2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2011-05-23 16:42:14 -07:00
|
|
|
* Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
2010-05-27 19:08:38 -07:00
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
2007-12-01 00:00:00 +00:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2010-11-23 13:22:55 -08:00
|
|
|
#include "precompiled.hpp"
|
|
|
|
#include "gc_interface/collectedHeap.inline.hpp"
|
|
|
|
#include "memory/blockOffsetTable.inline.hpp"
|
|
|
|
#include "memory/iterator.hpp"
|
|
|
|
#include "memory/space.inline.hpp"
|
|
|
|
#include "memory/universe.hpp"
|
|
|
|
#include "oops/oop.inline.hpp"
|
|
|
|
#include "runtime/java.hpp"
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// BlockOffsetSharedArray
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
|
|
|
|
size_t init_word_size):
|
|
|
|
_reserved(reserved), _end(NULL)
|
|
|
|
{
|
|
|
|
size_t size = compute_size(reserved.word_size());
|
|
|
|
ReservedSpace rs(size);
|
|
|
|
if (!rs.is_reserved()) {
|
|
|
|
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
|
|
}
|
|
|
|
if (!_vs.initialize(rs, 0)) {
|
|
|
|
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
|
|
}
|
|
|
|
_offset_array = (u_char*)_vs.low_boundary();
|
|
|
|
resize(init_word_size);
|
|
|
|
if (TraceBlockOffsetTable) {
|
|
|
|
gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" rs.base(): " INTPTR_FORMAT
|
|
|
|
" rs.size(): " INTPTR_FORMAT
|
|
|
|
" rs end(): " INTPTR_FORMAT,
|
|
|
|
rs.base(), rs.size(), rs.base() + rs.size());
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" _vs.low_boundary(): " INTPTR_FORMAT
|
|
|
|
" _vs.high_boundary(): " INTPTR_FORMAT,
|
|
|
|
_vs.low_boundary(),
|
|
|
|
_vs.high_boundary());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockOffsetSharedArray::resize(size_t new_word_size) {
|
|
|
|
assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
|
|
|
|
size_t new_size = compute_size(new_word_size);
|
|
|
|
size_t old_size = _vs.committed_size();
|
|
|
|
size_t delta;
|
|
|
|
char* high = _vs.high();
|
|
|
|
_end = _reserved.start() + new_word_size;
|
|
|
|
if (new_size > old_size) {
|
|
|
|
delta = ReservedSpace::page_align_size_up(new_size - old_size);
|
|
|
|
assert(delta > 0, "just checking");
|
|
|
|
if (!_vs.expand_by(delta)) {
|
|
|
|
// Do better than this for Merlin
|
|
|
|
vm_exit_out_of_memory(delta, "offset table expansion");
|
|
|
|
}
|
|
|
|
assert(_vs.high() == high + delta, "invalid expansion");
|
|
|
|
} else {
|
|
|
|
delta = ReservedSpace::page_align_size_down(old_size - new_size);
|
|
|
|
if (delta == 0) return;
|
|
|
|
_vs.shrink_by(delta);
|
|
|
|
assert(_vs.high() == high - delta, "invalid expansion");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
|
|
|
|
assert(p >= _reserved.start(), "just checking");
|
|
|
|
size_t delta = pointer_delta(p, _reserved.start());
|
|
|
|
return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc,
|
|
|
|
HeapWord* start, HeapWord* end) {
|
|
|
|
assert(_offset_array[0] == 0, "objects can't cross covered areas");
|
|
|
|
assert(start <= end, "bad address range");
|
|
|
|
size_t start_index = index_for(start);
|
|
|
|
size_t end_index = index_for(end-1)+1;
|
|
|
|
soc->do_region(&_offset_array[start_index],
|
|
|
|
(end_index - start_index) * sizeof(_offset_array[0]));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// BlockOffsetArray
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
|
2010-08-16 15:58:42 -07:00
|
|
|
MemRegion mr, bool init_to_zero_) :
|
2007-12-01 00:00:00 +00:00
|
|
|
BlockOffsetTable(mr.start(), mr.end()),
|
2010-08-16 15:58:42 -07:00
|
|
|
_array(array)
|
2007-12-01 00:00:00 +00:00
|
|
|
{
|
|
|
|
assert(_bottom <= _end, "arguments out of order");
|
2010-08-16 15:58:42 -07:00
|
|
|
set_init_to_zero(init_to_zero_);
|
|
|
|
if (!init_to_zero_) {
|
2007-12-01 00:00:00 +00:00
|
|
|
// initialize cards to point back to mr.start()
|
|
|
|
set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
|
|
|
|
_array->set_offset_array(0, 0); // set first card to 0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The arguments follow the normal convention of denoting
|
|
|
|
// a right-open interval: [start, end)
|
|
|
|
void
|
|
|
|
BlockOffsetArray::
|
2010-08-16 15:58:42 -07:00
|
|
|
set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) {
|
2007-12-01 00:00:00 +00:00
|
|
|
|
2010-08-16 15:58:42 -07:00
|
|
|
check_reducing_assertion(reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
if (start >= end) {
|
|
|
|
// The start address is equal to the end address (or to
|
|
|
|
// the right of the end address) so there are not cards
|
|
|
|
// that need to be updated..
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write the backskip value for each region.
|
|
|
|
//
|
|
|
|
// offset
|
|
|
|
// card 2nd 3rd
|
|
|
|
// | +- 1st | |
|
|
|
|
// v v v v
|
|
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
|
|
// |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
|
|
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
|
|
// 11 19 75
|
|
|
|
// 12
|
|
|
|
//
|
|
|
|
// offset card is the card that points to the start of an object
|
|
|
|
// x - offset value of offset card
|
|
|
|
// 1st - start of first logarithmic region
|
|
|
|
// 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
|
|
|
|
// 2nd - start of second logarithmic region
|
|
|
|
// 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
|
|
|
|
// 3rd - start of third logarithmic region
|
|
|
|
// 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
|
|
|
|
//
|
|
|
|
// integer below the block offset entry is an example of
|
|
|
|
// the index of the entry
|
|
|
|
//
|
|
|
|
// Given an address,
|
|
|
|
// Find the index for the address
|
|
|
|
// Find the block offset table entry
|
|
|
|
// Convert the entry to a back slide
|
|
|
|
// (e.g., with today's, offset = 0x81 =>
|
|
|
|
// back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
|
|
|
|
// Move back N (e.g., 8) entries and repeat with the
|
|
|
|
// value of the new entry
|
|
|
|
//
|
|
|
|
size_t start_card = _array->index_for(start);
|
|
|
|
size_t end_card = _array->index_for(end-1);
|
|
|
|
assert(start ==_array->address_for_index(start_card), "Precondition");
|
|
|
|
assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
|
2010-08-16 15:58:42 -07:00
|
|
|
set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Unlike the normal convention in this code, the argument here denotes
|
|
|
|
// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
|
|
|
|
// above.
|
|
|
|
void
|
2010-08-16 15:58:42 -07:00
|
|
|
BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) {
|
|
|
|
|
|
|
|
check_reducing_assertion(reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
if (start_card > end_card) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
assert(start_card > _array->index_for(_bottom), "Cannot be first card");
|
|
|
|
assert(_array->offset_array(start_card-1) <= N_words,
|
|
|
|
"Offset card has an unexpected value");
|
|
|
|
size_t start_card_for_region = start_card;
|
|
|
|
u_char offset = max_jubyte;
|
2008-06-05 15:57:56 -07:00
|
|
|
for (int i = 0; i < N_powers; i++) {
|
2007-12-01 00:00:00 +00:00
|
|
|
// -1 so that the the card with the actual offset is counted. Another -1
|
|
|
|
// so that the reach ends in this region and not at the start
|
|
|
|
// of the next.
|
|
|
|
size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
|
|
|
|
offset = N_words + i;
|
|
|
|
if (reach >= end_card) {
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(start_card_for_region, end_card, offset, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
start_card_for_region = reach + 1;
|
|
|
|
break;
|
|
|
|
}
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(start_card_for_region, reach, offset, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
start_card_for_region = reach + 1;
|
|
|
|
}
|
|
|
|
assert(start_card_for_region > end_card, "Sanity check");
|
|
|
|
DEBUG_ONLY(check_all_cards(start_card, end_card);)
|
|
|
|
}
|
|
|
|
|
|
|
|
// The card-interval [start_card, end_card] is a closed interval; this
|
|
|
|
// is an expensive check -- use with care and only under protection of
|
|
|
|
// suitable flag.
|
|
|
|
void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
|
|
|
|
|
|
|
|
if (end_card < start_card) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
|
2010-08-16 15:58:42 -07:00
|
|
|
u_char last_entry = N_words;
|
2007-12-01 00:00:00 +00:00
|
|
|
for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
|
|
|
|
u_char entry = _array->offset_array(c);
|
2010-08-16 15:58:42 -07:00
|
|
|
guarantee(entry >= last_entry, "Monotonicity");
|
2007-12-01 00:00:00 +00:00
|
|
|
if (c - start_card > power_to_cards_back(1)) {
|
|
|
|
guarantee(entry > N_words, "Should be in logarithmic region");
|
|
|
|
}
|
|
|
|
size_t backskip = entry_to_cards_back(entry);
|
|
|
|
size_t landing_card = c - backskip;
|
|
|
|
guarantee(landing_card >= (start_card - 1), "Inv");
|
|
|
|
if (landing_card >= start_card) {
|
2010-08-16 15:58:42 -07:00
|
|
|
guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity");
|
2007-12-01 00:00:00 +00:00
|
|
|
} else {
|
2010-08-16 15:58:42 -07:00
|
|
|
guarantee(landing_card == (start_card - 1), "Tautology");
|
|
|
|
// Note that N_words is the maximum offset value
|
2007-12-01 00:00:00 +00:00
|
|
|
guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
|
|
|
|
}
|
2010-08-16 15:58:42 -07:00
|
|
|
last_entry = entry; // remember for monotonicity test
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
|
|
assert(blk_start != NULL && blk_end > blk_start,
|
|
|
|
"phantom block");
|
|
|
|
single_block(blk_start, blk_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Action_mark - update the BOT for the block [blk_start, blk_end).
|
|
|
|
// Current typical use is for splitting a block.
|
|
|
|
// Action_single - udpate the BOT for an allocation.
|
|
|
|
// Action_verify - BOT verification.
|
|
|
|
void
|
|
|
|
BlockOffsetArray::do_block_internal(HeapWord* blk_start,
|
|
|
|
HeapWord* blk_end,
|
2010-08-16 15:58:42 -07:00
|
|
|
Action action, bool reducing) {
|
2007-12-01 00:00:00 +00:00
|
|
|
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
|
|
"reference must be into the heap");
|
|
|
|
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
|
|
"limit must be within the heap");
|
|
|
|
// This is optimized to make the test fast, assuming we only rarely
|
|
|
|
// cross boundaries.
|
|
|
|
uintptr_t end_ui = (uintptr_t)(blk_end - 1);
|
|
|
|
uintptr_t start_ui = (uintptr_t)blk_start;
|
|
|
|
// Calculate the last card boundary preceding end of blk
|
|
|
|
intptr_t boundary_before_end = (intptr_t)end_ui;
|
|
|
|
clear_bits(boundary_before_end, right_n_bits(LogN));
|
|
|
|
if (start_ui <= (uintptr_t)boundary_before_end) {
|
|
|
|
// blk starts at or crosses a boundary
|
|
|
|
// Calculate index of card on which blk begins
|
|
|
|
size_t start_index = _array->index_for(blk_start);
|
|
|
|
// Index of card on which blk ends
|
|
|
|
size_t end_index = _array->index_for(blk_end - 1);
|
|
|
|
// Start address of card on which blk begins
|
|
|
|
HeapWord* boundary = _array->address_for_index(start_index);
|
|
|
|
assert(boundary <= blk_start, "blk should start at or after boundary");
|
|
|
|
if (blk_start != boundary) {
|
|
|
|
// blk starts strictly after boundary
|
|
|
|
// adjust card boundary and start_index forward to next card
|
|
|
|
boundary += N_words;
|
|
|
|
start_index++;
|
|
|
|
}
|
|
|
|
assert(start_index <= end_index, "monotonicity of index_for()");
|
|
|
|
assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
|
|
|
|
switch (action) {
|
|
|
|
case Action_mark: {
|
|
|
|
if (init_to_zero()) {
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(start_index, boundary, blk_start, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
break;
|
|
|
|
} // Else fall through to the next case
|
|
|
|
}
|
|
|
|
case Action_single: {
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(start_index, boundary, blk_start, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
// We have finished marking the "offset card". We need to now
|
|
|
|
// mark the subsequent cards that this blk spans.
|
|
|
|
if (start_index < end_index) {
|
|
|
|
HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
|
|
|
|
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
2010-08-16 15:58:42 -07:00
|
|
|
set_remainder_to_point_to_start(rem_st, rem_end, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Action_check: {
|
|
|
|
_array->check_offset_array(start_index, boundary, blk_start);
|
|
|
|
// We have finished checking the "offset card". We need to now
|
|
|
|
// check the subsequent cards that this blk spans.
|
|
|
|
check_all_cards(start_index + 1, end_index);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
ShouldNotReachHere();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The range [blk_start, blk_end) represents a single contiguous block
|
|
|
|
// of storage; modify the block offset table to represent this
|
|
|
|
// information; Right-open interval: [blk_start, blk_end)
|
|
|
|
// NOTE: this method does _not_ adjust _unallocated_block.
|
|
|
|
void
|
|
|
|
BlockOffsetArray::single_block(HeapWord* blk_start,
|
|
|
|
HeapWord* blk_end) {
|
|
|
|
do_block_internal(blk_start, blk_end, Action_single);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockOffsetArray::verify() const {
|
|
|
|
// For each entry in the block offset table, verify that
|
|
|
|
// the entry correctly finds the start of an object at the
|
|
|
|
// first address covered by the block or to the left of that
|
|
|
|
// first address.
|
|
|
|
|
|
|
|
size_t next_index = 1;
|
|
|
|
size_t last_index = last_active_index();
|
|
|
|
|
|
|
|
// Use for debugging. Initialize to NULL to distinguish the
|
|
|
|
// first iteration through the while loop.
|
|
|
|
HeapWord* last_p = NULL;
|
|
|
|
HeapWord* last_start = NULL;
|
|
|
|
oop last_o = NULL;
|
|
|
|
|
|
|
|
while (next_index <= last_index) {
|
|
|
|
// Use an address past the start of the address for
|
|
|
|
// the entry.
|
|
|
|
HeapWord* p = _array->address_for_index(next_index) + 1;
|
|
|
|
if (p >= _end) {
|
|
|
|
// That's all of the allocated block table.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// block_start() asserts that start <= p.
|
|
|
|
HeapWord* start = block_start(p);
|
|
|
|
// First check if the start is an allocated block and only
|
|
|
|
// then if it is a valid object.
|
|
|
|
oop o = oop(start);
|
|
|
|
assert(!Universe::is_fully_initialized() ||
|
|
|
|
_sp->is_free_block(start) ||
|
|
|
|
o->is_oop_or_null(), "Bad object was found");
|
|
|
|
next_index++;
|
|
|
|
last_p = p;
|
|
|
|
last_start = start;
|
|
|
|
last_o = o;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// BlockOffsetArrayNonContigSpace
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// The block [blk_start, blk_end) has been allocated;
|
|
|
|
// adjust the block offset table to represent this information;
|
|
|
|
// NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
|
|
|
|
// the somewhat more lightweight split_block() or
|
|
|
|
// (when init_to_zero()) mark_block() wherever possible.
|
|
|
|
// right-open interval: [blk_start, blk_end)
|
|
|
|
void
|
|
|
|
BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
|
|
|
|
HeapWord* blk_end) {
|
|
|
|
assert(blk_start != NULL && blk_end > blk_start,
|
|
|
|
"phantom block");
|
|
|
|
single_block(blk_start, blk_end);
|
|
|
|
allocated(blk_start, blk_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Adjust BOT to show that a previously whole block has been split
|
|
|
|
// into two. We verify the BOT for the first part (prefix) and
|
|
|
|
// update the BOT for the second part (suffix).
|
|
|
|
// blk is the start of the block
|
|
|
|
// blk_size is the size of the original block
|
|
|
|
// left_blk_size is the size of the first part of the split
|
|
|
|
void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
|
|
|
|
size_t blk_size,
|
|
|
|
size_t left_blk_size) {
|
|
|
|
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
|
|
|
|
verify_single_block(blk, blk_size);
|
|
|
|
// Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
|
|
|
|
// is one single block.
|
|
|
|
assert(blk_size > 0, "Should be positive");
|
|
|
|
assert(left_blk_size > 0, "Should be positive");
|
|
|
|
assert(left_blk_size < blk_size, "Not a split");
|
|
|
|
|
|
|
|
// Start addresses of prefix block and suffix block.
|
|
|
|
HeapWord* pref_addr = blk;
|
|
|
|
HeapWord* suff_addr = blk + left_blk_size;
|
|
|
|
HeapWord* end_addr = blk + blk_size;
|
|
|
|
|
|
|
|
// Indices for starts of prefix block and suffix block.
|
|
|
|
size_t pref_index = _array->index_for(pref_addr);
|
|
|
|
if (_array->address_for_index(pref_index) != pref_addr) {
|
2010-08-16 15:58:42 -07:00
|
|
|
// pref_addr does not begin pref_index
|
2007-12-01 00:00:00 +00:00
|
|
|
pref_index++;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t suff_index = _array->index_for(suff_addr);
|
|
|
|
if (_array->address_for_index(suff_index) != suff_addr) {
|
|
|
|
// suff_addr does not begin suff_index
|
|
|
|
suff_index++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Definition: A block B, denoted [B_start, B_end) __starts__
|
|
|
|
// a card C, denoted [C_start, C_end), where C_start and C_end
|
|
|
|
// are the heap addresses that card C covers, iff
|
|
|
|
// B_start <= C_start < B_end.
|
|
|
|
//
|
|
|
|
// We say that a card C "is started by" a block B, iff
|
|
|
|
// B "starts" C.
|
|
|
|
//
|
|
|
|
// Note that the cardinality of the set of cards {C}
|
|
|
|
// started by a block B can be 0, 1, or more.
|
|
|
|
//
|
|
|
|
// Below, pref_index and suff_index are, respectively, the
|
|
|
|
// first (least) card indices that the prefix and suffix of
|
|
|
|
// the split start; end_index is one more than the index of
|
|
|
|
// the last (greatest) card that blk starts.
|
|
|
|
size_t end_index = _array->index_for(end_addr - 1) + 1;
|
|
|
|
|
|
|
|
// Calculate the # cards that the prefix and suffix affect.
|
|
|
|
size_t num_pref_cards = suff_index - pref_index;
|
|
|
|
|
|
|
|
size_t num_suff_cards = end_index - suff_index;
|
|
|
|
// Change the cards that need changing
|
|
|
|
if (num_suff_cards > 0) {
|
|
|
|
HeapWord* boundary = _array->address_for_index(suff_index);
|
|
|
|
// Set the offset card for suffix block
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */);
|
2007-12-01 00:00:00 +00:00
|
|
|
// Change any further cards that need changing in the suffix
|
|
|
|
if (num_pref_cards > 0) {
|
|
|
|
if (num_pref_cards >= num_suff_cards) {
|
|
|
|
// Unilaterally fix all of the suffix cards: closed card
|
|
|
|
// index interval in args below.
|
2010-08-16 15:58:42 -07:00
|
|
|
set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */);
|
2007-12-01 00:00:00 +00:00
|
|
|
} else {
|
|
|
|
// Unilaterally fix the first (num_pref_cards - 1) following
|
|
|
|
// the "offset card" in the suffix block.
|
|
|
|
set_remainder_to_point_to_start_incl(suff_index + 1,
|
2010-08-16 15:58:42 -07:00
|
|
|
suff_index + num_pref_cards - 1, true /* reducing */);
|
2007-12-01 00:00:00 +00:00
|
|
|
// Fix the appropriate cards in the remainder of the
|
|
|
|
// suffix block -- these are the last num_pref_cards
|
|
|
|
// cards in each power block of the "new" range plumbed
|
|
|
|
// from suff_addr.
|
|
|
|
bool more = true;
|
|
|
|
uint i = 1;
|
|
|
|
while (more && (i < N_powers)) {
|
|
|
|
size_t back_by = power_to_cards_back(i);
|
|
|
|
size_t right_index = suff_index + back_by - 1;
|
|
|
|
size_t left_index = right_index - num_pref_cards + 1;
|
|
|
|
if (right_index >= end_index - 1) { // last iteration
|
|
|
|
right_index = end_index - 1;
|
|
|
|
more = false;
|
|
|
|
}
|
|
|
|
if (back_by > num_pref_cards) {
|
|
|
|
// Fill in the remainder of this "power block", if it
|
|
|
|
// is non-null.
|
|
|
|
if (left_index <= right_index) {
|
|
|
|
_array->set_offset_array(left_index, right_index,
|
2010-08-16 15:58:42 -07:00
|
|
|
N_words + i - 1, true /* reducing */);
|
2007-12-01 00:00:00 +00:00
|
|
|
} else {
|
|
|
|
more = false; // we are done
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
while (more && (i < N_powers)) {
|
|
|
|
size_t back_by = power_to_cards_back(i);
|
|
|
|
size_t right_index = suff_index + back_by - 1;
|
|
|
|
size_t left_index = right_index - num_pref_cards + 1;
|
|
|
|
if (right_index >= end_index - 1) { // last iteration
|
|
|
|
right_index = end_index - 1;
|
|
|
|
if (left_index > right_index) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
more = false;
|
|
|
|
}
|
|
|
|
assert(left_index <= right_index, "Error");
|
2010-08-16 15:58:42 -07:00
|
|
|
_array->set_offset_array(left_index, right_index, N_words + i - 1, true /* reducing */);
|
2007-12-01 00:00:00 +00:00
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // else no more cards to fix in suffix
|
|
|
|
} // else nothing needs to be done
|
|
|
|
// Verify that we did the right thing
|
|
|
|
verify_single_block(pref_addr, left_blk_size);
|
|
|
|
verify_single_block(suff_addr, blk_size - left_blk_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Mark the BOT such that if [blk_start, blk_end) straddles a card
|
|
|
|
// boundary, the card following the first such boundary is marked
|
|
|
|
// with the appropriate offset.
|
|
|
|
// NOTE: this method does _not_ adjust _unallocated_block or
|
|
|
|
// any cards subsequent to the first one.
|
|
|
|
void
|
|
|
|
BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
|
2010-08-16 15:58:42 -07:00
|
|
|
HeapWord* blk_end, bool reducing) {
|
|
|
|
do_block_internal(blk_start, blk_end, Action_mark, reducing);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
|
|
|
|
const void* addr) const {
|
|
|
|
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
|
|
assert(_bottom <= addr && addr < _end,
|
|
|
|
"addr must be covered by this Array");
|
|
|
|
// Must read this exactly once because it can be modified by parallel
|
|
|
|
// allocation.
|
|
|
|
HeapWord* ub = _unallocated_block;
|
|
|
|
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
|
|
assert(ub < _end, "tautology (see above)");
|
|
|
|
return ub;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, find the block start using the table.
|
|
|
|
size_t index = _array->index_for(addr);
|
|
|
|
HeapWord* q = _array->address_for_index(index);
|
|
|
|
|
|
|
|
uint offset = _array->offset_array(index); // Extend u_char to uint.
|
|
|
|
while (offset >= N_words) {
|
|
|
|
// The excess of the offset from N_words indicates a power of Base
|
|
|
|
// to go back by.
|
|
|
|
size_t n_cards_back = entry_to_cards_back(offset);
|
|
|
|
q -= (N_words * n_cards_back);
|
2011-05-11 15:47:12 -07:00
|
|
|
assert(q >= _sp->bottom(),
|
|
|
|
err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
|
|
|
|
q, _sp->bottom()));
|
|
|
|
assert(q < _sp->end(),
|
|
|
|
err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
|
|
|
|
q, _sp->end()));
|
2007-12-01 00:00:00 +00:00
|
|
|
index -= n_cards_back;
|
|
|
|
offset = _array->offset_array(index);
|
|
|
|
}
|
|
|
|
assert(offset < N_words, "offset too large");
|
|
|
|
index--;
|
|
|
|
q -= offset;
|
2011-05-11 15:47:12 -07:00
|
|
|
assert(q >= _sp->bottom(),
|
|
|
|
err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
|
|
|
|
q, _sp->bottom()));
|
|
|
|
assert(q < _sp->end(),
|
|
|
|
err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
|
|
|
|
q, _sp->end()));
|
2007-12-01 00:00:00 +00:00
|
|
|
HeapWord* n = q;
|
|
|
|
|
|
|
|
while (n <= addr) {
|
|
|
|
debug_only(HeapWord* last = q); // for debugging
|
|
|
|
q = n;
|
|
|
|
n += _sp->block_size(n);
|
2011-05-11 15:47:12 -07:00
|
|
|
assert(n > q,
|
2011-05-23 16:42:14 -07:00
|
|
|
err_msg("Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT","
|
|
|
|
" while querying blk_start(" PTR_FORMAT ")"
|
|
|
|
" on _sp = [" PTR_FORMAT "," PTR_FORMAT ")",
|
|
|
|
n, last, addr, _sp->bottom(), _sp->end()));
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
2011-05-23 16:42:14 -07:00
|
|
|
assert(q <= addr,
|
|
|
|
err_msg("wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")",
|
|
|
|
q, addr));
|
|
|
|
assert(addr <= n,
|
|
|
|
err_msg("wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")",
|
|
|
|
addr, n));
|
2007-12-01 00:00:00 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
|
|
|
|
const void* addr) const {
|
|
|
|
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
|
|
|
|
|
|
assert(_bottom <= addr && addr < _end,
|
|
|
|
"addr must be covered by this Array");
|
|
|
|
// Must read this exactly once because it can be modified by parallel
|
|
|
|
// allocation.
|
|
|
|
HeapWord* ub = _unallocated_block;
|
|
|
|
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
|
|
assert(ub < _end, "tautology (see above)");
|
|
|
|
return ub;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, find the block start using the table, but taking
|
|
|
|
// care (cf block_start_unsafe() above) not to parse any objects/blocks
|
|
|
|
// on the cards themsleves.
|
|
|
|
size_t index = _array->index_for(addr);
|
|
|
|
assert(_array->address_for_index(index) == addr,
|
|
|
|
"arg should be start of card");
|
|
|
|
|
|
|
|
HeapWord* q = (HeapWord*)addr;
|
|
|
|
uint offset;
|
|
|
|
do {
|
|
|
|
offset = _array->offset_array(index);
|
|
|
|
if (offset < N_words) {
|
|
|
|
q -= offset;
|
|
|
|
} else {
|
|
|
|
size_t n_cards_back = entry_to_cards_back(offset);
|
|
|
|
q -= (n_cards_back * N_words);
|
|
|
|
index -= n_cards_back;
|
|
|
|
}
|
|
|
|
} while (offset >= N_words);
|
|
|
|
assert(q <= addr, "block start should be to left of arg");
|
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Verification & debugging - ensure that the offset table reflects the fact
|
|
|
|
// that the block [blk_start, blk_end) or [blk, blk + size) is a
|
|
|
|
// single block of storage. NOTE: can't const this because of
|
|
|
|
// call to non-const do_block_internal() below.
|
|
|
|
void BlockOffsetArrayNonContigSpace::verify_single_block(
|
|
|
|
HeapWord* blk_start, HeapWord* blk_end) {
|
|
|
|
if (VerifyBlockOffsetArray) {
|
|
|
|
do_block_internal(blk_start, blk_end, Action_check);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockOffsetArrayNonContigSpace::verify_single_block(
|
|
|
|
HeapWord* blk, size_t size) {
|
|
|
|
verify_single_block(blk, blk + size);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verify that the given block is before _unallocated_block
|
|
|
|
void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
|
|
|
|
HeapWord* blk_start, HeapWord* blk_end) const {
|
|
|
|
if (BlockOffsetArrayUseUnallocatedBlock) {
|
|
|
|
assert(blk_start < blk_end, "Block inconsistency?");
|
|
|
|
assert(blk_end <= _unallocated_block, "_unallocated_block problem");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
|
|
|
|
HeapWord* blk, size_t size) const {
|
|
|
|
verify_not_unallocated(blk, blk + size);
|
|
|
|
}
|
|
|
|
#endif // PRODUCT
|
|
|
|
|
|
|
|
size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
|
|
|
|
if (_unallocated_block == _bottom) {
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
return _array->index_for(_unallocated_block - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// BlockOffsetArrayContigSpace
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
|
|
|
|
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
|
|
|
|
|
|
// Otherwise, find the block start using the table.
|
|
|
|
assert(_bottom <= addr && addr < _end,
|
|
|
|
"addr must be covered by this Array");
|
|
|
|
size_t index = _array->index_for(addr);
|
|
|
|
// We must make sure that the offset table entry we use is valid. If
|
|
|
|
// "addr" is past the end, start at the last known one and go forward.
|
|
|
|
index = MIN2(index, _next_offset_index-1);
|
|
|
|
HeapWord* q = _array->address_for_index(index);
|
|
|
|
|
|
|
|
uint offset = _array->offset_array(index); // Extend u_char to uint.
|
|
|
|
while (offset > N_words) {
|
|
|
|
// The excess of the offset from N_words indicates a power of Base
|
|
|
|
// to go back by.
|
|
|
|
size_t n_cards_back = entry_to_cards_back(offset);
|
|
|
|
q -= (N_words * n_cards_back);
|
|
|
|
assert(q >= _sp->bottom(), "Went below bottom!");
|
|
|
|
index -= n_cards_back;
|
|
|
|
offset = _array->offset_array(index);
|
|
|
|
}
|
|
|
|
while (offset == N_words) {
|
|
|
|
assert(q >= _sp->bottom(), "Went below bottom!");
|
|
|
|
q -= N_words;
|
|
|
|
index--;
|
|
|
|
offset = _array->offset_array(index);
|
|
|
|
}
|
|
|
|
assert(offset < N_words, "offset too large");
|
|
|
|
q -= offset;
|
|
|
|
HeapWord* n = q;
|
|
|
|
|
|
|
|
while (n <= addr) {
|
|
|
|
debug_only(HeapWord* last = q); // for debugging
|
|
|
|
q = n;
|
|
|
|
n += _sp->block_size(n);
|
|
|
|
}
|
|
|
|
assert(q <= addr, "wrong order for current and arg");
|
|
|
|
assert(addr <= n, "wrong order for arg and next");
|
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// _next_offset_threshold
|
|
|
|
// | _next_offset_index
|
|
|
|
// v v
|
|
|
|
// +-------+-------+-------+-------+-------+
|
|
|
|
// | i-1 | i | i+1 | i+2 | i+3 |
|
|
|
|
// +-------+-------+-------+-------+-------+
|
|
|
|
// ( ^ ]
|
|
|
|
// block-start
|
|
|
|
//
|
|
|
|
|
|
|
|
void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
|
|
|
|
HeapWord* blk_end) {
|
|
|
|
assert(blk_start != NULL && blk_end > blk_start,
|
|
|
|
"phantom block");
|
|
|
|
assert(blk_end > _next_offset_threshold,
|
|
|
|
"should be past threshold");
|
|
|
|
assert(blk_start <= _next_offset_threshold,
|
2009-10-11 16:19:25 -07:00
|
|
|
"blk_start should be at or before threshold");
|
2007-12-01 00:00:00 +00:00
|
|
|
assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
|
|
|
|
"offset should be <= BlockOffsetSharedArray::N");
|
|
|
|
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
|
|
"reference must be into the heap");
|
|
|
|
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
|
|
"limit must be within the heap");
|
|
|
|
assert(_next_offset_threshold ==
|
|
|
|
_array->_reserved.start() + _next_offset_index*N_words,
|
|
|
|
"index must agree with threshold");
|
|
|
|
|
|
|
|
debug_only(size_t orig_next_offset_index = _next_offset_index;)
|
|
|
|
|
|
|
|
// Mark the card that holds the offset into the block. Note
|
|
|
|
// that _next_offset_index and _next_offset_threshold are not
|
|
|
|
// updated until the end of this method.
|
|
|
|
_array->set_offset_array(_next_offset_index,
|
|
|
|
_next_offset_threshold,
|
|
|
|
blk_start);
|
|
|
|
|
|
|
|
// We need to now mark the subsequent cards that this blk spans.
|
|
|
|
|
|
|
|
// Index of card on which blk ends.
|
|
|
|
size_t end_index = _array->index_for(blk_end - 1);
|
|
|
|
|
|
|
|
// Are there more cards left to be updated?
|
|
|
|
if (_next_offset_index + 1 <= end_index) {
|
|
|
|
HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1);
|
|
|
|
// Calculate rem_end this way because end_index
|
|
|
|
// may be the last valid index in the covered region.
|
|
|
|
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
|
|
|
set_remainder_to_point_to_start(rem_st, rem_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
// _next_offset_index and _next_offset_threshold updated here.
|
|
|
|
_next_offset_index = end_index + 1;
|
|
|
|
// Calculate _next_offset_threshold this way because end_index
|
|
|
|
// may be the last valid index in the covered region.
|
2010-08-16 15:58:42 -07:00
|
|
|
_next_offset_threshold = _array->address_for_index(end_index) + N_words;
|
|
|
|
assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold");
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
// The offset can be 0 if the block starts on a boundary. That
|
|
|
|
// is checked by an assertion above.
|
|
|
|
size_t start_index = _array->index_for(blk_start);
|
|
|
|
HeapWord* boundary = _array->address_for_index(start_index);
|
|
|
|
assert((_array->offset_array(orig_next_offset_index) == 0 &&
|
|
|
|
blk_start == boundary) ||
|
|
|
|
(_array->offset_array(orig_next_offset_index) > 0 &&
|
|
|
|
_array->offset_array(orig_next_offset_index) <= N_words),
|
|
|
|
"offset array should have been set");
|
|
|
|
for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
|
|
|
|
assert(_array->offset_array(j) > 0 &&
|
|
|
|
_array->offset_array(j) <= (u_char) (N_words+N_powers-1),
|
|
|
|
"offset array should have been set");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
|
|
|
|
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
|
|
"just checking");
|
|
|
|
_next_offset_index = _array->index_for(_bottom);
|
|
|
|
_next_offset_index++;
|
|
|
|
_next_offset_threshold =
|
|
|
|
_array->address_for_index(_next_offset_index);
|
|
|
|
return _next_offset_threshold;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockOffsetArrayContigSpace::zero_bottom_entry() {
|
|
|
|
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
|
|
"just checking");
|
|
|
|
size_t bottom_index = _array->index_for(_bottom);
|
|
|
|
_array->set_offset_array(bottom_index, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) {
|
|
|
|
if (soc->reading()) {
|
|
|
|
// Null these values so that the serializer won't object to updating them.
|
|
|
|
_next_offset_threshold = NULL;
|
|
|
|
_next_offset_index = 0;
|
|
|
|
}
|
|
|
|
soc->do_ptr(&_next_offset_threshold);
|
|
|
|
soc->do_size_t(&_next_offset_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t BlockOffsetArrayContigSpace::last_active_index() const {
|
|
|
|
size_t result = _next_offset_index - 1;
|
|
|
|
return result >= 0 ? result : 0;
|
|
|
|
}
|