jdk-24/src/hotspot/share/oops/accessBackend.hpp

390 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESSBACKEND_HPP
#define SHARE_VM_RUNTIME_ACCESSBACKEND_HPP
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/enableIf.hpp"
#include "metaprogramming/integralConstant.hpp"
#include "metaprogramming/isSame.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// This metafunction returns either oop or narrowOop depending on whether
// an access needs to use compressed oops or not.
template <DecoratorSet decorators>
struct HeapOopType: AllStatic {
static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
typedef typename Conditional<needs_oop_compress, narrowOop, oop>::type type;
};
namespace AccessInternal {
enum BarrierType {
BARRIER_STORE,
BARRIER_STORE_AT,
BARRIER_LOAD,
BARRIER_LOAD_AT,
BARRIER_ATOMIC_CMPXCHG,
BARRIER_ATOMIC_CMPXCHG_AT,
BARRIER_ATOMIC_XCHG,
BARRIER_ATOMIC_XCHG_AT,
BARRIER_ARRAYCOPY,
BARRIER_CLONE,
BARRIER_RESOLVE
};
template <DecoratorSet decorators, typename T>
struct MustConvertCompressedOop: public IntegralConstant<bool,
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
IsSame<typename HeapOopType<decorators>::type, narrowOop>::value &&
IsSame<T, oop>::value> {};
// This metafunction returns an appropriate oop type if the value is oop-like
// and otherwise returns the same type T.
template <DecoratorSet decorators, typename T>
struct EncodedType: AllStatic {
typedef typename Conditional<
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename HeapOopType<decorators>::type, T>::type type;
};
template <DecoratorSet decorators>
inline typename HeapOopType<decorators>::type*
oop_field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<typename HeapOopType<decorators>::type*>(
reinterpret_cast<intptr_t>((void*)base) + byte_offset);
}
// This metafunction returns whether it is possible for a type T to require
// locking to support wide atomics or not.
template <typename T>
#ifdef SUPPORTS_NATIVE_CX8
struct PossiblyLockedAccess: public IntegralConstant<bool, false> {};
#else
struct PossiblyLockedAccess: public IntegralConstant<bool, (sizeof(T) > 4)> {};
#endif
template <DecoratorSet decorators, typename T>
struct AccessFunctionTypes {
typedef T (*load_at_func_t)(oop base, ptrdiff_t offset);
typedef void (*store_at_func_t)(oop base, ptrdiff_t offset, T value);
typedef T (*atomic_cmpxchg_at_func_t)(T new_value, oop base, ptrdiff_t offset, T compare_value);
typedef T (*atomic_xchg_at_func_t)(T new_value, oop base, ptrdiff_t offset);
typedef T (*load_func_t)(void* addr);
typedef void (*store_func_t)(void* addr, T value);
typedef T (*atomic_cmpxchg_func_t)(T new_value, void* addr, T compare_value);
typedef T (*atomic_xchg_func_t)(T new_value, void* addr);
typedef bool (*arraycopy_func_t)(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length);
typedef void (*clone_func_t)(oop src, oop dst, size_t size);
typedef oop (*resolve_func_t)(oop obj);
};
template <DecoratorSet decorators, typename T, BarrierType barrier> struct AccessFunction {};
#define ACCESS_GENERATE_ACCESS_FUNCTION(bt, func) \
template <DecoratorSet decorators, typename T> \
struct AccessFunction<decorators, T, bt>: AllStatic{ \
typedef typename AccessFunctionTypes<decorators, T>::func type; \
}
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE, store_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE_AT, store_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD, load_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD_AT, load_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG, atomic_cmpxchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG_AT, atomic_cmpxchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG, atomic_xchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG_AT, atomic_xchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ARRAYCOPY, arraycopy_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_CLONE, clone_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_RESOLVE, resolve_func_t);
#undef ACCESS_GENERATE_ACCESS_FUNCTION
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_barrier();
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_oop_barrier();
class AccessLocker {
public:
AccessLocker();
~AccessLocker();
};
bool wide_atomic_needs_locking();
void* field_addr(oop base, ptrdiff_t offset);
// Forward calls to Copy:: in the cpp file to reduce dependencies and allow
// faster build times, given how frequently included access is.
void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length);
void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length);
void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length);
void arraycopy_disjoint_words(void* src, void* dst, size_t length);
void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length);
template<typename T>
void arraycopy_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_arrayof_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_conjoint_atomic(T* src, T* dst, size_t length);
}
// This mask specifies what decorators are relevant for raw accesses. When passing
// accesses to the raw layer, irrelevant decorators are removed.
const DecoratorSet RAW_DECORATOR_MASK = INTERNAL_DECORATOR_MASK | MO_DECORATOR_MASK |
ARRAYCOPY_DECORATOR_MASK | OOP_DECORATOR_MASK;
// The RawAccessBarrier performs raw accesses with additional knowledge of
// memory ordering, so that OrderAccess/Atomic is called when necessary.
// It additionally handles compressed oops, and hence is not completely "raw"
// strictly speaking.
template <DecoratorSet decorators>
class RawAccessBarrier: public AllStatic {
protected:
static inline void* field_addr(oop base, ptrdiff_t byte_offset) {
return AccessInternal::field_addr(base, byte_offset);
}
protected:
// Only encode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value,
typename HeapOopType<idecorators>::type>::type
encode_internal(T value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
encode_internal(T value) {
return value;
}
template <typename T>
static inline typename AccessInternal::EncodedType<decorators, T>::type
encode(T value) {
return encode_internal<decorators, T>(value);
}
// Only decode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
decode_internal(typename HeapOopType<idecorators>::type value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
decode_internal(T value) {
return value;
}
template <typename T>
static inline T decode(typename AccessInternal::EncodedType<decorators, T>::type value) {
return decode_internal<decorators, T>(value);
}
protected:
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_ACQUIRE>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<const volatile T*>(addr);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<const T*>(addr);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELEASE>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value>::type
store_internal(void* addr, T value) {
(void)const_cast<T&>(*reinterpret_cast<volatile T*>(addr) = value);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value>::type
store_internal(void* addr, T value) {
*reinterpret_cast<T*>(addr) = value;
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_xchg_internal(T new_value, void* addr);
// The following *_locked mechanisms serve the purpose of handling atomic operations
// that are larger than a machine can handle, and then possibly opt for using
// a slower path using a mutex to perform the operation.
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(T new_value, void* addr) {
return atomic_xchg_internal<ds>(new_value, addr);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(T new_value, void* addr);
public:
template <typename T>
static inline void store(void* addr, T value) {
store_internal<decorators>(addr, value);
}
template <typename T>
static inline T load(void* addr) {
return load_internal<decorators, T>(addr);
}
template <typename T>
static inline T atomic_cmpxchg(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_maybe_locked<decorators>(new_value, addr, compare_value);
}
template <typename T>
static inline T atomic_xchg(T new_value, void* addr) {
return atomic_xchg_maybe_locked<decorators>(new_value, addr);
}
template <typename T>
static bool arraycopy(T* src, T* dst, size_t length);
template <typename T>
static void oop_store(void* addr, T value);
template <typename T>
static void oop_store_at(oop base, ptrdiff_t offset, T value);
template <typename T>
static T oop_load(void* addr);
template <typename T>
static T oop_load_at(oop base, ptrdiff_t offset);
template <typename T>
static T oop_atomic_cmpxchg(T new_value, void* addr, T compare_value);
template <typename T>
static T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
template <typename T>
static T oop_atomic_xchg(T new_value, void* addr);
template <typename T>
static T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
template <typename T>
static void store_at(oop base, ptrdiff_t offset, T value) {
store(field_addr(base, offset), value);
}
template <typename T>
static T load_at(oop base, ptrdiff_t offset) {
return load<T>(field_addr(base, offset));
}
template <typename T>
static T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
}
template <typename T>
static T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return atomic_xchg(new_value, field_addr(base, offset));
}
template <typename T>
static bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length);
static bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, HeapWord* src, HeapWord* dst, size_t length);
static void clone(oop src, oop dst, size_t size);
static oop resolve(oop obj) { return obj; }
};
#endif // SHARE_VM_RUNTIME_ACCESSBACKEND_HPP