jdk-24/jdk/test/java/util/SplittableRandom/SplittableRandomTest.java

561 lines
20 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.SplittableRandom;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.LongAdder;
import java.util.function.BiConsumer;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertNotNull;
import static org.testng.AssertJUnit.assertTrue;
/**
* @test
* @run testng SplittableRandomTest
* @run testng/othervm -Djava.util.secureRandomSeed=true SplittableRandomTest
* @summary test methods on SplittableRandom
*/
@Test
public class SplittableRandomTest {
// Note: this test was copied from the 166 TCK SplittableRandomTest test
// and modified to be a TestNG test
/*
* Testing coverage notes:
*
* 1. Many of the test methods are adapted from ThreadLocalRandomTest.
*
* 2. These tests do not check for random number generator quality.
* But we check for minimal API compliance by requiring that
* repeated calls to nextX methods, up to NCALLS tries, produce at
* least two distinct results. (In some possible universe, a
* "correct" implementation might fail, but the odds are vastly
* less than that of encountering a hardware failure while running
* the test.) For bounded nextX methods, we sample various
* intervals across multiples of primes. In other tests, we repeat
* under REPS different values.
*/
// max numbers of calls to detect getting stuck on one value
static final int NCALLS = 10000;
// max sampled int bound
static final int MAX_INT_BOUND = (1 << 28);
// max sampled long bound
static final long MAX_LONG_BOUND = (1L << 42);
// Number of replications for other checks
static final int REPS = 20;
/**
* Repeated calls to nextInt produce at least two distinct results
*/
public void testNextInt() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt();
int i = 0;
while (i < NCALLS && sr.nextInt() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextLong produce at least two distinct results
*/
public void testNextLong() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong();
int i = 0;
while (i < NCALLS && sr.nextLong() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextDouble produce at least two distinct results
*/
public void testNextDouble() {
SplittableRandom sr = new SplittableRandom();
double f = sr.nextDouble();
int i = 0;
while (i < NCALLS && sr.nextDouble() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Two SplittableRandoms created with the same seed produce the
* same values for nextLong.
*/
public void testSeedConstructor() {
for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) {
SplittableRandom sr1 = new SplittableRandom(seed);
SplittableRandom sr2 = new SplittableRandom(seed);
for (int i = 0; i < REPS; ++i)
assertEquals(sr1.nextLong(), sr2.nextLong());
}
}
/**
* A SplittableRandom produced by split() of a default-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit1() {
SplittableRandom sr = new SplittableRandom();
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* A SplittableRandom produced by split() of a seeded-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit2() {
SplittableRandom sr = new SplittableRandom(12345);
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* nextInt(negative) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextIntBoundedNeg() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt(-17);
}
/**
* nextInt(least >= bound) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextIntBadBounds() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt(17, 2);
}
/**
* nextInt(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded() {
SplittableRandom sr = new SplittableRandom();
// sample bound space across prime number increments
for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) {
int f = sr.nextInt(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextInt(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded2() {
SplittableRandom sr = new SplittableRandom();
for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) {
int f = sr.nextInt(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextLong(negative) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextLongBoundedNeg() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong(-17);
}
/**
* nextLong(least >= bound) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextLongBadBounds() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong(17, 2);
}
/**
* nextLong(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded() {
SplittableRandom sr = new SplittableRandom();
for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) {
long f = sr.nextLong(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextLong(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded2() {
SplittableRandom sr = new SplittableRandom();
for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
long f = sr.nextLong(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextDouble(bound) throws IllegalArgumentException
*/
public void testNextDoubleBadBound() {
SplittableRandom sr = new SplittableRandom();
executeAndCatchIAE(() -> sr.nextDouble(0.0));
executeAndCatchIAE(() -> sr.nextDouble(-0.0));
executeAndCatchIAE(() -> sr.nextDouble(+0.0));
executeAndCatchIAE(() -> sr.nextDouble(-1.0));
executeAndCatchIAE(() -> sr.nextDouble(Double.NaN));
executeAndCatchIAE(() -> sr.nextDouble(Double.NEGATIVE_INFINITY));
// Returns Double.MAX_VALUE
// executeAndCatchIAE(() -> r.nextDouble(Double.POSITIVE_INFINITY));
}
/**
* nextDouble(origin, bound) throws IllegalArgumentException
*/
public void testNextDoubleBadOriginBound() {
testDoubleBadOriginBound(new SplittableRandom()::nextDouble);
}
// An arbitrary finite double value
static final double FINITE = Math.PI;
void testDoubleBadOriginBound(BiConsumer<Double, Double> bi) {
executeAndCatchIAE(() -> bi.accept(17.0, 2.0));
executeAndCatchIAE(() -> bi.accept(0.0, 0.0));
executeAndCatchIAE(() -> bi.accept(Double.NaN, FINITE));
executeAndCatchIAE(() -> bi.accept(FINITE, Double.NaN));
executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY));
// Returns NaN
// executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, FINITE));
// executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
executeAndCatchIAE(() -> bi.accept(FINITE, Double.NEGATIVE_INFINITY));
// Returns Double.MAX_VALUE
// executeAndCatchIAE(() -> bi.accept(FINITE, Double.POSITIVE_INFINITY));
executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY));
executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, FINITE));
executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY));
}
/**
* nextDouble(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextDoubleBounded2() {
SplittableRandom sr = new SplittableRandom();
for (double least = 0.0001; least < 1.0e20; least *= 8) {
for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) {
double f = sr.nextDouble(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
double j;
while (i < NCALLS &&
(j = sr.nextDouble(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* Invoking sized ints, long, doubles, with negative sizes throws
* IllegalArgumentException
*/
public void testBadStreamSize() {
SplittableRandom r = new SplittableRandom();
executeAndCatchIAE(() -> r.ints(-1L));
executeAndCatchIAE(() -> r.ints(-1L, 2, 3));
executeAndCatchIAE(() -> r.longs(-1L));
executeAndCatchIAE(() -> r.longs(-1L, -1L, 1L));
executeAndCatchIAE(() -> r.doubles(-1L));
executeAndCatchIAE(() -> r.doubles(-1L, .5, .6));
}
/**
* Invoking bounded ints, long, doubles, with illegal bounds throws
* IllegalArgumentException
*/
public void testBadStreamBounds() {
SplittableRandom r = new SplittableRandom();
executeAndCatchIAE(() -> r.ints(2, 1));
executeAndCatchIAE(() -> r.ints(10, 42, 42));
executeAndCatchIAE(() -> r.longs(-1L, -1L));
executeAndCatchIAE(() -> r.longs(10, 1L, -2L));
testDoubleBadOriginBound((o, b) -> r.doubles(10, o, b));
}
private void executeAndCatchIAE(Runnable r) {
executeAndCatch(IllegalArgumentException.class, r);
}
private void executeAndCatch(Class<? extends Exception> expected, Runnable r) {
Exception caught = null;
try {
r.run();
}
catch (Exception e) {
caught = e;
}
assertNotNull(caught,
String.format("No Exception was thrown, expected an Exception of %s to be thrown",
expected.getName()));
Assert.assertTrue(expected.isInstance(caught),
String.format("Exception thrown %s not an instance of %s",
caught.getClass().getName(), expected.getName()));
}
/**
* A parallel sized stream of ints generates the given number of values
*/
public void testIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.ints(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* A parallel sized stream of longs generates the given number of values
*/
public void testLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.longs(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* A parallel sized stream of doubles generates the given number of values
*/
public void testDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.doubles(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* Each of a parallel sized stream of bounded ints is within bounds
*/
public void testBoundedInts() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 12345L;
for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) {
final int lo = least, hi = bound;
r.ints(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* Each of a parallel sized stream of bounded longs is within bounds
*/
public void testBoundedLongs() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 123L;
for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
final long lo = least, hi = bound;
r.longs(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* Each of a parallel sized stream of bounded doubles is within bounds
*/
public void testBoundedDoubles() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 456;
for (double least = 0.00011; least < 1.0e20; least *= 9) {
for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) {
final double lo = least, hi = bound;
r.doubles(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* A parallel unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A parallel unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A parallel unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
}