jdk-24/hotspot/src/share/vm/gc/g1/heapRegion.inline.hpp

234 lines
8.6 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
#define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/space.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
inline HeapWord* G1ContiguousSpace::allocate_impl(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
HeapWord* obj = top();
size_t available = pointer_delta(end(), obj);
size_t want_to_allocate = MIN2(available, desired_word_size);
if (want_to_allocate >= min_word_size) {
HeapWord* new_top = obj + want_to_allocate;
set_top(new_top);
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
*actual_size = want_to_allocate;
return obj;
} else {
return NULL;
}
}
inline HeapWord* G1ContiguousSpace::par_allocate_impl(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
do {
HeapWord* obj = top();
size_t available = pointer_delta(end(), obj);
size_t want_to_allocate = MIN2(available, desired_word_size);
if (want_to_allocate >= min_word_size) {
HeapWord* new_top = obj + want_to_allocate;
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
// result can be one of two:
// the old top value: the exchange succeeded
// otherwise: the new value of the top is returned.
if (result == obj) {
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
*actual_size = want_to_allocate;
return obj;
}
} else {
return NULL;
}
} while (true);
}
inline HeapWord* G1ContiguousSpace::allocate(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size);
if (res != NULL) {
_bot_part.alloc_block(res, *actual_size);
}
return res;
}
inline HeapWord* G1ContiguousSpace::allocate(size_t word_size) {
size_t temp;
return allocate(word_size, word_size, &temp);
}
inline HeapWord* G1ContiguousSpace::par_allocate(size_t word_size) {
size_t temp;
return par_allocate(word_size, word_size, &temp);
}
// Because of the requirement of keeping "_offsets" up to date with the
// allocations, we sequentialize these with a lock. Therefore, best if
// this is used for larger LAB allocations only.
inline HeapWord* G1ContiguousSpace::par_allocate(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
MutexLocker x(&_par_alloc_lock);
return allocate(min_word_size, desired_word_size, actual_size);
}
inline HeapWord* G1ContiguousSpace::block_start(const void* p) {
return _bot_part.block_start(p);
}
inline HeapWord*
G1ContiguousSpace::block_start_const(const void* p) const {
return _bot_part.block_start_const(p);
}
inline bool
HeapRegion::block_is_obj(const HeapWord* p) const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (!this->is_in(p)) {
assert(is_continues_humongous(), "This case can only happen for humongous regions");
return (p == humongous_start_region()->bottom());
}
if (ClassUnloadingWithConcurrentMark) {
return !g1h->is_obj_dead(oop(p), this);
}
return p < top();
}
inline size_t
HeapRegion::block_size(const HeapWord *addr) const {
if (addr == top()) {
return pointer_delta(end(), addr);
}
if (block_is_obj(addr)) {
return oop(addr)->size();
}
assert(ClassUnloadingWithConcurrentMark,
"All blocks should be objects if G1 Class Unloading isn't used. "
"HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") "
"addr: " PTR_FORMAT,
p2i(bottom()), p2i(top()), p2i(end()), p2i(addr));
// Old regions' dead objects may have dead classes
// We need to find the next live object in some other
// manner than getting the oop size
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* next = g1h->concurrent_mark()->prevMarkBitMap()->
getNextMarkedWordAddress(addr, prev_top_at_mark_start());
assert(next > addr, "must get the next live object");
return pointer_delta(next, addr);
}
inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return par_allocate_impl(min_word_size, desired_word_size, actual_word_size);
}
inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
size_t temp;
return allocate_no_bot_updates(word_size, word_size, &temp);
}
inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return allocate_impl(min_word_size, desired_word_size, actual_word_size);
}
inline void HeapRegion::note_start_of_marking() {
_next_marked_bytes = 0;
_next_top_at_mark_start = top();
}
inline void HeapRegion::note_end_of_marking() {
_prev_top_at_mark_start = _next_top_at_mark_start;
_prev_marked_bytes = _next_marked_bytes;
_next_marked_bytes = 0;
}
inline void HeapRegion::note_start_of_copying(bool during_initial_mark) {
if (is_survivor()) {
// This is how we always allocate survivors.
assert(_next_top_at_mark_start == bottom(), "invariant");
} else {
if (during_initial_mark) {
// During initial-mark we'll explicitly mark any objects on old
// regions that are pointed to by roots. Given that explicit
// marks only make sense under NTAMS it'd be nice if we could
// check that condition if we wanted to. Given that we don't
// know where the top of this region will end up, we simply set
// NTAMS to the end of the region so all marks will be below
// NTAMS. We'll set it to the actual top when we retire this region.
_next_top_at_mark_start = end();
} else {
// We could have re-used this old region as to-space over a
// couple of GCs since the start of the concurrent marking
// cycle. This means that [bottom,NTAMS) will contain objects
// copied up to and including initial-mark and [NTAMS, top)
// will contain objects copied during the concurrent marking cycle.
assert(top() >= _next_top_at_mark_start, "invariant");
}
}
}
inline void HeapRegion::note_end_of_copying(bool during_initial_mark) {
if (is_survivor()) {
// This is how we always allocate survivors.
assert(_next_top_at_mark_start == bottom(), "invariant");
} else {
if (during_initial_mark) {
// See the comment for note_start_of_copying() for the details
// on this.
assert(_next_top_at_mark_start == end(), "pre-condition");
_next_top_at_mark_start = top();
} else {
// See the comment for note_start_of_copying() for the details
// on this.
assert(top() >= _next_top_at_mark_start, "invariant");
}
}
}
inline bool HeapRegion::in_collection_set() const {
return G1CollectedHeap::heap()->is_in_cset(this);
}
#endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP