; }
|
|
|
|
void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
|
|
|
|
|
|
|
|
// vector element type
|
|
|
|
const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; }
|
2012-06-15 01:25:19 -07:00
|
|
|
BasicType velt_basic_type(Node* n) { return velt_type(n)->array_element_basic_type(); }
|
2007-12-01 00:00:00 +00:00
|
|
|
void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
|
2012-06-15 01:25:19 -07:00
|
|
|
bool same_velt_type(Node* n1, Node* n2);
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
// my_pack
|
|
|
|
Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
|
|
|
|
void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
|
|
|
|
|
|
|
|
// methods
|
|
|
|
|
|
|
|
// Extract the superword level parallelism
|
|
|
|
void SLP_extract();
|
|
|
|
// Find the adjacent memory references and create pack pairs for them.
|
|
|
|
void find_adjacent_refs();
|
|
|
|
// Find a memory reference to align the loop induction variable to.
|
2012-06-15 01:25:19 -07:00
|
|
|
MemNode* find_align_to_ref(Node_List &memops);
|
|
|
|
// Calculate loop's iv adjustment for this memory ops.
|
|
|
|
int get_iv_adjustment(MemNode* mem);
|
2007-12-01 00:00:00 +00:00
|
|
|
// Can the preloop align the reference to position zero in the vector?
|
|
|
|
bool ref_is_alignable(SWPointer& p);
|
|
|
|
// Construct dependency graph.
|
|
|
|
void dependence_graph();
|
|
|
|
// Return a memory slice (node list) in predecessor order starting at "start"
|
|
|
|
void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
|
2009-02-27 13:27:09 -08:00
|
|
|
// Can s1 and s2 be in a pack with s1 immediately preceding s2 and s1 aligned at "align"
|
2007-12-01 00:00:00 +00:00
|
|
|
bool stmts_can_pack(Node* s1, Node* s2, int align);
|
|
|
|
// Does s exist in a pack at position pos?
|
|
|
|
bool exists_at(Node* s, uint pos);
|
|
|
|
// Is s1 immediately before s2 in memory?
|
|
|
|
bool are_adjacent_refs(Node* s1, Node* s2);
|
|
|
|
// Are s1 and s2 similar?
|
|
|
|
bool isomorphic(Node* s1, Node* s2);
|
|
|
|
// Is there no data path from s1 to s2 or s2 to s1?
|
|
|
|
bool independent(Node* s1, Node* s2);
|
|
|
|
// Helper for independent
|
|
|
|
bool independent_path(Node* shallow, Node* deep, uint dp=0);
|
|
|
|
void set_alignment(Node* s1, Node* s2, int align);
|
|
|
|
int data_size(Node* s);
|
|
|
|
// Extend packset by following use->def and def->use links from pack members.
|
|
|
|
void extend_packlist();
|
|
|
|
// Extend the packset by visiting operand definitions of nodes in pack p
|
|
|
|
bool follow_use_defs(Node_List* p);
|
|
|
|
// Extend the packset by visiting uses of nodes in pack p
|
|
|
|
bool follow_def_uses(Node_List* p);
|
|
|
|
// Estimate the savings from executing s1 and s2 as a pack
|
|
|
|
int est_savings(Node* s1, Node* s2);
|
|
|
|
int adjacent_profit(Node* s1, Node* s2);
|
|
|
|
int pack_cost(int ct);
|
|
|
|
int unpack_cost(int ct);
|
|
|
|
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
|
|
|
|
void combine_packs();
|
|
|
|
// Construct the map from nodes to packs.
|
|
|
|
void construct_my_pack_map();
|
|
|
|
// Remove packs that are not implemented or not profitable.
|
|
|
|
void filter_packs();
|
|
|
|
// Adjust the memory graph for the packed operations
|
|
|
|
void schedule();
|
2009-03-24 12:19:47 -07:00
|
|
|
// Remove "current" from its current position in the memory graph and insert
|
|
|
|
// it after the appropriate insert points (lip or uip);
|
|
|
|
void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
|
|
|
|
// Within a store pack, schedule stores together by moving out the sandwiched memory ops according
|
|
|
|
// to dependence info; and within a load pack, move loads down to the last executed load.
|
2007-12-01 00:00:00 +00:00
|
|
|
void co_locate_pack(Node_List* p);
|
|
|
|
// Convert packs into vector node operations
|
|
|
|
void output();
|
|
|
|
// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
|
2011-07-27 17:28:36 -07:00
|
|
|
Node* vector_opd(Node_List* p, int opd_idx);
|
2007-12-01 00:00:00 +00:00
|
|
|
// Can code be generated for pack p?
|
|
|
|
bool implemented(Node_List* p);
|
|
|
|
// For pack p, are all operands and all uses (with in the block) vector?
|
|
|
|
bool profitable(Node_List* p);
|
|
|
|
// If a use of pack p is not a vector use, then replace the use with an extract operation.
|
|
|
|
void insert_extracts(Node_List* p);
|
|
|
|
// Is use->in(u_idx) a vector use?
|
|
|
|
bool is_vector_use(Node* use, int u_idx);
|
|
|
|
// Construct reverse postorder list of block members
|
2013-02-18 16:47:15 -08:00
|
|
|
bool construct_bb();
|
2007-12-01 00:00:00 +00:00
|
|
|
// Initialize per node info
|
|
|
|
void initialize_bb();
|
|
|
|
// Insert n into block after pos
|
|
|
|
void bb_insert_after(Node* n, int pos);
|
|
|
|
// Compute max depth for expressions from beginning of block
|
|
|
|
void compute_max_depth();
|
|
|
|
// Compute necessary vector element type for expressions
|
|
|
|
void compute_vector_element_type();
|
|
|
|
// Are s1 and s2 in a pack pair and ordered as s1,s2?
|
|
|
|
bool in_packset(Node* s1, Node* s2);
|
|
|
|
// Is s in pack p?
|
|
|
|
Node_List* in_pack(Node* s, Node_List* p);
|
|
|
|
// Remove the pack at position pos in the packset
|
|
|
|
void remove_pack_at(int pos);
|
|
|
|
// Return the node executed first in pack p.
|
|
|
|
Node* executed_first(Node_List* p);
|
|
|
|
// Return the node executed last in pack p.
|
|
|
|
Node* executed_last(Node_List* p);
|
|
|
|
// Alignment within a vector memory reference
|
2012-09-19 16:50:26 -07:00
|
|
|
int memory_alignment(MemNode* s, int iv_adjust);
|
2007-12-01 00:00:00 +00:00
|
|
|
// (Start, end] half-open range defining which operands are vector
|
|
|
|
void vector_opd_range(Node* n, uint* start, uint* end);
|
|
|
|
// Smallest type containing range of values
|
2012-06-15 01:25:19 -07:00
|
|
|
const Type* container_type(Node* n);
|
2007-12-01 00:00:00 +00:00
|
|
|
// Adjust pre-loop limit so that in main loop, a load/store reference
|
|
|
|
// to align_to_ref will be a position zero in the vector.
|
|
|
|
void align_initial_loop_index(MemNode* align_to_ref);
|
|
|
|
// Find pre loop end from main loop. Returns null if none.
|
|
|
|
CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
|
|
|
|
// Is the use of d1 in u1 at the same operand position as d2 in u2?
|
|
|
|
bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
|
|
|
|
void init();
|
|
|
|
|
|
|
|
// print methods
|
|
|
|
void print_packset();
|
|
|
|
void print_pack(Node_List* p);
|
|
|
|
void print_bb();
|
|
|
|
void print_stmt(Node* s);
|
|
|
|
char* blank(uint depth);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------SWPointer---------------------------
|
|
|
|
// Information about an address for dependence checking and vector alignment
|
|
|
|
class SWPointer VALUE_OBJ_CLASS_SPEC {
|
|
|
|
protected:
|
|
|
|
MemNode* _mem; // My memory reference node
|
|
|
|
SuperWord* _slp; // SuperWord class
|
|
|
|
|
|
|
|
Node* _base; // NULL if unsafe nonheap reference
|
|
|
|
Node* _adr; // address pointer
|
|
|
|
jint _scale; // multipler for iv (in bytes), 0 if no loop iv
|
|
|
|
jint _offset; // constant offset (in bytes)
|
|
|
|
Node* _invar; // invariant offset (in bytes), NULL if none
|
|
|
|
bool _negate_invar; // if true then use: (0 - _invar)
|
|
|
|
|
|
|
|
PhaseIdealLoop* phase() { return _slp->phase(); }
|
|
|
|
IdealLoopTree* lpt() { return _slp->lpt(); }
|
|
|
|
PhiNode* iv() { return _slp->iv(); } // Induction var
|
|
|
|
|
|
|
|
bool invariant(Node* n) {
|
|
|
|
Node *n_c = phase()->get_ctrl(n);
|
|
|
|
return !lpt()->is_member(phase()->get_loop(n_c));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Match: k*iv + offset
|
|
|
|
bool scaled_iv_plus_offset(Node* n);
|
|
|
|
// Match: k*iv where k is a constant that's not zero
|
|
|
|
bool scaled_iv(Node* n);
|
|
|
|
// Match: offset is (k [+/- invariant])
|
|
|
|
bool offset_plus_k(Node* n, bool negate = false);
|
|
|
|
|
|
|
|
public:
|
|
|
|
enum CMP {
|
|
|
|
Less = 1,
|
|
|
|
Greater = 2,
|
|
|
|
Equal = 4,
|
|
|
|
NotEqual = (Less | Greater),
|
|
|
|
NotComparable = (Less | Greater | Equal)
|
|
|
|
};
|
|
|
|
|
|
|
|
SWPointer(MemNode* mem, SuperWord* slp);
|
|
|
|
// Following is used to create a temporary object during
|
|
|
|
// the pattern match of an address expression.
|
|
|
|
SWPointer(SWPointer* p);
|
|
|
|
|
|
|
|
bool valid() { return _adr != NULL; }
|
|
|
|
bool has_iv() { return _scale != 0; }
|
|
|
|
|
|
|
|
Node* base() { return _base; }
|
|
|
|
Node* adr() { return _adr; }
|
2012-06-15 01:25:19 -07:00
|
|
|
MemNode* mem() { return _mem; }
|
2007-12-01 00:00:00 +00:00
|
|
|
int scale_in_bytes() { return _scale; }
|
|
|
|
Node* invar() { return _invar; }
|
|
|
|
bool negate_invar() { return _negate_invar; }
|
|
|
|
int offset_in_bytes() { return _offset; }
|
|
|
|
int memory_size() { return _mem->memory_size(); }
|
|
|
|
|
|
|
|
// Comparable?
|
|
|
|
int cmp(SWPointer& q) {
|
|
|
|
if (valid() && q.valid() &&
|
|
|
|
(_adr == q._adr || _base == _adr && q._base == q._adr) &&
|
|
|
|
_scale == q._scale &&
|
|
|
|
_invar == q._invar &&
|
|
|
|
_negate_invar == q._negate_invar) {
|
|
|
|
bool overlap = q._offset < _offset + memory_size() &&
|
|
|
|
_offset < q._offset + q.memory_size();
|
|
|
|
return overlap ? Equal : (_offset < q._offset ? Less : Greater);
|
|
|
|
} else {
|
|
|
|
return NotComparable;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool not_equal(SWPointer& q) { return not_equal(cmp(q)); }
|
|
|
|
bool equal(SWPointer& q) { return equal(cmp(q)); }
|
|
|
|
bool comparable(SWPointer& q) { return comparable(cmp(q)); }
|
|
|
|
static bool not_equal(int cmp) { return cmp <= NotEqual; }
|
|
|
|
static bool equal(int cmp) { return cmp == Equal; }
|
|
|
|
static bool comparable(int cmp) { return cmp < NotComparable; }
|
|
|
|
|
|
|
|
void print();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------OrderedPair---------------------------
|
|
|
|
// Ordered pair of Node*.
|
|
|
|
class OrderedPair VALUE_OBJ_CLASS_SPEC {
|
|
|
|
protected:
|
|
|
|
Node* _p1;
|
|
|
|
Node* _p2;
|
|
|
|
public:
|
|
|
|
OrderedPair() : _p1(NULL), _p2(NULL) {}
|
|
|
|
OrderedPair(Node* p1, Node* p2) {
|
|
|
|
if (p1->_idx < p2->_idx) {
|
|
|
|
_p1 = p1; _p2 = p2;
|
|
|
|
} else {
|
|
|
|
_p1 = p2; _p2 = p1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==(const OrderedPair &rhs) {
|
|
|
|
return _p1 == rhs._p1 && _p2 == rhs._p2;
|
|
|
|
}
|
|
|
|
void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); }
|
|
|
|
|
|
|
|
static const OrderedPair initial;
|
|
|
|
};
|
2010-11-23 13:22:55 -08:00
|
|
|
|
|
|
|
#endif // SHARE_VM_OPTO_SUPERWORD_HPP
|