2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2008-07-02 12:55:16 -07:00
|
|
|
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
|
|
|
|
// Optimization - Graph Style
|
|
|
|
|
|
|
|
#include "incls/_precompiled.incl"
|
|
|
|
#include "incls/_gcm.cpp.incl"
|
|
|
|
|
|
|
|
//----------------------------schedule_node_into_block-------------------------
|
|
|
|
// Insert node n into block b. Look for projections of n and make sure they
|
|
|
|
// are in b also.
|
|
|
|
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
|
|
|
|
// Set basic block of n, Add n to b,
|
|
|
|
_bbs.map(n->_idx, b);
|
|
|
|
b->add_inst(n);
|
|
|
|
|
|
|
|
// After Matching, nearly any old Node may have projections trailing it.
|
|
|
|
// These are usually machine-dependent flags. In any case, they might
|
|
|
|
// float to another block below this one. Move them up.
|
|
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
|
|
Node* use = n->fast_out(i);
|
|
|
|
if (use->is_Proj()) {
|
|
|
|
Block* buse = _bbs[use->_idx];
|
|
|
|
if (buse != b) { // In wrong block?
|
|
|
|
if (buse != NULL)
|
|
|
|
buse->find_remove(use); // Remove from wrong block
|
|
|
|
_bbs.map(use->_idx, b); // Re-insert in this block
|
|
|
|
b->add_inst(use);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------schedule_pinned_nodes--------------------------
|
|
|
|
// Set the basic block for Nodes pinned into blocks
|
|
|
|
void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
|
|
|
|
// Allocate node stack of size C->unique()+8 to avoid frequent realloc
|
|
|
|
GrowableArray <Node *> spstack(C->unique()+8);
|
|
|
|
spstack.push(_root);
|
|
|
|
while ( spstack.is_nonempty() ) {
|
|
|
|
Node *n = spstack.pop();
|
|
|
|
if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
|
|
|
|
if( n->pinned() && !_bbs.lookup(n->_idx) ) { // Pinned? Nail it down!
|
|
|
|
Node *input = n->in(0);
|
|
|
|
assert( input, "pinned Node must have Control" );
|
|
|
|
while( !input->is_block_start() )
|
|
|
|
input = input->in(0);
|
|
|
|
Block *b = _bbs[input->_idx]; // Basic block of controlling input
|
|
|
|
schedule_node_into_block(n, b);
|
|
|
|
}
|
|
|
|
for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs
|
|
|
|
if( n->in(i) != NULL )
|
|
|
|
spstack.push(n->in(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
// Assert that new input b2 is dominated by all previous inputs.
|
|
|
|
// Check this by by seeing that it is dominated by b1, the deepest
|
|
|
|
// input observed until b2.
|
|
|
|
static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
|
|
|
|
if (b1 == NULL) return;
|
|
|
|
assert(b1->_dom_depth < b2->_dom_depth, "sanity");
|
|
|
|
Block* tmp = b2;
|
|
|
|
while (tmp != b1 && tmp != NULL) {
|
|
|
|
tmp = tmp->_idom;
|
|
|
|
}
|
|
|
|
if (tmp != b1) {
|
|
|
|
// Detected an unschedulable graph. Print some nice stuff and die.
|
|
|
|
tty->print_cr("!!! Unschedulable graph !!!");
|
|
|
|
for (uint j=0; j<n->len(); j++) { // For all inputs
|
|
|
|
Node* inn = n->in(j); // Get input
|
|
|
|
if (inn == NULL) continue; // Ignore NULL, missing inputs
|
|
|
|
Block* inb = bbs[inn->_idx];
|
|
|
|
tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
|
|
|
|
inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
|
|
|
|
inn->dump();
|
|
|
|
}
|
|
|
|
tty->print("Failing node: ");
|
|
|
|
n->dump();
|
|
|
|
assert(false, "unscheduable graph");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static Block* find_deepest_input(Node* n, Block_Array &bbs) {
|
|
|
|
// Find the last input dominated by all other inputs.
|
|
|
|
Block* deepb = NULL; // Deepest block so far
|
|
|
|
int deepb_dom_depth = 0;
|
|
|
|
for (uint k = 0; k < n->len(); k++) { // For all inputs
|
|
|
|
Node* inn = n->in(k); // Get input
|
|
|
|
if (inn == NULL) continue; // Ignore NULL, missing inputs
|
|
|
|
Block* inb = bbs[inn->_idx];
|
|
|
|
assert(inb != NULL, "must already have scheduled this input");
|
|
|
|
if (deepb_dom_depth < (int) inb->_dom_depth) {
|
|
|
|
// The new inb must be dominated by the previous deepb.
|
|
|
|
// The various inputs must be linearly ordered in the dom
|
|
|
|
// tree, or else there will not be a unique deepest block.
|
|
|
|
DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
|
|
|
|
deepb = inb; // Save deepest block
|
|
|
|
deepb_dom_depth = deepb->_dom_depth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(deepb != NULL, "must be at least one input to n");
|
|
|
|
return deepb;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------schedule_early---------------------------------
|
|
|
|
// Find the earliest Block any instruction can be placed in. Some instructions
|
|
|
|
// are pinned into Blocks. Unpinned instructions can appear in last block in
|
|
|
|
// which all their inputs occur.
|
|
|
|
bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
|
|
|
|
// Allocate stack with enough space to avoid frequent realloc
|
|
|
|
Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
|
|
|
|
// roots.push(_root); _root will be processed among C->top() inputs
|
|
|
|
roots.push(C->top());
|
|
|
|
visited.set(C->top()->_idx);
|
|
|
|
|
|
|
|
while (roots.size() != 0) {
|
|
|
|
// Use local variables nstack_top_n & nstack_top_i to cache values
|
|
|
|
// on stack's top.
|
|
|
|
Node *nstack_top_n = roots.pop();
|
|
|
|
uint nstack_top_i = 0;
|
|
|
|
//while_nstack_nonempty:
|
|
|
|
while (true) {
|
|
|
|
// Get parent node and next input's index from stack's top.
|
|
|
|
Node *n = nstack_top_n;
|
|
|
|
uint i = nstack_top_i;
|
|
|
|
|
|
|
|
if (i == 0) {
|
|
|
|
// Special control input processing.
|
|
|
|
// While I am here, go ahead and look for Nodes which are taking control
|
|
|
|
// from a is_block_proj Node. After I inserted RegionNodes to make proper
|
|
|
|
// blocks, the control at a is_block_proj more properly comes from the
|
|
|
|
// Region being controlled by the block_proj Node.
|
|
|
|
const Node *in0 = n->in(0);
|
|
|
|
if (in0 != NULL) { // Control-dependent?
|
|
|
|
const Node *p = in0->is_block_proj();
|
|
|
|
if (p != NULL && p != n) { // Control from a block projection?
|
|
|
|
// Find trailing Region
|
|
|
|
Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
|
|
|
|
uint j = 0;
|
|
|
|
if (pb->_num_succs != 1) { // More then 1 successor?
|
|
|
|
// Search for successor
|
|
|
|
uint max = pb->_nodes.size();
|
|
|
|
assert( max > 1, "" );
|
|
|
|
uint start = max - pb->_num_succs;
|
|
|
|
// Find which output path belongs to projection
|
|
|
|
for (j = start; j < max; j++) {
|
|
|
|
if( pb->_nodes[j] == in0 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
assert( j < max, "must find" );
|
|
|
|
// Change control to match head of successor basic block
|
|
|
|
j -= start;
|
|
|
|
}
|
|
|
|
n->set_req(0, pb->_succs[j]->head());
|
|
|
|
}
|
|
|
|
} else { // n->in(0) == NULL
|
|
|
|
if (n->req() == 1) { // This guy is a constant with NO inputs?
|
|
|
|
n->set_req(0, _root);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// First, visit all inputs and force them to get a block. If an
|
|
|
|
// input is already in a block we quit following inputs (to avoid
|
|
|
|
// cycles). Instead we put that Node on a worklist to be handled
|
|
|
|
// later (since IT'S inputs may not have a block yet).
|
|
|
|
bool done = true; // Assume all n's inputs will be processed
|
|
|
|
while (i < n->len()) { // For all inputs
|
|
|
|
Node *in = n->in(i); // Get input
|
|
|
|
++i;
|
|
|
|
if (in == NULL) continue; // Ignore NULL, missing inputs
|
|
|
|
int is_visited = visited.test_set(in->_idx);
|
|
|
|
if (!_bbs.lookup(in->_idx)) { // Missing block selection?
|
|
|
|
if (is_visited) {
|
|
|
|
// assert( !visited.test(in->_idx), "did not schedule early" );
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
nstack.push(n, i); // Save parent node and next input's index.
|
|
|
|
nstack_top_n = in; // Process current input now.
|
|
|
|
nstack_top_i = 0;
|
|
|
|
done = false; // Not all n's inputs processed.
|
|
|
|
break; // continue while_nstack_nonempty;
|
|
|
|
} else if (!is_visited) { // Input not yet visited?
|
|
|
|
roots.push(in); // Visit this guy later, using worklist
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (done) {
|
|
|
|
// All of n's inputs have been processed, complete post-processing.
|
|
|
|
|
|
|
|
// Some instructions are pinned into a block. These include Region,
|
|
|
|
// Phi, Start, Return, and other control-dependent instructions and
|
|
|
|
// any projections which depend on them.
|
|
|
|
if (!n->pinned()) {
|
|
|
|
// Set earliest legal block.
|
|
|
|
_bbs.map(n->_idx, find_deepest_input(n, _bbs));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nstack.is_empty()) {
|
|
|
|
// Finished all nodes on stack.
|
|
|
|
// Process next node on the worklist 'roots'.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Get saved parent node and next input's index.
|
|
|
|
nstack_top_n = nstack.node();
|
|
|
|
nstack_top_i = nstack.index();
|
|
|
|
nstack.pop();
|
|
|
|
} // if (done)
|
|
|
|
} // while (true)
|
|
|
|
} // while (roots.size() != 0)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------dom_lca----------------------------------------
|
|
|
|
// Find least common ancestor in dominator tree
|
|
|
|
// LCA is a current notion of LCA, to be raised above 'this'.
|
|
|
|
// As a convenient boundary condition, return 'this' if LCA is NULL.
|
|
|
|
// Find the LCA of those two nodes.
|
|
|
|
Block* Block::dom_lca(Block* LCA) {
|
|
|
|
if (LCA == NULL || LCA == this) return this;
|
|
|
|
|
|
|
|
Block* anc = this;
|
|
|
|
while (anc->_dom_depth > LCA->_dom_depth)
|
|
|
|
anc = anc->_idom; // Walk up till anc is as high as LCA
|
|
|
|
|
|
|
|
while (LCA->_dom_depth > anc->_dom_depth)
|
|
|
|
LCA = LCA->_idom; // Walk up till LCA is as high as anc
|
|
|
|
|
|
|
|
while (LCA != anc) { // Walk both up till they are the same
|
|
|
|
LCA = LCA->_idom;
|
|
|
|
anc = anc->_idom;
|
|
|
|
}
|
|
|
|
|
|
|
|
return LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------raise_LCA_above_use--------------------------------
|
|
|
|
// We are placing a definition, and have been given a def->use edge.
|
|
|
|
// The definition must dominate the use, so move the LCA upward in the
|
|
|
|
// dominator tree to dominate the use. If the use is a phi, adjust
|
|
|
|
// the LCA only with the phi input paths which actually use this def.
|
|
|
|
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
|
|
|
|
Block* buse = bbs[use->_idx];
|
|
|
|
if (buse == NULL) return LCA; // Unused killing Projs have no use block
|
|
|
|
if (!use->is_Phi()) return buse->dom_lca(LCA);
|
|
|
|
uint pmax = use->req(); // Number of Phi inputs
|
|
|
|
// Why does not this loop just break after finding the matching input to
|
|
|
|
// the Phi? Well...it's like this. I do not have true def-use/use-def
|
|
|
|
// chains. Means I cannot distinguish, from the def-use direction, which
|
|
|
|
// of many use-defs lead from the same use to the same def. That is, this
|
|
|
|
// Phi might have several uses of the same def. Each use appears in a
|
|
|
|
// different predecessor block. But when I enter here, I cannot distinguish
|
|
|
|
// which use-def edge I should find the predecessor block for. So I find
|
|
|
|
// them all. Means I do a little extra work if a Phi uses the same value
|
|
|
|
// more than once.
|
|
|
|
for (uint j=1; j<pmax; j++) { // For all inputs
|
|
|
|
if (use->in(j) == def) { // Found matching input?
|
|
|
|
Block* pred = bbs[buse->pred(j)->_idx];
|
|
|
|
LCA = pred->dom_lca(LCA);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------raise_LCA_above_marks----------------------------
|
|
|
|
// Return a new LCA that dominates LCA and any of its marked predecessors.
|
|
|
|
// Search all my parents up to 'early' (exclusive), looking for predecessors
|
|
|
|
// which are marked with the given index. Return the LCA (in the dom tree)
|
|
|
|
// of all marked blocks. If there are none marked, return the original
|
|
|
|
// LCA.
|
|
|
|
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
|
|
|
|
Block* early, Block_Array &bbs) {
|
|
|
|
Block_List worklist;
|
|
|
|
worklist.push(LCA);
|
|
|
|
while (worklist.size() > 0) {
|
|
|
|
Block* mid = worklist.pop();
|
|
|
|
if (mid == early) continue; // stop searching here
|
|
|
|
|
|
|
|
// Test and set the visited bit.
|
|
|
|
if (mid->raise_LCA_visited() == mark) continue; // already visited
|
|
|
|
|
|
|
|
// Don't process the current LCA, otherwise the search may terminate early
|
|
|
|
if (mid != LCA && mid->raise_LCA_mark() == mark) {
|
|
|
|
// Raise the LCA.
|
|
|
|
LCA = mid->dom_lca(LCA);
|
|
|
|
if (LCA == early) break; // stop searching everywhere
|
|
|
|
assert(early->dominates(LCA), "early is high enough");
|
|
|
|
// Resume searching at that point, skipping intermediate levels.
|
|
|
|
worklist.push(LCA);
|
2008-06-20 10:17:09 -07:00
|
|
|
if (LCA == mid)
|
|
|
|
continue; // Don't mark as visited to avoid early termination.
|
2007-12-01 00:00:00 +00:00
|
|
|
} else {
|
|
|
|
// Keep searching through this block's predecessors.
|
|
|
|
for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
|
|
|
|
Block* mid_parent = bbs[ mid->pred(j)->_idx ];
|
|
|
|
worklist.push(mid_parent);
|
|
|
|
}
|
|
|
|
}
|
2008-06-20 10:17:09 -07:00
|
|
|
mid->set_raise_LCA_visited(mark);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
return LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------memory_early_block--------------------------------
|
|
|
|
// This is a variation of find_deepest_input, the heart of schedule_early.
|
|
|
|
// Find the "early" block for a load, if we considered only memory and
|
|
|
|
// address inputs, that is, if other data inputs were ignored.
|
|
|
|
//
|
|
|
|
// Because a subset of edges are considered, the resulting block will
|
|
|
|
// be earlier (at a shallower dom_depth) than the true schedule_early
|
|
|
|
// point of the node. We compute this earlier block as a more permissive
|
|
|
|
// site for anti-dependency insertion, but only if subsume_loads is enabled.
|
|
|
|
static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
|
|
|
|
Node* base;
|
|
|
|
Node* index;
|
|
|
|
Node* store = load->in(MemNode::Memory);
|
|
|
|
load->as_Mach()->memory_inputs(base, index);
|
|
|
|
|
|
|
|
assert(base != NodeSentinel && index != NodeSentinel,
|
|
|
|
"unexpected base/index inputs");
|
|
|
|
|
|
|
|
Node* mem_inputs[4];
|
|
|
|
int mem_inputs_length = 0;
|
|
|
|
if (base != NULL) mem_inputs[mem_inputs_length++] = base;
|
|
|
|
if (index != NULL) mem_inputs[mem_inputs_length++] = index;
|
|
|
|
if (store != NULL) mem_inputs[mem_inputs_length++] = store;
|
|
|
|
|
|
|
|
// In the comparision below, add one to account for the control input,
|
|
|
|
// which may be null, but always takes up a spot in the in array.
|
|
|
|
if (mem_inputs_length + 1 < (int) load->req()) {
|
|
|
|
// This "load" has more inputs than just the memory, base and index inputs.
|
|
|
|
// For purposes of checking anti-dependences, we need to start
|
|
|
|
// from the early block of only the address portion of the instruction,
|
|
|
|
// and ignore other blocks that may have factored into the wider
|
|
|
|
// schedule_early calculation.
|
|
|
|
if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
|
|
|
|
|
|
|
|
Block* deepb = NULL; // Deepest block so far
|
|
|
|
int deepb_dom_depth = 0;
|
|
|
|
for (int i = 0; i < mem_inputs_length; i++) {
|
|
|
|
Block* inb = bbs[mem_inputs[i]->_idx];
|
|
|
|
if (deepb_dom_depth < (int) inb->_dom_depth) {
|
|
|
|
// The new inb must be dominated by the previous deepb.
|
|
|
|
// The various inputs must be linearly ordered in the dom
|
|
|
|
// tree, or else there will not be a unique deepest block.
|
|
|
|
DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
|
|
|
|
deepb = inb; // Save deepest block
|
|
|
|
deepb_dom_depth = deepb->_dom_depth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
early = deepb;
|
|
|
|
}
|
|
|
|
|
|
|
|
return early;
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------insert_anti_dependences---------------------------
|
|
|
|
// A load may need to witness memory that nearby stores can overwrite.
|
|
|
|
// For each nearby store, either insert an "anti-dependence" edge
|
|
|
|
// from the load to the store, or else move LCA upward to force the
|
|
|
|
// load to (eventually) be scheduled in a block above the store.
|
|
|
|
//
|
|
|
|
// Do not add edges to stores on distinct control-flow paths;
|
|
|
|
// only add edges to stores which might interfere.
|
|
|
|
//
|
|
|
|
// Return the (updated) LCA. There will not be any possibly interfering
|
|
|
|
// store between the load's "early block" and the updated LCA.
|
|
|
|
// Any stores in the updated LCA will have new precedence edges
|
|
|
|
// back to the load. The caller is expected to schedule the load
|
|
|
|
// in the LCA, in which case the precedence edges will make LCM
|
|
|
|
// preserve anti-dependences. The caller may also hoist the load
|
|
|
|
// above the LCA, if it is not the early block.
|
|
|
|
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
|
|
|
|
assert(load->needs_anti_dependence_check(), "must be a load of some sort");
|
|
|
|
assert(LCA != NULL, "");
|
|
|
|
DEBUG_ONLY(Block* LCA_orig = LCA);
|
|
|
|
|
|
|
|
// Compute the alias index. Loads and stores with different alias indices
|
|
|
|
// do not need anti-dependence edges.
|
|
|
|
uint load_alias_idx = C->get_alias_index(load->adr_type());
|
|
|
|
#ifdef ASSERT
|
|
|
|
if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
|
|
|
|
(PrintOpto || VerifyAliases ||
|
|
|
|
PrintMiscellaneous && (WizardMode || Verbose))) {
|
|
|
|
// Load nodes should not consume all of memory.
|
|
|
|
// Reporting a bottom type indicates a bug in adlc.
|
|
|
|
// If some particular type of node validly consumes all of memory,
|
|
|
|
// sharpen the preceding "if" to exclude it, so we can catch bugs here.
|
|
|
|
tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
|
|
|
|
load->dump(2);
|
|
|
|
if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
|
|
|
|
"String compare is only known 'load' that does not conflict with any stores");
|
|
|
|
|
|
|
|
if (!C->alias_type(load_alias_idx)->is_rewritable()) {
|
|
|
|
// It is impossible to spoil this load by putting stores before it,
|
|
|
|
// because we know that the stores will never update the value
|
|
|
|
// which 'load' must witness.
|
|
|
|
return LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
node_idx_t load_index = load->_idx;
|
|
|
|
|
|
|
|
// Note the earliest legal placement of 'load', as determined by
|
|
|
|
// by the unique point in the dom tree where all memory effects
|
|
|
|
// and other inputs are first available. (Computed by schedule_early.)
|
|
|
|
// For normal loads, 'early' is the shallowest place (dom graph wise)
|
|
|
|
// to look for anti-deps between this load and any store.
|
|
|
|
Block* early = _bbs[load_index];
|
|
|
|
|
|
|
|
// If we are subsuming loads, compute an "early" block that only considers
|
|
|
|
// memory or address inputs. This block may be different than the
|
|
|
|
// schedule_early block in that it could be at an even shallower depth in the
|
|
|
|
// dominator tree, and allow for a broader discovery of anti-dependences.
|
|
|
|
if (C->subsume_loads()) {
|
|
|
|
early = memory_early_block(load, early, _bbs);
|
|
|
|
}
|
|
|
|
|
|
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
|
|
Node_List worklist_mem(area); // prior memory state to store
|
|
|
|
Node_List worklist_store(area); // possible-def to explore
|
2008-02-28 10:45:15 -08:00
|
|
|
Node_List worklist_visited(area); // visited mergemem nodes
|
2007-12-01 00:00:00 +00:00
|
|
|
Node_List non_early_stores(area); // all relevant stores outside of early
|
|
|
|
bool must_raise_LCA = false;
|
|
|
|
|
|
|
|
#ifdef TRACK_PHI_INPUTS
|
|
|
|
// %%% This extra checking fails because MergeMem nodes are not GVNed.
|
|
|
|
// Provide "phi_inputs" to check if every input to a PhiNode is from the
|
|
|
|
// original memory state. This indicates a PhiNode for which should not
|
|
|
|
// prevent the load from sinking. For such a block, set_raise_LCA_mark
|
|
|
|
// may be overly conservative.
|
|
|
|
// Mechanism: count inputs seen for each Phi encountered in worklist_store.
|
|
|
|
DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// 'load' uses some memory state; look for users of the same state.
|
|
|
|
// Recurse through MergeMem nodes to the stores that use them.
|
|
|
|
|
|
|
|
// Each of these stores is a possible definition of memory
|
|
|
|
// that 'load' needs to use. We need to force 'load'
|
|
|
|
// to occur before each such store. When the store is in
|
|
|
|
// the same block as 'load', we insert an anti-dependence
|
|
|
|
// edge load->store.
|
|
|
|
|
|
|
|
// The relevant stores "nearby" the load consist of a tree rooted
|
|
|
|
// at initial_mem, with internal nodes of type MergeMem.
|
|
|
|
// Therefore, the branches visited by the worklist are of this form:
|
|
|
|
// initial_mem -> (MergeMem ->)* store
|
|
|
|
// The anti-dependence constraints apply only to the fringe of this tree.
|
|
|
|
|
|
|
|
Node* initial_mem = load->in(MemNode::Memory);
|
|
|
|
worklist_store.push(initial_mem);
|
2008-02-28 10:45:15 -08:00
|
|
|
worklist_visited.push(initial_mem);
|
2007-12-01 00:00:00 +00:00
|
|
|
worklist_mem.push(NULL);
|
|
|
|
while (worklist_store.size() > 0) {
|
|
|
|
// Examine a nearby store to see if it might interfere with our load.
|
|
|
|
Node* mem = worklist_mem.pop();
|
|
|
|
Node* store = worklist_store.pop();
|
|
|
|
uint op = store->Opcode();
|
|
|
|
|
|
|
|
// MergeMems do not directly have anti-deps.
|
|
|
|
// Treat them as internal nodes in a forward tree of memory states,
|
|
|
|
// the leaves of which are each a 'possible-def'.
|
|
|
|
if (store == initial_mem // root (exclusive) of tree we are searching
|
|
|
|
|| op == Op_MergeMem // internal node of tree we are searching
|
|
|
|
) {
|
|
|
|
mem = store; // It's not a possibly interfering store.
|
2008-02-28 10:45:15 -08:00
|
|
|
if (store == initial_mem)
|
|
|
|
initial_mem = NULL; // only process initial memory once
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
|
|
|
|
store = mem->fast_out(i);
|
|
|
|
if (store->is_MergeMem()) {
|
|
|
|
// Be sure we don't get into combinatorial problems.
|
|
|
|
// (Allow phis to be repeated; they can merge two relevant states.)
|
2008-02-28 10:45:15 -08:00
|
|
|
uint j = worklist_visited.size();
|
|
|
|
for (; j > 0; j--) {
|
|
|
|
if (worklist_visited.at(j-1) == store) break;
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
2008-02-28 10:45:15 -08:00
|
|
|
if (j > 0) continue; // already on work list; do not repeat
|
|
|
|
worklist_visited.push(store);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
worklist_mem.push(mem);
|
|
|
|
worklist_store.push(store);
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op == Op_MachProj || op == Op_Catch) continue;
|
|
|
|
if (store->needs_anti_dependence_check()) continue; // not really a store
|
|
|
|
|
|
|
|
// Compute the alias index. Loads and stores with different alias
|
|
|
|
// indices do not need anti-dependence edges. Wide MemBar's are
|
|
|
|
// anti-dependent on everything (except immutable memories).
|
|
|
|
const TypePtr* adr_type = store->adr_type();
|
|
|
|
if (!C->can_alias(adr_type, load_alias_idx)) continue;
|
|
|
|
|
|
|
|
// Most slow-path runtime calls do NOT modify Java memory, but
|
|
|
|
// they can block and so write Raw memory.
|
|
|
|
if (store->is_Mach()) {
|
|
|
|
MachNode* mstore = store->as_Mach();
|
|
|
|
if (load_alias_idx != Compile::AliasIdxRaw) {
|
|
|
|
// Check for call into the runtime using the Java calling
|
|
|
|
// convention (and from there into a wrapper); it has no
|
|
|
|
// _method. Can't do this optimization for Native calls because
|
|
|
|
// they CAN write to Java memory.
|
|
|
|
if (mstore->ideal_Opcode() == Op_CallStaticJava) {
|
|
|
|
assert(mstore->is_MachSafePoint(), "");
|
|
|
|
MachSafePointNode* ms = (MachSafePointNode*) mstore;
|
|
|
|
assert(ms->is_MachCallJava(), "");
|
|
|
|
MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
|
|
|
|
if (mcj->_method == NULL) {
|
|
|
|
// These runtime calls do not write to Java visible memory
|
|
|
|
// (other than Raw) and so do not require anti-dependence edges.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Same for SafePoints: they read/write Raw but only read otherwise.
|
|
|
|
// This is basically a workaround for SafePoints only defining control
|
|
|
|
// instead of control + memory.
|
|
|
|
if (mstore->ideal_Opcode() == Op_SafePoint)
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
// Some raw memory, such as the load of "top" at an allocation,
|
|
|
|
// can be control dependent on the previous safepoint. See
|
|
|
|
// comments in GraphKit::allocate_heap() about control input.
|
|
|
|
// Inserting an anti-dep between such a safepoint and a use
|
|
|
|
// creates a cycle, and will cause a subsequent failure in
|
|
|
|
// local scheduling. (BugId 4919904)
|
|
|
|
// (%%% How can a control input be a safepoint and not a projection??)
|
|
|
|
if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Identify a block that the current load must be above,
|
|
|
|
// or else observe that 'store' is all the way up in the
|
|
|
|
// earliest legal block for 'load'. In the latter case,
|
|
|
|
// immediately insert an anti-dependence edge.
|
|
|
|
Block* store_block = _bbs[store->_idx];
|
|
|
|
assert(store_block != NULL, "unused killing projections skipped above");
|
|
|
|
|
|
|
|
if (store->is_Phi()) {
|
|
|
|
// 'load' uses memory which is one (or more) of the Phi's inputs.
|
|
|
|
// It must be scheduled not before the Phi, but rather before
|
|
|
|
// each of the relevant Phi inputs.
|
|
|
|
//
|
|
|
|
// Instead of finding the LCA of all inputs to a Phi that match 'mem',
|
|
|
|
// we mark each corresponding predecessor block and do a combined
|
|
|
|
// hoisting operation later (raise_LCA_above_marks).
|
|
|
|
//
|
|
|
|
// Do not assert(store_block != early, "Phi merging memory after access")
|
|
|
|
// PhiNode may be at start of block 'early' with backedge to 'early'
|
|
|
|
DEBUG_ONLY(bool found_match = false);
|
|
|
|
for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
|
|
|
|
if (store->in(j) == mem) { // Found matching input?
|
|
|
|
DEBUG_ONLY(found_match = true);
|
|
|
|
Block* pred_block = _bbs[store_block->pred(j)->_idx];
|
|
|
|
if (pred_block != early) {
|
|
|
|
// If any predecessor of the Phi matches the load's "early block",
|
|
|
|
// we do not need a precedence edge between the Phi and 'load'
|
|
|
|
// since the load will be forced into a block preceeding the Phi.
|
|
|
|
pred_block->set_raise_LCA_mark(load_index);
|
|
|
|
assert(!LCA_orig->dominates(pred_block) ||
|
|
|
|
early->dominates(pred_block), "early is high enough");
|
|
|
|
must_raise_LCA = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(found_match, "no worklist bug");
|
|
|
|
#ifdef TRACK_PHI_INPUTS
|
|
|
|
#ifdef ASSERT
|
|
|
|
// This assert asks about correct handling of PhiNodes, which may not
|
|
|
|
// have all input edges directly from 'mem'. See BugId 4621264
|
|
|
|
int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
|
|
|
|
// Increment by exactly one even if there are multiple copies of 'mem'
|
|
|
|
// coming into the phi, because we will run this block several times
|
|
|
|
// if there are several copies of 'mem'. (That's how DU iterators work.)
|
|
|
|
phi_inputs.at_put(store->_idx, num_mem_inputs);
|
|
|
|
assert(PhiNode::Input + num_mem_inputs < store->req(),
|
|
|
|
"Expect at least one phi input will not be from original memory state");
|
|
|
|
#endif //ASSERT
|
|
|
|
#endif //TRACK_PHI_INPUTS
|
|
|
|
} else if (store_block != early) {
|
|
|
|
// 'store' is between the current LCA and earliest possible block.
|
|
|
|
// Label its block, and decide later on how to raise the LCA
|
|
|
|
// to include the effect on LCA of this store.
|
|
|
|
// If this store's block gets chosen as the raised LCA, we
|
|
|
|
// will find him on the non_early_stores list and stick him
|
|
|
|
// with a precedence edge.
|
|
|
|
// (But, don't bother if LCA is already raised all the way.)
|
|
|
|
if (LCA != early) {
|
|
|
|
store_block->set_raise_LCA_mark(load_index);
|
|
|
|
must_raise_LCA = true;
|
|
|
|
non_early_stores.push(store);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Found a possibly-interfering store in the load's 'early' block.
|
|
|
|
// This means 'load' cannot sink at all in the dominator tree.
|
|
|
|
// Add an anti-dep edge, and squeeze 'load' into the highest block.
|
|
|
|
assert(store != load->in(0), "dependence cycle found");
|
|
|
|
if (verify) {
|
|
|
|
assert(store->find_edge(load) != -1, "missing precedence edge");
|
|
|
|
} else {
|
|
|
|
store->add_prec(load);
|
|
|
|
}
|
|
|
|
LCA = early;
|
|
|
|
// This turns off the process of gathering non_early_stores.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// (Worklist is now empty; all nearby stores have been visited.)
|
|
|
|
|
|
|
|
// Finished if 'load' must be scheduled in its 'early' block.
|
|
|
|
// If we found any stores there, they have already been given
|
|
|
|
// precedence edges.
|
|
|
|
if (LCA == early) return LCA;
|
|
|
|
|
|
|
|
// We get here only if there are no possibly-interfering stores
|
|
|
|
// in the load's 'early' block. Move LCA up above all predecessors
|
|
|
|
// which contain stores we have noted.
|
|
|
|
//
|
|
|
|
// The raised LCA block can be a home to such interfering stores,
|
|
|
|
// but its predecessors must not contain any such stores.
|
|
|
|
//
|
|
|
|
// The raised LCA will be a lower bound for placing the load,
|
|
|
|
// preventing the load from sinking past any block containing
|
|
|
|
// a store that may invalidate the memory state required by 'load'.
|
|
|
|
if (must_raise_LCA)
|
|
|
|
LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
|
|
|
|
if (LCA == early) return LCA;
|
|
|
|
|
|
|
|
// Insert anti-dependence edges from 'load' to each store
|
|
|
|
// in the non-early LCA block.
|
|
|
|
// Mine the non_early_stores list for such stores.
|
|
|
|
if (LCA->raise_LCA_mark() == load_index) {
|
|
|
|
while (non_early_stores.size() > 0) {
|
|
|
|
Node* store = non_early_stores.pop();
|
|
|
|
Block* store_block = _bbs[store->_idx];
|
|
|
|
if (store_block == LCA) {
|
|
|
|
// add anti_dependence from store to load in its own block
|
|
|
|
assert(store != load->in(0), "dependence cycle found");
|
|
|
|
if (verify) {
|
|
|
|
assert(store->find_edge(load) != -1, "missing precedence edge");
|
|
|
|
} else {
|
|
|
|
store->add_prec(load);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
assert(store_block->raise_LCA_mark() == load_index, "block was marked");
|
|
|
|
// Any other stores we found must be either inside the new LCA
|
|
|
|
// or else outside the original LCA. In the latter case, they
|
|
|
|
// did not interfere with any use of 'load'.
|
|
|
|
assert(LCA->dominates(store_block)
|
|
|
|
|| !LCA_orig->dominates(store_block), "no stray stores");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the highest block containing stores; any stores
|
|
|
|
// within that block have been given anti-dependence edges.
|
|
|
|
return LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This class is used to iterate backwards over the nodes in the graph.
|
|
|
|
|
|
|
|
class Node_Backward_Iterator {
|
|
|
|
|
|
|
|
private:
|
|
|
|
Node_Backward_Iterator();
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Constructor for the iterator
|
|
|
|
Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
|
|
|
|
|
|
|
|
// Postincrement operator to iterate over the nodes
|
|
|
|
Node *next();
|
|
|
|
|
|
|
|
private:
|
|
|
|
VectorSet &_visited;
|
|
|
|
Node_List &_stack;
|
|
|
|
Block_Array &_bbs;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Constructor for the Node_Backward_Iterator
|
|
|
|
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
|
|
|
|
: _visited(visited), _stack(stack), _bbs(bbs) {
|
|
|
|
// The stack should contain exactly the root
|
|
|
|
stack.clear();
|
|
|
|
stack.push(root);
|
|
|
|
|
|
|
|
// Clear the visited bits
|
|
|
|
visited.Clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterator for the Node_Backward_Iterator
|
|
|
|
Node *Node_Backward_Iterator::next() {
|
|
|
|
|
|
|
|
// If the _stack is empty, then just return NULL: finished.
|
|
|
|
if ( !_stack.size() )
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
// '_stack' is emulating a real _stack. The 'visit-all-users' loop has been
|
|
|
|
// made stateless, so I do not need to record the index 'i' on my _stack.
|
|
|
|
// Instead I visit all users each time, scanning for unvisited users.
|
|
|
|
// I visit unvisited not-anti-dependence users first, then anti-dependent
|
|
|
|
// children next.
|
|
|
|
Node *self = _stack.pop();
|
|
|
|
|
|
|
|
// I cycle here when I am entering a deeper level of recursion.
|
|
|
|
// The key variable 'self' was set prior to jumping here.
|
|
|
|
while( 1 ) {
|
|
|
|
|
|
|
|
_visited.set(self->_idx);
|
|
|
|
|
|
|
|
// Now schedule all uses as late as possible.
|
|
|
|
uint src = self->is_Proj() ? self->in(0)->_idx : self->_idx;
|
|
|
|
uint src_rpo = _bbs[src]->_rpo;
|
|
|
|
|
|
|
|
// Schedule all nodes in a post-order visit
|
|
|
|
Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
|
|
|
|
|
|
|
|
// Scan for unvisited nodes
|
|
|
|
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
|
|
|
|
// For all uses, schedule late
|
|
|
|
Node* n = self->fast_out(i); // Use
|
|
|
|
|
|
|
|
// Skip already visited children
|
|
|
|
if ( _visited.test(n->_idx) )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// do not traverse backward control edges
|
|
|
|
Node *use = n->is_Proj() ? n->in(0) : n;
|
|
|
|
uint use_rpo = _bbs[use->_idx]->_rpo;
|
|
|
|
|
|
|
|
if ( use_rpo < src_rpo )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Phi nodes always precede uses in a basic block
|
|
|
|
if ( use_rpo == src_rpo && use->is_Phi() )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
unvisited = n; // Found unvisited
|
|
|
|
|
|
|
|
// Check for possible-anti-dependent
|
|
|
|
if( !n->needs_anti_dependence_check() )
|
|
|
|
break; // Not visited, not anti-dep; schedule it NOW
|
|
|
|
}
|
|
|
|
|
|
|
|
// Did I find an unvisited not-anti-dependent Node?
|
|
|
|
if ( !unvisited )
|
|
|
|
break; // All done with children; post-visit 'self'
|
|
|
|
|
|
|
|
// Visit the unvisited Node. Contains the obvious push to
|
|
|
|
// indicate I'm entering a deeper level of recursion. I push the
|
|
|
|
// old state onto the _stack and set a new state and loop (recurse).
|
|
|
|
_stack.push(self);
|
|
|
|
self = unvisited;
|
|
|
|
} // End recursion loop
|
|
|
|
|
|
|
|
return self;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------ComputeLatenciesBackwards----------------------
|
|
|
|
// Compute the latency of all the instructions.
|
|
|
|
void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining())
|
|
|
|
tty->print("\n#---- ComputeLatenciesBackwards ----\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
|
|
|
|
Node *n;
|
|
|
|
|
|
|
|
// Walk over all the nodes from last to first
|
|
|
|
while (n = iter.next()) {
|
|
|
|
// Set the latency for the definitions of this instruction
|
|
|
|
partial_latency_of_defs(n);
|
|
|
|
}
|
|
|
|
} // end ComputeLatenciesBackwards
|
|
|
|
|
|
|
|
//------------------------------partial_latency_of_defs------------------------
|
|
|
|
// Compute the latency impact of this node on all defs. This computes
|
|
|
|
// a number that increases as we approach the beginning of the routine.
|
|
|
|
void PhaseCFG::partial_latency_of_defs(Node *n) {
|
|
|
|
// Set the latency for this instruction
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
|
|
|
|
n->_idx, _node_latency.at_grow(n->_idx));
|
|
|
|
dump();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (n->is_Proj())
|
|
|
|
n = n->in(0);
|
|
|
|
|
|
|
|
if (n->is_Root())
|
|
|
|
return;
|
|
|
|
|
|
|
|
uint nlen = n->len();
|
|
|
|
uint use_latency = _node_latency.at_grow(n->_idx);
|
|
|
|
uint use_pre_order = _bbs[n->_idx]->_pre_order;
|
|
|
|
|
|
|
|
for ( uint j=0; j<nlen; j++ ) {
|
|
|
|
Node *def = n->in(j);
|
|
|
|
|
|
|
|
if (!def || def == n)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Walk backwards thru projections
|
|
|
|
if (def->is_Proj())
|
|
|
|
def = def->in(0);
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("# in(%2d): ", j);
|
|
|
|
def->dump();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// If the defining block is not known, assume it is ok
|
|
|
|
Block *def_block = _bbs[def->_idx];
|
|
|
|
uint def_pre_order = def_block ? def_block->_pre_order : 0;
|
|
|
|
|
|
|
|
if ( (use_pre_order < def_pre_order) ||
|
|
|
|
(use_pre_order == def_pre_order && n->is_Phi()) )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
uint delta_latency = n->latency(j);
|
|
|
|
uint current_latency = delta_latency + use_latency;
|
|
|
|
|
|
|
|
if (_node_latency.at_grow(def->_idx) < current_latency) {
|
|
|
|
_node_latency.at_put_grow(def->_idx, current_latency);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
|
|
|
|
use_latency, j, delta_latency, current_latency, def->_idx,
|
|
|
|
_node_latency.at_grow(def->_idx));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------latency_from_use-------------------------------
|
|
|
|
// Compute the latency of a specific use
|
|
|
|
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
|
|
|
|
// If self-reference, return no latency
|
|
|
|
if (use == n || use->is_Root())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
uint def_pre_order = _bbs[def->_idx]->_pre_order;
|
|
|
|
uint latency = 0;
|
|
|
|
|
|
|
|
// If the use is not a projection, then it is simple...
|
|
|
|
if (!use->is_Proj()) {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("# out(): ");
|
|
|
|
use->dump();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
uint use_pre_order = _bbs[use->_idx]->_pre_order;
|
|
|
|
|
|
|
|
if (use_pre_order < def_pre_order)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (use_pre_order == def_pre_order && use->is_Phi())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
uint nlen = use->len();
|
|
|
|
uint nl = _node_latency.at_grow(use->_idx);
|
|
|
|
|
|
|
|
for ( uint j=0; j<nlen; j++ ) {
|
|
|
|
if (use->in(j) == n) {
|
|
|
|
// Change this if we want local latencies
|
|
|
|
uint ul = use->latency(j);
|
|
|
|
uint l = ul + nl;
|
|
|
|
if (latency < l) latency = l;
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
|
|
|
|
nl, j, ul, l, latency);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// This is a projection, just grab the latency of the use(s)
|
|
|
|
for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
|
|
|
|
uint l = latency_from_use(use, def, use->fast_out(j));
|
|
|
|
if (latency < l) latency = l;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return latency;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------latency_from_uses------------------------------
|
|
|
|
// Compute the latency of this instruction relative to all of it's uses.
|
|
|
|
// This computes a number that increases as we approach the beginning of the
|
|
|
|
// routine.
|
|
|
|
void PhaseCFG::latency_from_uses(Node *n) {
|
|
|
|
// Set the latency for this instruction
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
|
|
|
|
n->_idx, _node_latency.at_grow(n->_idx));
|
|
|
|
dump();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint latency=0;
|
|
|
|
const Node *def = n->is_Proj() ? n->in(0): n;
|
|
|
|
|
|
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
|
|
uint l = latency_from_use(n, def, n->fast_out(i));
|
|
|
|
|
|
|
|
if (latency < l) latency = l;
|
|
|
|
}
|
|
|
|
|
|
|
|
_node_latency.at_put_grow(n->_idx, latency);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------hoist_to_cheaper_block-------------------------
|
|
|
|
// Pick a block for node self, between early and LCA, that is a cheaper
|
|
|
|
// alternative to LCA.
|
|
|
|
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
|
|
|
|
const double delta = 1+PROB_UNLIKELY_MAG(4);
|
|
|
|
Block* least = LCA;
|
|
|
|
double least_freq = least->_freq;
|
|
|
|
uint target = _node_latency.at_grow(self->_idx);
|
|
|
|
uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
|
|
|
|
uint end_latency = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
|
|
|
|
bool in_latency = (target <= start_latency);
|
|
|
|
const Block* root_block = _bbs[_root->_idx];
|
|
|
|
|
|
|
|
// Turn off latency scheduling if scheduling is just plain off
|
|
|
|
if (!C->do_scheduling())
|
|
|
|
in_latency = true;
|
|
|
|
|
|
|
|
// Do not hoist (to cover latency) instructions which target a
|
|
|
|
// single register. Hoisting stretches the live range of the
|
|
|
|
// single register and may force spilling.
|
|
|
|
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
|
|
|
|
if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
|
|
|
|
in_latency = true;
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("# Find cheaper block for latency %d: ",
|
|
|
|
_node_latency.at_grow(self->_idx));
|
|
|
|
self->dump();
|
|
|
|
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
|
|
|
|
LCA->_pre_order,
|
|
|
|
LCA->_nodes[0]->_idx,
|
|
|
|
start_latency,
|
|
|
|
LCA->_nodes[LCA->end_idx()]->_idx,
|
|
|
|
end_latency,
|
|
|
|
least_freq);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Walk up the dominator tree from LCA (Lowest common ancestor) to
|
|
|
|
// the earliest legal location. Capture the least execution frequency.
|
|
|
|
while (LCA != early) {
|
|
|
|
LCA = LCA->_idom; // Follow up the dominator tree
|
|
|
|
|
|
|
|
if (LCA == NULL) {
|
|
|
|
// Bailout without retry
|
|
|
|
C->record_method_not_compilable("late schedule failed: LCA == NULL");
|
|
|
|
return least;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Don't hoist machine instructions to the root basic block
|
|
|
|
if (mach && LCA == root_block)
|
|
|
|
break;
|
|
|
|
|
|
|
|
uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
|
|
|
|
uint end_idx = LCA->end_idx();
|
|
|
|
uint end_lat = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
|
|
|
|
double LCA_freq = LCA->_freq;
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
|
|
|
|
LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (LCA_freq < least_freq || // Better Frequency
|
|
|
|
( !in_latency && // No block containing latency
|
|
|
|
LCA_freq < least_freq * delta && // No worse frequency
|
|
|
|
target >= end_lat && // within latency range
|
|
|
|
!self->is_iteratively_computed() ) // But don't hoist IV increments
|
|
|
|
// because they may end up above other uses of their phi forcing
|
|
|
|
// their result register to be different from their input.
|
|
|
|
) {
|
|
|
|
least = LCA; // Found cheaper block
|
|
|
|
least_freq = LCA_freq;
|
|
|
|
start_latency = start_lat;
|
|
|
|
end_latency = end_lat;
|
|
|
|
if (target <= start_lat)
|
|
|
|
in_latency = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
|
|
|
|
least->_pre_order, start_latency, least_freq);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// See if the latency needs to be updated
|
|
|
|
if (target < end_latency) {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
_node_latency.at_put_grow(self->_idx, end_latency);
|
|
|
|
partial_latency_of_defs(self);
|
|
|
|
}
|
|
|
|
|
|
|
|
return least;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------schedule_late-----------------------------------
|
|
|
|
// Now schedule all codes as LATE as possible. This is the LCA in the
|
|
|
|
// dominator tree of all USES of a value. Pick the block with the least
|
|
|
|
// loop nesting depth that is lowest in the dominator tree.
|
|
|
|
extern const char must_clone[];
|
|
|
|
void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining())
|
|
|
|
tty->print("\n#---- schedule_late ----\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
|
|
|
|
Node *self;
|
|
|
|
|
|
|
|
// Walk over all the nodes from last to first
|
|
|
|
while (self = iter.next()) {
|
|
|
|
Block* early = _bbs[self->_idx]; // Earliest legal placement
|
|
|
|
|
|
|
|
if (self->is_top()) {
|
|
|
|
// Top node goes in bb #2 with other constants.
|
|
|
|
// It must be special-cased, because it has no out edges.
|
|
|
|
early->add_inst(self);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// No uses, just terminate
|
|
|
|
if (self->outcnt() == 0) {
|
|
|
|
assert(self->Opcode() == Op_MachProj, "sanity");
|
|
|
|
continue; // Must be a dead machine projection
|
|
|
|
}
|
|
|
|
|
|
|
|
// If node is pinned in the block, then no scheduling can be done.
|
|
|
|
if( self->pinned() ) // Pinned in block?
|
|
|
|
continue;
|
|
|
|
|
|
|
|
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
|
|
|
|
if (mach) {
|
|
|
|
switch (mach->ideal_Opcode()) {
|
|
|
|
case Op_CreateEx:
|
|
|
|
// Don't move exception creation
|
|
|
|
early->add_inst(self);
|
|
|
|
continue;
|
|
|
|
break;
|
|
|
|
case Op_CheckCastPP:
|
|
|
|
// Don't move CheckCastPP nodes away from their input, if the input
|
|
|
|
// is a rawptr (5071820).
|
|
|
|
Node *def = self->in(1);
|
|
|
|
if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
|
|
|
|
early->add_inst(self);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gather LCA of all uses
|
|
|
|
Block *LCA = NULL;
|
|
|
|
{
|
|
|
|
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
|
|
|
|
// For all uses, find LCA
|
|
|
|
Node* use = self->fast_out(i);
|
|
|
|
LCA = raise_LCA_above_use(LCA, use, self, _bbs);
|
|
|
|
}
|
|
|
|
} // (Hide defs of imax, i from rest of block.)
|
|
|
|
|
|
|
|
// Place temps in the block of their use. This isn't a
|
|
|
|
// requirement for correctness but it reduces useless
|
|
|
|
// interference between temps and other nodes.
|
|
|
|
if (mach != NULL && mach->is_MachTemp()) {
|
|
|
|
_bbs.map(self->_idx, LCA);
|
|
|
|
LCA->add_inst(self);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if 'self' could be anti-dependent on memory
|
|
|
|
if (self->needs_anti_dependence_check()) {
|
|
|
|
// Hoist LCA above possible-defs and insert anti-dependences to
|
|
|
|
// defs in new LCA block.
|
|
|
|
LCA = insert_anti_dependences(LCA, self);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (early->_dom_depth > LCA->_dom_depth) {
|
|
|
|
// Somehow the LCA has moved above the earliest legal point.
|
|
|
|
// (One way this can happen is via memory_early_block.)
|
|
|
|
if (C->subsume_loads() == true && !C->failing()) {
|
|
|
|
// Retry with subsume_loads == false
|
|
|
|
// If this is the first failure, the sentinel string will "stick"
|
|
|
|
// to the Compile object, and the C2Compiler will see it and retry.
|
|
|
|
C->record_failure(C2Compiler::retry_no_subsuming_loads());
|
|
|
|
} else {
|
|
|
|
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
|
|
|
|
C->record_method_not_compilable("late schedule failed: incorrect graph");
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there is no opportunity to hoist, then we're done.
|
|
|
|
bool try_to_hoist = (LCA != early);
|
|
|
|
|
|
|
|
// Must clone guys stay next to use; no hoisting allowed.
|
|
|
|
// Also cannot hoist guys that alter memory or are otherwise not
|
|
|
|
// allocatable (hoisting can make a value live longer, leading to
|
|
|
|
// anti and output dependency problems which are normally resolved
|
|
|
|
// by the register allocator giving everyone a different register).
|
|
|
|
if (mach != NULL && must_clone[mach->ideal_Opcode()])
|
|
|
|
try_to_hoist = false;
|
|
|
|
|
|
|
|
Block* late = NULL;
|
|
|
|
if (try_to_hoist) {
|
|
|
|
// Now find the block with the least execution frequency.
|
|
|
|
// Start at the latest schedule and work up to the earliest schedule
|
|
|
|
// in the dominator tree. Thus the Node will dominate all its uses.
|
|
|
|
late = hoist_to_cheaper_block(LCA, early, self);
|
|
|
|
} else {
|
|
|
|
// Just use the LCA of the uses.
|
|
|
|
late = LCA;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Put the node into target block
|
|
|
|
schedule_node_into_block(self, late);
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
if (self->needs_anti_dependence_check()) {
|
|
|
|
// since precedence edges are only inserted when we're sure they
|
|
|
|
// are needed make sure that after placement in a block we don't
|
|
|
|
// need any new precedence edges.
|
|
|
|
verify_anti_dependences(late, self);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} // Loop until all nodes have been visited
|
|
|
|
|
|
|
|
} // end ScheduleLate
|
|
|
|
|
|
|
|
//------------------------------GlobalCodeMotion-------------------------------
|
|
|
|
void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
|
|
|
|
ResourceMark rm;
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("\n---- Start GlobalCodeMotion ----\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Initialize the bbs.map for things on the proj_list
|
|
|
|
uint i;
|
|
|
|
for( i=0; i < proj_list.size(); i++ )
|
|
|
|
_bbs.map(proj_list[i]->_idx, NULL);
|
|
|
|
|
|
|
|
// Set the basic block for Nodes pinned into blocks
|
|
|
|
Arena *a = Thread::current()->resource_area();
|
|
|
|
VectorSet visited(a);
|
|
|
|
schedule_pinned_nodes( visited );
|
|
|
|
|
|
|
|
// Find the earliest Block any instruction can be placed in. Some
|
|
|
|
// instructions are pinned into Blocks. Unpinned instructions can
|
|
|
|
// appear in last block in which all their inputs occur.
|
|
|
|
visited.Clear();
|
|
|
|
Node_List stack(a);
|
|
|
|
stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
|
|
|
|
if (!schedule_early(visited, stack)) {
|
|
|
|
// Bailout without retry
|
|
|
|
C->record_method_not_compilable("early schedule failed");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Build Def-Use edges.
|
|
|
|
proj_list.push(_root); // Add real root as another root
|
|
|
|
proj_list.pop();
|
|
|
|
|
|
|
|
// Compute the latency information (via backwards walk) for all the
|
|
|
|
// instructions in the graph
|
|
|
|
GrowableArray<uint> node_latency;
|
|
|
|
_node_latency = node_latency;
|
|
|
|
|
|
|
|
if( C->do_scheduling() )
|
|
|
|
ComputeLatenciesBackwards(visited, stack);
|
|
|
|
|
|
|
|
// Now schedule all codes as LATE as possible. This is the LCA in the
|
|
|
|
// dominator tree of all USES of a value. Pick the block with the least
|
|
|
|
// loop nesting depth that is lowest in the dominator tree.
|
|
|
|
// ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
|
|
|
|
schedule_late(visited, stack);
|
|
|
|
if( C->failing() ) {
|
|
|
|
// schedule_late fails only when graph is incorrect.
|
|
|
|
assert(!VerifyGraphEdges, "verification should have failed");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
unique = C->unique();
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("\n---- Detect implicit null checks ----\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Detect implicit-null-check opportunities. Basically, find NULL checks
|
|
|
|
// with suitable memory ops nearby. Use the memory op to do the NULL check.
|
|
|
|
// I can generate a memory op if there is not one nearby.
|
|
|
|
if (C->is_method_compilation()) {
|
|
|
|
// Don't do it for natives, adapters, or runtime stubs
|
|
|
|
int allowed_reasons = 0;
|
|
|
|
// ...and don't do it when there have been too many traps, globally.
|
|
|
|
for (int reason = (int)Deoptimization::Reason_none+1;
|
|
|
|
reason < Compile::trapHistLength; reason++) {
|
|
|
|
assert(reason < BitsPerInt, "recode bit map");
|
|
|
|
if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
|
|
|
|
allowed_reasons |= nth_bit(reason);
|
|
|
|
}
|
|
|
|
// By reversing the loop direction we get a very minor gain on mpegaudio.
|
|
|
|
// Feel free to revert to a forward loop for clarity.
|
|
|
|
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
|
|
|
|
for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
|
|
|
|
Node *proj = matcher._null_check_tests[i ];
|
|
|
|
Node *val = matcher._null_check_tests[i+1];
|
|
|
|
_bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
|
|
|
|
// The implicit_null_check will only perform the transformation
|
|
|
|
// if the null branch is truly uncommon, *and* it leads to an
|
|
|
|
// uncommon trap. Combined with the too_many_traps guards
|
|
|
|
// above, this prevents SEGV storms reported in 6366351,
|
|
|
|
// by recompiling offending methods without this optimization.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("\n---- Start Local Scheduling ----\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Schedule locally. Right now a simple topological sort.
|
|
|
|
// Later, do a real latency aware scheduler.
|
|
|
|
int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
|
|
|
|
memset( ready_cnt, -1, C->unique() * sizeof(int) );
|
|
|
|
visited.Clear();
|
|
|
|
for (i = 0; i < _num_blocks; i++) {
|
|
|
|
if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
|
|
|
|
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
|
|
|
|
C->record_method_not_compilable("local schedule failed");
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we inserted any instructions between a Call and his CatchNode,
|
|
|
|
// clone the instructions on all paths below the Catch.
|
|
|
|
for( i=0; i < _num_blocks; i++ )
|
|
|
|
_blocks[i]->call_catch_cleanup(_bbs);
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (trace_opto_pipelining()) {
|
|
|
|
tty->print("\n---- After GlobalCodeMotion ----\n");
|
|
|
|
for (uint i = 0; i < _num_blocks; i++) {
|
|
|
|
_blocks[i]->dump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------Estimate_Block_Frequency-----------------------
|
|
|
|
// Estimate block frequencies based on IfNode probabilities.
|
|
|
|
void PhaseCFG::Estimate_Block_Frequency() {
|
|
|
|
int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
|
|
|
|
// Most of our algorithms will die horribly if frequency can become
|
|
|
|
// negative so make sure cnts is a sane value.
|
|
|
|
if( cnts <= 0 ) cnts = 1;
|
|
|
|
float f = (float)cnts/(float)FreqCountInvocations;
|
|
|
|
|
|
|
|
// Create the loop tree and calculate loop depth.
|
|
|
|
_root_loop = create_loop_tree();
|
|
|
|
_root_loop->compute_loop_depth(0);
|
|
|
|
|
|
|
|
// Compute block frequency of each block, relative to a single loop entry.
|
|
|
|
_root_loop->compute_freq();
|
|
|
|
|
|
|
|
// Adjust all frequencies to be relative to a single method entry
|
|
|
|
_root_loop->_freq = f * 1.0;
|
|
|
|
_root_loop->scale_freq();
|
|
|
|
|
|
|
|
// force paths ending at uncommon traps to be infrequent
|
|
|
|
Block_List worklist;
|
|
|
|
Block* root_blk = _blocks[0];
|
|
|
|
for (uint i = 0; i < root_blk->num_preds(); i++) {
|
|
|
|
Block *pb = _bbs[root_blk->pred(i)->_idx];
|
|
|
|
if (pb->has_uncommon_code()) {
|
|
|
|
worklist.push(pb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (worklist.size() > 0) {
|
|
|
|
Block* uct = worklist.pop();
|
|
|
|
uct->_freq = PROB_MIN;
|
|
|
|
for (uint i = 0; i < uct->num_preds(); i++) {
|
|
|
|
Block *pb = _bbs[uct->pred(i)->_idx];
|
|
|
|
if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
|
|
|
|
worklist.push(pb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (PrintCFGBlockFreq) {
|
|
|
|
tty->print_cr("CFG Block Frequencies");
|
|
|
|
_root_loop->dump_tree();
|
|
|
|
if (Verbose) {
|
|
|
|
tty->print_cr("PhaseCFG dump");
|
|
|
|
dump();
|
|
|
|
tty->print_cr("Node dump");
|
|
|
|
_root->dump(99999);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------create_loop_tree--------------------------------
|
|
|
|
// Create a loop tree from the CFG
|
|
|
|
CFGLoop* PhaseCFG::create_loop_tree() {
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
assert( _blocks[0] == _broot, "" );
|
|
|
|
for (uint i = 0; i < _num_blocks; i++ ) {
|
|
|
|
Block *b = _blocks[i];
|
|
|
|
// Check that _loop field are clear...we could clear them if not.
|
|
|
|
assert(b->_loop == NULL, "clear _loop expected");
|
|
|
|
// Sanity check that the RPO numbering is reflected in the _blocks array.
|
|
|
|
// It doesn't have to be for the loop tree to be built, but if it is not,
|
|
|
|
// then the blocks have been reordered since dom graph building...which
|
|
|
|
// may question the RPO numbering
|
|
|
|
assert(b->_rpo == i, "unexpected reverse post order number");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int idct = 0;
|
|
|
|
CFGLoop* root_loop = new CFGLoop(idct++);
|
|
|
|
|
|
|
|
Block_List worklist;
|
|
|
|
|
|
|
|
// Assign blocks to loops
|
|
|
|
for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
|
|
|
|
Block *b = _blocks[i];
|
|
|
|
|
|
|
|
if (b->head()->is_Loop()) {
|
|
|
|
Block* loop_head = b;
|
|
|
|
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
|
|
|
|
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
|
|
|
|
Block* tail = _bbs[tail_n->_idx];
|
|
|
|
|
|
|
|
// Defensively filter out Loop nodes for non-single-entry loops.
|
|
|
|
// For all reasonable loops, the head occurs before the tail in RPO.
|
|
|
|
if (i <= tail->_rpo) {
|
|
|
|
|
|
|
|
// The tail and (recursive) predecessors of the tail
|
|
|
|
// are made members of a new loop.
|
|
|
|
|
|
|
|
assert(worklist.size() == 0, "nonempty worklist");
|
|
|
|
CFGLoop* nloop = new CFGLoop(idct++);
|
|
|
|
assert(loop_head->_loop == NULL, "just checking");
|
|
|
|
loop_head->_loop = nloop;
|
|
|
|
// Add to nloop so push_pred() will skip over inner loops
|
|
|
|
nloop->add_member(loop_head);
|
|
|
|
nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
|
|
|
|
|
|
|
|
while (worklist.size() > 0) {
|
|
|
|
Block* member = worklist.pop();
|
|
|
|
if (member != loop_head) {
|
|
|
|
for (uint j = 1; j < member->num_preds(); j++) {
|
|
|
|
nloop->push_pred(member, j, worklist, _bbs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a member list for each loop consisting
|
|
|
|
// of both blocks and (immediate child) loops.
|
|
|
|
for (uint i = 0; i < _num_blocks; i++) {
|
|
|
|
Block *b = _blocks[i];
|
|
|
|
CFGLoop* lp = b->_loop;
|
|
|
|
if (lp == NULL) {
|
|
|
|
// Not assigned to a loop. Add it to the method's pseudo loop.
|
|
|
|
b->_loop = root_loop;
|
|
|
|
lp = root_loop;
|
|
|
|
}
|
|
|
|
if (lp == root_loop || b != lp->head()) { // loop heads are already members
|
|
|
|
lp->add_member(b);
|
|
|
|
}
|
|
|
|
if (lp != root_loop) {
|
|
|
|
if (lp->parent() == NULL) {
|
|
|
|
// Not a nested loop. Make it a child of the method's pseudo loop.
|
|
|
|
root_loop->add_nested_loop(lp);
|
|
|
|
}
|
|
|
|
if (b == lp->head()) {
|
|
|
|
// Add nested loop to member list of parent loop.
|
|
|
|
lp->parent()->add_member(lp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return root_loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------push_pred--------------------------------------
|
|
|
|
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
|
|
|
|
Node* pred_n = blk->pred(i);
|
|
|
|
Block* pred = node_to_blk[pred_n->_idx];
|
|
|
|
CFGLoop *pred_loop = pred->_loop;
|
|
|
|
if (pred_loop == NULL) {
|
|
|
|
// Filter out blocks for non-single-entry loops.
|
|
|
|
// For all reasonable loops, the head occurs before the tail in RPO.
|
|
|
|
if (pred->_rpo > head()->_rpo) {
|
|
|
|
pred->_loop = this;
|
|
|
|
worklist.push(pred);
|
|
|
|
}
|
|
|
|
} else if (pred_loop != this) {
|
|
|
|
// Nested loop.
|
|
|
|
while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
|
|
|
|
pred_loop = pred_loop->_parent;
|
|
|
|
}
|
|
|
|
// Make pred's loop be a child
|
|
|
|
if (pred_loop->_parent == NULL) {
|
|
|
|
add_nested_loop(pred_loop);
|
|
|
|
// Continue with loop entry predecessor.
|
|
|
|
Block* pred_head = pred_loop->head();
|
|
|
|
assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
|
|
|
|
assert(pred_head != head(), "loop head in only one loop");
|
|
|
|
push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
|
|
|
|
} else {
|
|
|
|
assert(pred_loop->_parent == this && _parent == NULL, "just checking");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------add_nested_loop--------------------------------
|
|
|
|
// Make cl a child of the current loop in the loop tree.
|
|
|
|
void CFGLoop::add_nested_loop(CFGLoop* cl) {
|
|
|
|
assert(_parent == NULL, "no parent yet");
|
|
|
|
assert(cl != this, "not my own parent");
|
|
|
|
cl->_parent = this;
|
|
|
|
CFGLoop* ch = _child;
|
|
|
|
if (ch == NULL) {
|
|
|
|
_child = cl;
|
|
|
|
} else {
|
|
|
|
while (ch->_sibling != NULL) { ch = ch->_sibling; }
|
|
|
|
ch->_sibling = cl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------compute_loop_depth-----------------------------
|
|
|
|
// Store the loop depth in each CFGLoop object.
|
|
|
|
// Recursively walk the children to do the same for them.
|
|
|
|
void CFGLoop::compute_loop_depth(int depth) {
|
|
|
|
_depth = depth;
|
|
|
|
CFGLoop* ch = _child;
|
|
|
|
while (ch != NULL) {
|
|
|
|
ch->compute_loop_depth(depth + 1);
|
|
|
|
ch = ch->_sibling;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------compute_freq-----------------------------------
|
|
|
|
// Compute the frequency of each block and loop, relative to a single entry
|
|
|
|
// into the dominating loop head.
|
|
|
|
void CFGLoop::compute_freq() {
|
|
|
|
// Bottom up traversal of loop tree (visit inner loops first.)
|
|
|
|
// Set loop head frequency to 1.0, then transitively
|
|
|
|
// compute frequency for all successors in the loop,
|
|
|
|
// as well as for each exit edge. Inner loops are
|
|
|
|
// treated as single blocks with loop exit targets
|
|
|
|
// as the successor blocks.
|
|
|
|
|
|
|
|
// Nested loops first
|
|
|
|
CFGLoop* ch = _child;
|
|
|
|
while (ch != NULL) {
|
|
|
|
ch->compute_freq();
|
|
|
|
ch = ch->_sibling;
|
|
|
|
}
|
|
|
|
assert (_members.length() > 0, "no empty loops");
|
|
|
|
Block* hd = head();
|
|
|
|
hd->_freq = 1.0f;
|
|
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
|
|
CFGElement* s = _members.at(i);
|
|
|
|
float freq = s->_freq;
|
|
|
|
if (s->is_block()) {
|
|
|
|
Block* b = s->as_Block();
|
|
|
|
for (uint j = 0; j < b->_num_succs; j++) {
|
|
|
|
Block* sb = b->_succs[j];
|
|
|
|
update_succ_freq(sb, freq * b->succ_prob(j));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
CFGLoop* lp = s->as_CFGLoop();
|
|
|
|
assert(lp->_parent == this, "immediate child");
|
|
|
|
for (int k = 0; k < lp->_exits.length(); k++) {
|
|
|
|
Block* eb = lp->_exits.at(k).get_target();
|
|
|
|
float prob = lp->_exits.at(k).get_prob();
|
|
|
|
update_succ_freq(eb, freq * prob);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// Raise frequency of the loop backedge block, in an effort
|
|
|
|
// to keep it empty. Skip the method level "loop".
|
|
|
|
if (_parent != NULL) {
|
|
|
|
CFGElement* s = _members.at(_members.length() - 1);
|
|
|
|
if (s->is_block()) {
|
|
|
|
Block* bk = s->as_Block();
|
|
|
|
if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
|
|
|
|
// almost any value >= 1.0f works
|
|
|
|
// FIXME: raw constant
|
|
|
|
bk->_freq = 1.05f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// For all loops other than the outer, "method" loop,
|
|
|
|
// sum and normalize the exit probability. The "method" loop
|
|
|
|
// should keep the initial exit probability of 1, so that
|
|
|
|
// inner blocks do not get erroneously scaled.
|
|
|
|
if (_depth != 0) {
|
|
|
|
// Total the exit probabilities for this loop.
|
|
|
|
float exits_sum = 0.0f;
|
|
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
|
|
exits_sum += _exits.at(i).get_prob();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Normalize the exit probabilities. Until now, the
|
|
|
|
// probabilities estimate the possibility of exit per
|
|
|
|
// a single loop iteration; afterward, they estimate
|
|
|
|
// the probability of exit per loop entry.
|
|
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
|
|
Block* et = _exits.at(i).get_target();
|
|
|
|
float new_prob = _exits.at(i).get_prob() / exits_sum;
|
|
|
|
BlockProbPair bpp(et, new_prob);
|
|
|
|
_exits.at_put(i, bpp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Save the total, but guard against unreasoable probability,
|
|
|
|
// as the value is used to estimate the loop trip count.
|
|
|
|
// An infinite trip count would blur relative block
|
|
|
|
// frequencies.
|
|
|
|
if (exits_sum > 1.0f) exits_sum = 1.0;
|
|
|
|
if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
|
|
|
|
_exit_prob = exits_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------succ_prob-------------------------------------
|
|
|
|
// Determine the probability of reaching successor 'i' from the receiver block.
|
|
|
|
float Block::succ_prob(uint i) {
|
|
|
|
int eidx = end_idx();
|
|
|
|
Node *n = _nodes[eidx]; // Get ending Node
|
|
|
|
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
|
|
|
|
|
|
|
|
// Switch on branch type
|
|
|
|
switch( op ) {
|
|
|
|
case Op_CountedLoopEnd:
|
|
|
|
case Op_If: {
|
|
|
|
assert (i < 2, "just checking");
|
|
|
|
// Conditionals pass on only part of their frequency
|
|
|
|
float prob = n->as_MachIf()->_prob;
|
|
|
|
assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
|
|
|
|
// If succ[i] is the FALSE branch, invert path info
|
|
|
|
if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
|
|
|
|
return 1.0f - prob; // not taken
|
|
|
|
} else {
|
|
|
|
return prob; // taken
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
case Op_Jump:
|
|
|
|
// Divide the frequency between all successors evenly
|
|
|
|
return 1.0f/_num_succs;
|
|
|
|
|
|
|
|
case Op_Catch: {
|
|
|
|
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
|
|
|
|
if (ci->_con == CatchProjNode::fall_through_index) {
|
|
|
|
// Fall-thru path gets the lion's share.
|
|
|
|
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
|
|
|
|
} else {
|
|
|
|
// Presume exceptional paths are equally unlikely
|
|
|
|
return PROB_UNLIKELY_MAG(5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
case Op_Root:
|
|
|
|
case Op_Goto:
|
|
|
|
// Pass frequency straight thru to target
|
|
|
|
return 1.0f;
|
|
|
|
|
|
|
|
case Op_NeverBranch:
|
|
|
|
return 0.0f;
|
|
|
|
|
|
|
|
case Op_TailCall:
|
|
|
|
case Op_TailJump:
|
|
|
|
case Op_Return:
|
|
|
|
case Op_Halt:
|
|
|
|
case Op_Rethrow:
|
|
|
|
// Do not push out freq to root block
|
|
|
|
return 0.0f;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ShouldNotReachHere();
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------update_succ_freq-------------------------------
|
|
|
|
// Update the appropriate frequency associated with block 'b', a succesor of
|
|
|
|
// a block in this loop.
|
|
|
|
void CFGLoop::update_succ_freq(Block* b, float freq) {
|
|
|
|
if (b->_loop == this) {
|
|
|
|
if (b == head()) {
|
|
|
|
// back branch within the loop
|
|
|
|
// Do nothing now, the loop carried frequency will be
|
|
|
|
// adjust later in scale_freq().
|
|
|
|
} else {
|
|
|
|
// simple branch within the loop
|
|
|
|
b->_freq += freq;
|
|
|
|
}
|
|
|
|
} else if (!in_loop_nest(b)) {
|
|
|
|
// branch is exit from this loop
|
|
|
|
BlockProbPair bpp(b, freq);
|
|
|
|
_exits.append(bpp);
|
|
|
|
} else {
|
|
|
|
// branch into nested loop
|
|
|
|
CFGLoop* ch = b->_loop;
|
|
|
|
ch->_freq += freq;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------in_loop_nest-----------------------------------
|
|
|
|
// Determine if block b is in the receiver's loop nest.
|
|
|
|
bool CFGLoop::in_loop_nest(Block* b) {
|
|
|
|
int depth = _depth;
|
|
|
|
CFGLoop* b_loop = b->_loop;
|
|
|
|
int b_depth = b_loop->_depth;
|
|
|
|
if (depth == b_depth) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
while (b_depth > depth) {
|
|
|
|
b_loop = b_loop->_parent;
|
|
|
|
b_depth = b_loop->_depth;
|
|
|
|
}
|
|
|
|
return b_loop == this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------scale_freq-------------------------------------
|
|
|
|
// Scale frequency of loops and blocks by trip counts from outer loops
|
|
|
|
// Do a top down traversal of loop tree (visit outer loops first.)
|
|
|
|
void CFGLoop::scale_freq() {
|
|
|
|
float loop_freq = _freq * trip_count();
|
|
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
|
|
CFGElement* s = _members.at(i);
|
|
|
|
s->_freq *= loop_freq;
|
|
|
|
}
|
|
|
|
CFGLoop* ch = _child;
|
|
|
|
while (ch != NULL) {
|
|
|
|
ch->scale_freq();
|
|
|
|
ch = ch->_sibling;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
//------------------------------dump_tree--------------------------------------
|
|
|
|
void CFGLoop::dump_tree() const {
|
|
|
|
dump();
|
|
|
|
if (_child != NULL) _child->dump_tree();
|
|
|
|
if (_sibling != NULL) _sibling->dump_tree();
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------dump-------------------------------------------
|
|
|
|
void CFGLoop::dump() const {
|
|
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
|
|
tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
|
|
|
|
_depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
|
|
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
|
|
tty->print(" members:", _id);
|
|
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
|
|
if (k++ >= 6) {
|
|
|
|
tty->print("\n ");
|
|
|
|
for (int j = 0; j < _depth+1; j++) tty->print(" ");
|
|
|
|
k = 0;
|
|
|
|
}
|
|
|
|
CFGElement *s = _members.at(i);
|
|
|
|
if (s->is_block()) {
|
|
|
|
Block *b = s->as_Block();
|
|
|
|
tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
|
|
|
|
} else {
|
|
|
|
CFGLoop* lp = s->as_CFGLoop();
|
|
|
|
tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tty->print("\n");
|
|
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
|
|
tty->print(" exits: ");
|
|
|
|
k = 0;
|
|
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
|
|
if (k++ >= 7) {
|
|
|
|
tty->print("\n ");
|
|
|
|
for (int j = 0; j < _depth+1; j++) tty->print(" ");
|
|
|
|
k = 0;
|
|
|
|
}
|
|
|
|
Block *blk = _exits.at(i).get_target();
|
|
|
|
float prob = _exits.at(i).get_prob();
|
|
|
|
tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
|
|
|
|
}
|
|
|
|
tty->print("\n");
|
|
|
|
}
|
|
|
|
#endif
|