jdk-24/src/hotspot/cpu/s390/templateInterpreterGenerator_s390.cpp

2535 lines
96 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/abstractInterpreter.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
// Size of interpreter code. Increase if too small. Interpreter will
// fail with a guarantee ("not enough space for interpreter generation");
// if too small.
// Run with +PrintInterpreter to get the VM to print out the size.
// Max size with JVMTI
int TemplateInterpreter::InterpreterCodeSize = 320*K;
#undef __
#ifdef PRODUCT
#define __ _masm->
#else
#define __ _masm->
// #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
#endif
#define BLOCK_COMMENT(str) __ block_comment(str)
#define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
#define oop_tmp_offset _z_ijava_state_neg(oop_tmp)
//-----------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
//
// New slow_signature handler that respects the z/Architecture
// C calling conventions.
//
// We get called by the native entry code with our output register
// area == 8. First we call InterpreterRuntime::get_result_handler
// to copy the pointer to the signature string temporarily to the
// first C-argument and to return the result_handler in
// Z_RET. Since native_entry will copy the jni-pointer to the
// first C-argument slot later on, it's OK to occupy this slot
// temporarily. Then we copy the argument list on the java
// expression stack into native varargs format on the native stack
// and load arguments into argument registers. Integer arguments in
// the varargs vector will be sign-extended to 8 bytes.
//
// On entry:
// Z_ARG1 - intptr_t* Address of java argument list in memory.
// Z_state - cppInterpreter* Address of interpreter state for
// this method
// Z_method
//
// On exit (just before return instruction):
// Z_RET contains the address of the result_handler.
// Z_ARG2 is not updated for static methods and contains "this" otherwise.
// Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
// Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
const int LogSizeOfCase = 3;
const int max_fp_register_arguments = Argument::n_float_register_parameters;
const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved.
const Register arg_java = Z_tmp_2;
const Register arg_c = Z_tmp_3;
const Register signature = Z_R1_scratch; // Is a string.
const Register fpcnt = Z_R0_scratch;
const Register argcnt = Z_tmp_4;
const Register intSlot = Z_tmp_1;
const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object).
const Register target_sp = Z_tmp_1;
const FloatRegister floatSlot = Z_F1;
const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected.
const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected.
unsigned int entry_offset = __ offset();
BLOCK_COMMENT("slow_signature_handler {");
// We use target_sp for storing arguments in the C frame.
__ save_return_pc();
__ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers.
__ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed.
__ z_lgr(arg_java, Z_ARG1);
Register method = Z_ARG2; // Directly load into correct argument register.
__ get_method(method);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
// Move signature to callee saved register.
// Don't directly write to stack. Frame is used by VM call.
__ z_lgr(Z_tmp_1, Z_RET);
// Reload method. Register may have been altered by VM call.
__ get_method(method);
// Get address of result handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
// Save signature address to stack.
__ z_stg(Z_tmp_1, d_signature, Z_SP);
// Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
{
Label isStatic;
// Test if static.
// We can test the bit directly.
// Path is Z_method->_access_flags._flags.
// We only support flag bits in the least significant byte (assert !).
// Therefore add 3 to address that byte within "_flags".
// Reload method. VM call above may have destroyed register contents
__ get_method(method);
__ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
method = noreg; // end of life
__ z_btrue(isStatic);
// For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
// Need to box the Java object here, so we use arg_java
// (address of current Java stack slot) as argument and
// don't dereference it as in case of ints, floats, etc..
__ z_lgr(Z_ARG2, arg_java);
__ add2reg(arg_java, -BytesPerWord);
__ bind(isStatic);
}
// argcnt == 0 corresponds to 3rd C argument.
// arg #1 (result handler) and
// arg #2 (this, for non-statics), unused else
// are reserved and pre-filled above.
// arg_java points to the corresponding Java argument here. It
// has been decremented by one argument (this) in case of non-static.
__ clear_reg(argcnt, true, false); // Don't set CC.
__ z_lg(target_sp, 0, Z_SP);
__ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
// No floating-point args parsed so far.
__ clear_mem(Address(Z_SP, d_fpcnt), 8);
NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG;
NearLabel loop_start, loop_start_restore, loop_end;
NearLabel do_int, do_long, do_float, do_double;
NearLabel do_dontreachhere, do_object, do_array, do_boxed;
#ifdef ASSERT
// Signature needs to point to '(' (== 0x28) at entry.
__ z_lg(signature, d_signature, Z_SP);
__ z_cli(0, signature, (int) '(');
__ z_brne(do_dontreachhere);
#endif
__ bind(loop_start_restore);
__ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG.
BIND(loop_start);
// Advance to next argument type token from the signature.
__ add2reg(signature, 1);
// Use CLI, works well on all CPU versions.
__ z_cli(0, signature, (int) ')');
__ z_bre(loop_end); // end of signature
__ z_cli(0, signature, (int) 'L');
__ z_bre(do_object); // object #9
__ z_cli(0, signature, (int) 'F');
__ z_bre(do_float); // float #7
__ z_cli(0, signature, (int) 'J');
__ z_bre(do_long); // long #6
__ z_cli(0, signature, (int) 'B');
__ z_bre(do_int); // byte #1
__ z_cli(0, signature, (int) 'Z');
__ z_bre(do_int); // boolean #2
__ z_cli(0, signature, (int) 'C');
__ z_bre(do_int); // char #3
__ z_cli(0, signature, (int) 'S');
__ z_bre(do_int); // short #4
__ z_cli(0, signature, (int) 'I');
__ z_bre(do_int); // int #5
__ z_cli(0, signature, (int) 'D');
__ z_bre(do_double); // double #8
__ z_cli(0, signature, (int) '[');
__ z_bre(do_array); // array #10
__ bind(do_dontreachhere);
__ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
// Array argument
BIND(do_array);
{
Label start_skip, end_skip;
__ bind(start_skip);
// Advance to next type tag from signature.
__ add2reg(signature, 1);
// Use CLI, works well on all CPU versions.
__ z_cli(0, signature, (int) '[');
__ z_bre(start_skip); // Skip further brackets.
__ z_cli(0, signature, (int) '9');
__ z_brh(end_skip); // no optional size
__ z_cli(0, signature, (int) '0');
__ z_brnl(start_skip); // Skip optional size.
__ bind(end_skip);
__ z_cli(0, signature, (int) 'L');
__ z_brne(do_boxed); // If not array of objects: go directly to do_boxed.
}
// OOP argument
BIND(do_object);
// Pass by an object's type name.
{
Label L;
__ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k.
__ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
__ MacroAssembler::search_string(sig_end, signature);
__ z_brl(L);
__ z_illtrap(); // No semicolon found: internal error or object name too long.
__ bind(L);
__ z_lgr(signature, sig_end);
// fallthru to do_boxed
}
// Need to box the Java object here, so we use arg_java
// (address of current Java stack slot) as argument and
// don't dereference it as in case of ints, floats, etc..
// UNBOX argument
// Load reference and check for NULL.
Label do_int_Entry4Boxed;
__ bind(do_boxed);
{
__ load_and_test_long(intSlot, Address(arg_java));
__ z_bre(do_int_Entry4Boxed);
__ z_lgr(intSlot, arg_java);
__ z_bru(do_int_Entry4Boxed);
}
// INT argument
// (also for byte, boolean, char, short)
// Use lgf for load (sign-extend) and stg for store.
BIND(do_int);
__ z_lgf(intSlot, 0, arg_java);
__ bind(do_int_Entry4Boxed);
__ add2reg(arg_java, -BytesPerWord);
// If argument fits into argument register, go and handle it, otherwise continue.
__ compare32_and_branch(argcnt, max_int_register_arguments,
Assembler::bcondLow, move_intSlot_to_ARG);
__ z_stg(intSlot, 0, arg_c);
__ add2reg(arg_c, BytesPerWord);
__ z_bru(loop_start);
// LONG argument
BIND(do_long);
__ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg.
__ z_lg(intSlot, BytesPerWord, arg_java);
// If argument fits into argument register, go and handle it, otherwise continue.
__ compare32_and_branch(argcnt, max_int_register_arguments,
Assembler::bcondLow, move_intSlot_to_ARG);
__ z_stg(intSlot, 0, arg_c);
__ add2reg(arg_c, BytesPerWord);
__ z_bru(loop_start);
// FLOAT argumen
BIND(do_float);
__ z_le(floatSlot, 0, arg_java);
__ add2reg(arg_java, -BytesPerWord);
assert(max_fp_register_arguments <= 255, "always true"); // safety net
__ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
__ z_brl(move_floatSlot_to_FARG);
__ z_ste(floatSlot, 4, arg_c);
__ add2reg(arg_c, BytesPerWord);
__ z_bru(loop_start);
// DOUBLE argument
BIND(do_double);
__ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg.
__ z_ld(floatSlot, BytesPerWord, arg_java);
assert(max_fp_register_arguments <= 255, "always true"); // safety net
__ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
__ z_brl(move_floatSlot_to_FARG);
__ z_std(floatSlot, 0, arg_c);
__ add2reg(arg_c, BytesPerWord);
__ z_bru(loop_start);
// Method exit, all arguments proocessed.
__ bind(loop_end);
__ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped.
__ pop_frame();
__ restore_return_pc();
__ z_br(Z_R14);
// Copy int arguments.
Label iarg_caselist; // Distance between each case has to be a power of 2
// (= 1 << LogSizeOfCase).
__ align(16);
BIND(iarg_caselist);
__ z_lgr(Z_ARG3, intSlot); // 4 bytes
__ z_bru(loop_start_restore); // 4 bytes
__ z_lgr(Z_ARG4, intSlot);
__ z_bru(loop_start_restore);
__ z_lgr(Z_ARG5, intSlot);
__ z_bru(loop_start_restore);
__ align(16);
__ bind(move_intSlot_to_ARG);
__ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch.
__ z_larl(Z_R1_scratch, iarg_caselist);
__ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
__ add2reg(argcnt, 1);
__ z_agr(Z_R1_scratch, Z_R0_scratch);
__ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
// Copy float arguments.
Label farg_caselist; // Distance between each case has to be a power of 2
// (= 1 << logSizeOfCase, padded with nop.
__ align(16);
BIND(farg_caselist);
__ z_ldr(Z_FARG1, floatSlot); // 2 bytes
__ z_bru(loop_start_restore); // 4 bytes
__ z_nop(); // 2 bytes
__ z_ldr(Z_FARG2, floatSlot);
__ z_bru(loop_start_restore);
__ z_nop();
__ z_ldr(Z_FARG3, floatSlot);
__ z_bru(loop_start_restore);
__ z_nop();
__ z_ldr(Z_FARG4, floatSlot);
__ z_bru(loop_start_restore);
__ z_nop();
__ align(16);
__ bind(move_floatSlot_to_FARG);
__ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch.
__ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing.
__ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
__ z_larl(Z_R1_scratch, farg_caselist);
__ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
__ z_agr(Z_R1_scratch, Z_R0_scratch);
__ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
BLOCK_COMMENT("} slow_signature_handler");
return __ addr_at(entry_offset);
}
address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
address entry = __ pc();
assert(Z_tos == Z_RET, "Result handler: must move result!");
assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
switch (type) {
case T_BOOLEAN:
__ c2bool(Z_tos);
break;
case T_CHAR:
__ and_imm(Z_tos, 0xffff);
break;
case T_BYTE:
__ z_lbr(Z_tos, Z_tos);
break;
case T_SHORT:
__ z_lhr(Z_tos, Z_tos);
break;
case T_INT:
case T_LONG:
case T_VOID:
case T_FLOAT:
case T_DOUBLE:
break;
case T_OBJECT:
// Retrieve result from frame...
__ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
// and verify it.
__ verify_oop(Z_tos);
break;
default:
ShouldNotReachHere();
}
__ z_br(Z_R14); // Return from result handler.
return entry;
}
// Abstract method entry.
// Attempt to execute abstract method. Throw exception.
address TemplateInterpreterGenerator::generate_abstract_entry(void) {
unsigned int entry_offset = __ offset();
// Caller could be the call_stub or a compiled method (x86 version is wrong!).
BLOCK_COMMENT("abstract_entry {");
// Implement call of InterpreterRuntime::throw_AbstractMethodError.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
__ save_return_pc(); // Save Z_R14.
__ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError), Z_thread);
__ pop_frame();
__ restore_return_pc(); // Restore Z_R14.
__ reset_last_Java_frame();
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
// branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
// i.e. call stub, compiled method, interpreted method.
__ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
__ z_br(Z_tmp_1);
BLOCK_COMMENT("} abstract_entry");
return __ addr_at(entry_offset);
}
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
if (UseG1GC) {
// Inputs:
// Z_ARG1 - receiver
//
// What we do:
// - Load the referent field address.
// - Load the value in the referent field.
// - Pass that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Register scratch1 = Z_tmp_2;
Register scratch2 = Z_tmp_3;
Register pre_val = Z_RET; // return value
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
Register Rargp = Z_esp;
Label slow_path;
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
BLOCK_COMMENT("Reference_get {");
// If the receiver is null then it is OK to jump to the slow path.
__ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
__ z_bre(slow_path);
// Load the value of the referent field.
__ load_heap_oop(pre_val, referent_offset, pre_val);
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
// Note:
// With these parameters the write_barrier_pre does not
// generate instructions to load the previous value.
__ g1_write_barrier_pre(noreg, // obj
noreg, // offset
pre_val, // pre_val
noreg, // no new val to preserve
scratch1, // tmp
scratch2, // tmp
true); // pre_val_needed
__ z_br(Z_R14);
// Branch to previously generated regular method entry.
__ bind(slow_path);
address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
__ jump_to_entry(meth_entry, Z_R1);
BLOCK_COMMENT("} Reference_get");
return entry;
}
#endif // INCLUDE_ALL_GCS
return NULL;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
// Restore bcp under the assumption that the current frame is still
// interpreted.
__ restore_bcp();
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Throw exception.
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
return entry;
}
//
// Args:
// Z_ARG3: aberrant index
//
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char * name) {
address entry = __ pc();
address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Setup parameters.
// Leave out the name and use register for array to create more detailed exceptions.
__ load_absolute_address(Z_ARG2, (address) name);
__ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// Object is at TOS.
__ pop_ptr(Z_ARG2);
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
__ call_VM(Z_ARG1,
CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
Z_ARG2);
DEBUG_ONLY(__ should_not_reach_here();)
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
BLOCK_COMMENT("exception_handler_common {");
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
if (name != NULL) {
__ load_absolute_address(Z_ARG2, (address)name);
} else {
__ clear_reg(Z_ARG2, true, false);
}
if (pass_oop) {
__ call_VM(Z_tos,
CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
Z_ARG2, Z_tos /*object (see TT::aastore())*/);
} else {
if (message != NULL) {
__ load_absolute_address(Z_ARG3, (address)message);
} else {
__ clear_reg(Z_ARG3, true, false);
}
__ call_VM(Z_tos,
CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
Z_ARG2, Z_ARG3);
}
// Throw exception.
__ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
__ z_br(Z_R1_scratch);
BLOCK_COMMENT("} exception_handler_common");
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
address entry = __ pc();
BLOCK_COMMENT("return_entry {");
// Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
Register sp_before_i2c_extension = Z_bcp;
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
__ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
__ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
// TODO(ZASM): necessary??
// // and NULL it as marker that esp is now tos until next java call
// __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ restore_bcp();
__ restore_locals();
__ restore_esp();
if (state == atos) {
__ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
}
Register cache = Z_tmp_1;
Register size = Z_tmp_1;
Register offset = Z_tmp_2;
const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset());
__ get_cache_and_index_at_bcp(cache, offset, 1, index_size);
// #args is in rightmost byte of the _flags field.
__ z_llgc(size, Address(cache, offset, flags_offset+(sizeof(size_t)-1)));
__ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
__ z_agr(Z_esp, size); // Pop arguments.
__ check_and_handle_popframe(Z_thread);
__ check_and_handle_earlyret(Z_thread);
__ dispatch_next(state, step);
BLOCK_COMMENT("} return_entry");
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for (TosState state,
int step,
address continuation) {
address entry = __ pc();
BLOCK_COMMENT("deopt_entry {");
// TODO(ZASM): necessary? NULL last_sp until next java call
// __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
__ restore_bcp();
__ restore_locals();
__ restore_esp();
// Handle exceptions.
{
Label L;
__ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
__ z_bre(L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
if (continuation == NULL) {
__ dispatch_next(state, step);
} else {
__ jump_to_entry(continuation, Z_R1_scratch);
}
BLOCK_COMMENT("} deopt_entry");
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
return entry;
}
//
// Helpers for commoning out cases in the various type of method entries.
//
// Increment invocation count & check for overflow.
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test.
//
// Z_ARG2: method (see generate_fixed_frame())
//
void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
Label done;
Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
Register m_counters = Z_ARG4;
BLOCK_COMMENT("counter_incr {");
// Note: In tiered we increment either counters in method or in MDO depending
// if we are profiling or not.
if (TieredCompilation) {
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
NearLabel no_mdo;
Register mdo = m_counters;
// Are we profiling?
__ load_and_test_long(mdo, method2_(method, method_data));
__ branch_optimized(Assembler::bcondZero, no_mdo);
// Increment counter in the MDO.
const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
InvocationCounter::counter_offset());
const Address mask(mdo, MethodData::invoke_mask_offset());
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
Z_R1_scratch, false, Assembler::bcondZero,
overflow);
__ z_bru(done);
__ bind(no_mdo);
}
// Increment counter in MethodCounters.
const Address invocation_counter(m_counters,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
// Get address of MethodCounters object.
__ get_method_counters(method, m_counters, done);
const Address mask(m_counters, MethodCounters::invoke_mask_offset());
__ increment_mask_and_jump(invocation_counter,
increment, mask,
Z_R1_scratch, false, Assembler::bcondZero,
overflow);
} else {
Register counter_sum = Z_ARG3; // The result of this piece of code.
Register tmp = Z_R1_scratch;
#ifdef ASSERT
{
NearLabel ok;
__ get_method(tmp);
__ compare64_and_branch(method, tmp, Assembler::bcondEqual, ok);
__ z_illtrap(0x66);
__ bind(ok);
}
#endif
// Get address of MethodCounters object.
__ get_method_counters(method, m_counters, done);
// Update standard invocation counters.
__ increment_invocation_counter(m_counters, counter_sum);
if (ProfileInterpreter) {
__ add2mem_32(Address(m_counters, MethodCounters::interpreter_invocation_counter_offset()), 1, tmp);
if (profile_method != NULL) {
const Address profile_limit(m_counters, MethodCounters::interpreter_profile_limit_offset());
__ z_cl(counter_sum, profile_limit);
__ branch_optimized(Assembler::bcondLow, *profile_method_continue);
// If no method data exists, go to profile_method.
__ test_method_data_pointer(tmp, *profile_method);
}
}
const Address invocation_limit(m_counters, MethodCounters::interpreter_invocation_limit_offset());
__ z_cl(counter_sum, invocation_limit);
__ branch_optimized(Assembler::bcondNotLow, *overflow);
}
__ bind(done);
BLOCK_COMMENT("} counter_incr");
}
void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
// InterpreterRuntime::frequency_counter_overflow takes two
// arguments, the first (thread) is passed by call_VM, the second
// indicates if the counter overflow occurs at a backwards branch
// (NULL bcp). We pass zero for it. The call returns the address
// of the verified entry point for the method or NULL if the
// compilation did not complete (either went background or bailed
// out).
__ clear_reg(Z_ARG2);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
Z_ARG2);
__ z_bru(do_continue);
}
void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
Register tmp2 = Z_R1_scratch;
const int page_size = os::vm_page_size();
NearLabel after_frame_check;
BLOCK_COMMENT("counter_overflow {");
assert_different_registers(frame_size, tmp1);
// Stack banging is sufficient overflow check if frame_size < page_size.
if (Immediate::is_uimm(page_size, 15)) {
__ z_chi(frame_size, page_size);
__ z_brl(after_frame_check);
} else {
__ load_const_optimized(tmp1, page_size);
__ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
}
// Get the stack base, and in debug, verify it is non-zero.
__ z_lg(tmp1, thread_(stack_base));
#ifdef ASSERT
address reentry = NULL;
NearLabel base_not_zero;
__ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
__ bind(base_not_zero);
#endif
// Get the stack size, and in debug, verify it is non-zero.
assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
__ z_lg(tmp2, thread_(stack_size));
#ifdef ASSERT
NearLabel size_not_zero;
__ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
__ bind(size_not_zero);
#endif
// Compute the beginning of the protected zone minus the requested frame size.
__ z_sgr(tmp1, tmp2);
__ add2reg(tmp1, JavaThread::stack_guard_zone_size());
// Add in the size of the frame (which is the same as subtracting it from the
// SP, which would take another register.
__ z_agr(tmp1, frame_size);
// The frame is greater than one page in size, so check against
// the bottom of the stack.
__ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
// The stack will overflow, throw an exception.
// Restore SP to sender's sp. This is necessary if the sender's frame is an
// extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
// JSR292 adaptations.
__ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
// Note also that the restored frame is not necessarily interpreted.
// Use the shared runtime version of the StackOverflowError.
assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
__ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry());
__ z_br(tmp1);
// If you get to here, then there is enough stack space.
__ bind(after_frame_check);
BLOCK_COMMENT("} counter_overflow");
}
// Allocate monitor and lock method (asm interpreter).
//
// Args:
// Z_locals: locals
void TemplateInterpreterGenerator::lock_method(void) {
BLOCK_COMMENT("lock_method {");
// Synchronize method.
const Register method = Z_tmp_2;
__ get_method(method);
#ifdef ASSERT
address reentry = NULL;
{
Label L;
__ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
__ z_btrue(L);
reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// Get synchronization object.
const Register object = Z_tmp_2;
{
Label done;
Label static_method;
__ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
__ z_btrue(static_method);
// non-static method: Load receiver obj from stack.
__ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
__ z_bru(done);
__ bind(static_method);
// Lock the java mirror.
__ load_mirror(object, method);
#ifdef ASSERT
{
NearLabel L;
__ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
reentry = __ stop_chain_static(reentry, "synchronization object is NULL");
__ bind(L);
}
#endif // ASSERT
__ bind(done);
}
__ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
// Store object and lock it.
__ get_monitors(Z_tmp_1);
__ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset_in_bytes()));
__ lock_object(Z_tmp_1, object);
BLOCK_COMMENT("} lock_method");
}
// Generate a fixed interpreter frame. This is identical setup for
// interpreted methods and for native methods hence the shared code.
//
// Registers alive
// Z_thread - JavaThread*
// Z_SP - old stack pointer
// Z_method - callee's method
// Z_esp - parameter list (slot 'above' last param)
// Z_R14 - return pc, to be stored in caller's frame
// Z_R10 - sender sp, note: Z_tmp_1 is Z_R10!
//
// Registers updated
// Z_SP - new stack pointer
// Z_esp - callee's operand stack pointer
// points to the slot above the value on top
// Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
// Z_bcp - the bytecode pointer
// Z_fp - the frame pointer, thereby killing Z_method
// Z_ARG2 - copy of Z_method
//
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// stack layout
//
// F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below)
// [F1's operand stack (unused)]
// [F1's outgoing Java arguments] <-- Z_esp
// [F1's operand stack (non args)]
// [monitors] (optional)
// [IJAVA_STATE]
//
// F2 [PARENT_IJAVA_FRAME_ABI]
// ...
//
// 0x000
//
// Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
//=============================================================================
// Allocate space for locals other than the parameters, the
// interpreter state, monitors, and the expression stack.
const Register local_count = Z_ARG5;
const Register fp = Z_tmp_2;
BLOCK_COMMENT("generate_fixed_frame {");
{
// local registers
const Register top_frame_size = Z_ARG2;
const Register sp_after_resize = Z_ARG3;
const Register max_stack = Z_ARG4;
// local_count = method->constMethod->max_locals();
__ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
__ z_llgh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
if (native_call) {
// If we're calling a native method, we replace max_stack (which is
// zero) with space for the worst-case signature handler varargs
// vector, which is:
// max_stack = max(Argument::n_register_parameters, parameter_count+2);
//
// We add two slots to the parameter_count, one for the jni
// environment and one for a possible native mirror. We allocate
// space for at least the number of ABI registers, even though
// InterpreterRuntime::slow_signature_handler won't write more than
// parameter_count+2 words when it creates the varargs vector at the
// top of the stack. The generated slow signature handler will just
// load trash into registers beyond the necessary number. We're
// still going to cut the stack back by the ABI register parameter
// count so as to get SP+16 pointing at the ABI outgoing parameter
// area, so we need to allocate at least that much even though we're
// going to throw it away.
//
__ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
__ z_llgh(max_stack, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
__ add2reg(max_stack, 2);
NearLabel passing_args_on_stack;
// max_stack in bytes
__ z_sllg(max_stack, max_stack, LogBytesPerWord);
int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
__ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
__ load_const_optimized(max_stack, argument_registers_in_bytes);
__ bind(passing_args_on_stack);
} else {
// !native_call
__ z_lg(max_stack, method_(const));
// Calculate number of non-parameter locals (in slots):
__ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
__ z_sh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
// max_stack = method->max_stack();
__ z_llgh(max_stack, Address(max_stack, ConstMethod::max_stack_offset()));
// max_stack in bytes
__ z_sllg(max_stack, max_stack, LogBytesPerWord);
}
// Resize (i.e. normally shrink) the top frame F1 ...
// F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10
// F1's operand stack (free)
// ...
// F1's operand stack (free) <-- Z_esp
// F1's outgoing Java arg m
// ...
// F1's outgoing Java arg 0
// ...
//
// ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
//
// +......................+
// : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
// : :
// F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \
// F0's non arg local | = delta
// ... |
// F0's non arg local <-- Z_esp /
// F1's outgoing Java arg m
// ...
// F1's outgoing Java arg 0
// ...
//
// then push the new top frame F0.
//
// F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \
// [operand stack] = max_stack | = top_frame_size
// [IJAVA_STATE] = frame::z_ijava_state_size /
// sp_after_resize = Z_esp - delta
//
// delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
__ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
__ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
__ z_slgr(sp_after_resize, Z_R0_scratch);
// top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
__ add2reg(top_frame_size,
frame::z_top_ijava_frame_abi_size +
frame::z_ijava_state_size +
frame::interpreter_frame_monitor_size() * wordSize,
max_stack);
if (!native_call) {
// Stack overflow check.
// Native calls don't need the stack size check since they have no
// expression stack and the arguments are already on the stack and
// we only add a handful of words to the stack.
Register frame_size = max_stack; // Reuse the regiser for max_stack.
__ z_lgr(frame_size, Z_SP);
__ z_sgr(frame_size, sp_after_resize);
__ z_agr(frame_size, top_frame_size);
generate_stack_overflow_check(frame_size, fp/*tmp1*/);
}
DEBUG_ONLY(__ z_cg(Z_R14, _z_abi16(return_pc), Z_SP));
__ asm_assert_eq("killed Z_R14", 0);
__ resize_frame_absolute(sp_after_resize, fp, true);
__ save_return_pc(Z_R14);
// ... and push the new frame F0.
__ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
}
//=============================================================================
// Initialize the new frame F0: initialize interpreter state.
{
// locals
const Register local_addr = Z_ARG4;
BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
#ifdef ASSERT
// Set the magic number (using local_addr as tmp register).
__ load_const_optimized(local_addr, frame::z_istate_magic_number);
__ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
#endif
// Save sender SP from F1 (i.e. before it was potentially modified by an
// adapter) into F0's interpreter state. We us it as well to revert
// resizing the frame above.
__ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
// Load cp cache and save it at the and of this block.
__ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
__ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstMethod::constants_offset()));
__ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset_in_bytes()));
// z_ijava_state->method = method;
__ z_stg(Z_method, _z_ijava_state_neg(method), fp);
// Point locals at the first argument. Method's locals are the
// parameters on top of caller's expression stack.
// Tos points past last Java argument.
__ z_lg(Z_locals, Address(Z_method, Method::const_offset()));
__ z_llgh(Z_locals /*parameter_count words*/,
Address(Z_locals, ConstMethod::size_of_parameters_offset()));
__ z_sllg(Z_locals /*parameter_count bytes*/, Z_locals /*parameter_count*/, LogBytesPerWord);
__ z_agr(Z_locals, Z_esp);
// z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
// z_ijava_state->locals = Z_esp + parameter_count bytes
__ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
// z_ijava_state->oop_temp = NULL;
__ store_const(Address(fp, oop_tmp_offset), 0);
// Initialize z_ijava_state->mdx.
Register Rmdp = Z_bcp;
// native_call: assert that mdo == NULL
const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
if (ProfileInterpreter && check_for_mdo) {
Label get_continue;
__ load_and_test_long(Rmdp, method_(method_data));
__ z_brz(get_continue);
DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
__ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
__ bind(get_continue);
}
__ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
// Initialize z_ijava_state->bcp and Z_bcp.
if (native_call) {
__ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
} else {
__ z_lg(Z_bcp, method_(const));
__ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()));
}
__ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
// no monitors and empty operand stack
// => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
// => Z_ijava_state->esp points one slot above into the operand stack.
// z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
// z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
__ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
__ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
__ add2reg(Z_esp, -Interpreter::stackElementSize);
__ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
// z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
__ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
// Get mirror and store it in the frame as GC root for this Method*.
__ load_mirror(Z_R1_scratch, Z_method);
__ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
//=============================================================================
if (!native_call) {
// Fill locals with 0x0s.
NearLabel locals_zeroed;
NearLabel doXC;
// Local_count is already num_locals_slots - num_param_slots.
__ compare64_and_branch(local_count, (intptr_t)0L, Assembler::bcondNotHigh, locals_zeroed);
// Advance local_addr to point behind locals (creates positive incr. in loop).
__ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
__ z_llgh(Z_R0_scratch, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
__ add2reg(Z_R0_scratch, -1);
__ z_lgr(local_addr/*locals*/, Z_locals);
__ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
__ z_sllg(local_count, local_count, LogBytesPerWord); // Local_count are non param locals.
__ z_sgr(local_addr, Z_R0_scratch);
if (VM_Version::has_Prefetch()) {
__ z_pfd(0x02, 0, Z_R0, local_addr);
__ z_pfd(0x02, 256, Z_R0, local_addr);
}
// Can't optimise for Z10 using "compare and branch" (immediate value is too big).
__ z_cghi(local_count, 256);
__ z_brnh(doXC);
// MVCLE: Initialize if quite a lot locals.
// __ bind(doMVCLE);
__ z_lgr(Z_R0_scratch, local_addr);
__ z_lgr(Z_R1_scratch, local_count);
__ clear_reg(Z_ARG2); // Src len of MVCLE is zero.
__ MacroAssembler::move_long_ext(Z_R0_scratch, Z_ARG1, 0);
__ z_bru(locals_zeroed);
Label XC_template;
__ bind(XC_template);
__ z_xc(0, 0, local_addr, 0, local_addr);
__ bind(doXC);
__ z_bctgr(local_count, Z_R0); // Get #bytes-1 for EXECUTE.
if (VM_Version::has_ExecuteExtensions()) {
__ z_exrl(local_count, XC_template); // Execute XC with variable length.
} else {
__ z_larl(Z_R1_scratch, XC_template);
__ z_ex(local_count, 0, Z_R0, Z_R1_scratch); // Execute XC with variable length.
}
__ bind(locals_zeroed);
}
}
// Finally set the frame pointer, destroying Z_method.
assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
// Oprofile analysis suggests to keep a copy in a register to be used by
// generate_counter_incr().
__ z_lgr(Z_ARG2, Z_method);
__ z_lgr(Z_fp, fp);
BLOCK_COMMENT("} generate_fixed_frame");
}
// Various method entries
// Math function, frame manager must set up an interpreter state, etc.
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
// Decide what to do: Use same platform specific instructions and runtime calls as compilers.
bool use_instruction = false;
address runtime_entry = NULL;
int num_args = 1;
bool double_precision = true;
// s390 specific:
switch (kind) {
case Interpreter::java_lang_math_sqrt:
case Interpreter::java_lang_math_abs: use_instruction = true; break;
case Interpreter::java_lang_math_fmaF:
case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
default: break; // Fall back to runtime call.
}
switch (kind) {
case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break;
case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break;
case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break;
case Interpreter::java_lang_math_abs : /* run interpreted */ break;
case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break;
case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break;
case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break;
case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
default: ShouldNotReachHere();
}
// Use normal entry if neither instruction nor runtime call is used.
if (!use_instruction && runtime_entry == NULL) return NULL;
address entry = __ pc();
if (use_instruction) {
switch (kind) {
case Interpreter::java_lang_math_sqrt:
// Can use memory operand directly.
__ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
break;
case Interpreter::java_lang_math_abs:
// Load operand from stack.
__ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
__ z_lpdbr(Z_FRET);
break;
case Interpreter::java_lang_math_fmaF:
__ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3
__ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1
__ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize));
break;
case Interpreter::java_lang_math_fmaD:
__ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3
__ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1
__ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize));
break;
default: ShouldNotReachHere();
}
} else {
// Load arguments
assert(num_args <= 4, "passed in registers");
if (double_precision) {
int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
for (int i = 0; i < num_args; ++i) {
__ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
offset -= 2 * Interpreter::stackElementSize;
}
} else {
int offset = num_args * Interpreter::stackElementSize;
for (int i = 0; i < num_args; ++i) {
__ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
offset -= Interpreter::stackElementSize;
}
}
// Call runtime
__ save_return_pc(); // Save Z_R14.
__ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14.
__ call_VM_leaf(runtime_entry);
__ pop_frame();
__ restore_return_pc(); // Restore Z_R14.
}
// Pop c2i arguments (if any) off when we return.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
__ z_br(Z_R14);
return entry;
}
// Interpreter stub for calling a native method. (asm interpreter).
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// Determine code generation flags.
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// Interpreter entry for ordinary Java methods.
//
// Registers alive
// Z_SP - stack pointer
// Z_thread - JavaThread*
// Z_method - callee's method (method to be invoked)
// Z_esp - operand (or expression) stack pointer of caller. one slot above last arg.
// Z_R10 - sender sp (before modifications, e.g. by c2i adapter
// and as well by generate_fixed_frame below)
// Z_R14 - return address to caller (call_stub or c2i_adapter)
//
// Registers updated
// Z_SP - stack pointer
// Z_fp - callee's framepointer
// Z_esp - callee's operand stack pointer
// points to the slot above the value on top
// Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
// Z_tos - integer result, if any
// z_ftos - floating point result, if any
//
// Stack layout at this point:
//
// F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
// frame was extended by c2i adapter)
// [outgoing Java arguments] <-- Z_esp
// ...
// PARENT [PARENT_IJAVA_FRAME_ABI]
// ...
//
address entry_point = __ pc();
// Make sure registers are different!
assert_different_registers(Z_thread, Z_method, Z_esp);
BLOCK_COMMENT("native_entry {");
// Make sure method is native and not abstract.
#ifdef ASSERT
address reentry = NULL;
{ Label L;
__ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
__ z_btrue(L);
reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
__ z_bfalse(L);
reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
__ bind(L);
}
#endif // ASSERT
#ifdef ASSERT
// Save the return PC into the callers frame for assertion in generate_fixed_frame.
__ save_return_pc(Z_R14);
#endif
// Generate the code to allocate the interpreter stack frame.
generate_fixed_frame(true);
const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
__ z_mvi(do_not_unlock_if_synchronized, true);
// Increment invocation count and check for overflow.
NearLabel invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(true);
// Reset the _do_not_unlock_if_synchronized flag.
__ z_mvi(do_not_unlock_if_synchronized, false);
// Check for synchronized methods.
// This mst happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
lock_method();
} else {
// No synchronization necessary.
#ifdef ASSERT
{ Label L;
__ get_method(Z_R1_scratch);
__ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
__ z_bfalse(L);
reentry = __ stop_chain_static(reentry, "method needs synchronization");
__ bind(L);
}
#endif // ASSERT
}
// start execution
// jvmti support
__ notify_method_entry();
//=============================================================================
// Get and call the signature handler.
const Register Rmethod = Z_tmp_2;
const Register signature_handler_entry = Z_tmp_1;
const Register Rresult_handler = Z_tmp_3;
Label call_signature_handler;
assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
// Reload method.
__ get_method(Rmethod);
// Check for signature handler.
__ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
__ z_brne(call_signature_handler);
// Method has never been called. Either generate a specialized
// handler or point to the slow one.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
Rmethod);
// Reload method.
__ get_method(Rmethod);
// Reload signature handler, it must have been created/assigned in the meantime.
__ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
__ bind(call_signature_handler);
// We have a TOP_IJAVA_FRAME here, which belongs to us.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
// Call signature handler and pass locals address in Z_ARG1.
__ z_lgr(Z_ARG1, Z_locals);
__ call_stub(signature_handler_entry);
// Save result handler returned by signature handler.
__ z_lgr(Rresult_handler, Z_RET);
// Reload method (the slow signature handler may block for GC).
__ get_method(Rmethod);
// Pass mirror handle if static call.
{
Label method_is_not_static;
__ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
__ z_bfalse(method_is_not_static);
// Get mirror.
__ load_mirror(Z_R1, Rmethod);
// z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
__ z_stg(Z_R1, oop_tmp_offset, Z_fp);
// Pass handle to mirror as 2nd argument to JNI method.
__ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
__ bind(method_is_not_static);
}
// Pass JNIEnv address as first parameter.
__ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
// Note: last java frame has been set above already. The pc from there
// is precise enough.
// Get native function entry point before we change the thread state.
__ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
//=============================================================================
// Transition from _thread_in_Java to _thread_in_native. As soon as
// we make this change the safepoint code needs to be certain that
// the last Java frame we established is good. The pc in that frame
// just need to be near here not an actual return address.
#ifdef ASSERT
{
NearLabel L;
__ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
__ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
__ bind(L);
}
#endif
// Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
__ set_thread_state(_thread_in_native);
//=============================================================================
// Call the native method. Argument registers must not have been
// overwritten since "__ call_stub(signature_handler);" (except for
// ARG1 and ARG2 for static methods).
__ call_c(Z_R1/*native_method_entry*/);
// NOTE: frame::interpreter_frame_result() depends on these stores.
__ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
__ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
const Register Rlresult = signature_handler_entry;
assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
__ z_lgr(Rlresult, Z_RET);
// Z_method may no longer be valid, because of GC.
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after
// blocking.
//=============================================================================
// Switch thread to "native transition" state before reading the
// synchronization state. This additional state is necessary
// because reading and testing the synchronization state is not
// atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
// in _thread_in_native state, loads _not_synchronized and is
// preempted. VM thread changes sync state to synchronizing and
// suspends threads for GC. Thread A is resumed to finish this
// native method, but doesn't block here since it didn't see any
// synchronization is progress, and escapes.
__ set_thread_state(_thread_in_native_trans);
if (UseMembar) {
__ z_fence();
} else {
// Write serialization page so VM thread can do a pseudo remote
// membar. We use the current thread pointer to calculate a thread
// specific offset to write to within the page. This minimizes bus
// traffic due to cache line collision.
__ serialize_memory(Z_thread, Z_R1, Z_R0);
}
// Now before we return to java we must look for a current safepoint
// (a new safepoint can not start since we entered native_trans).
// We must check here because a current safepoint could be modifying
// the callers registers right this moment.
// Check for safepoint operation in progress and/or pending suspend requests.
{
Label Continue, do_safepoint;
__ generate_safepoint_check(do_safepoint, Z_R1, true);
// Check for suspend.
__ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
__ z_bre(Continue); // 0 -> no flag set -> not suspended
__ bind(do_safepoint);
__ z_lgr(Z_ARG1, Z_thread);
__ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
__ bind(Continue);
}
//=============================================================================
// Back in Interpreter Frame.
// We are in thread_in_native_trans here and back in the normal
// interpreter frame. We don't have to do anything special about
// safepoints and we can switch to Java mode anytime we are ready.
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. For
// native methods it assumes that the non-FPU/non-void result is
// saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
// this changes then the interpreter_frame_result implementation
// will need to be updated too.
//=============================================================================
// Back in Java.
// Memory ordering: Z does not reorder store/load with subsequent
// load. That's strong enough.
__ set_thread_state(_thread_in_Java);
__ reset_last_Java_frame();
// We reset the JNI handle block only after unboxing the result; see below.
// The method register is junk from after the thread_in_native transition
// until here. Also can't call_VM until the bcp has been
// restored. Need bcp for throwing exception below so get it now.
__ get_method(Rmethod);
// Restore Z_bcp to have legal interpreter frame,
// i.e., bci == 0 <=> Z_bcp == code_base().
__ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
__ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
}
// Check if the native method returns an oop, and if so, move it
// from the jni handle to z_ijava_state.oop_temp. This is
// necessary, because we reset the jni handle block below.
// NOTE: frame::interpreter_frame_result() depends on this, too.
{ NearLabel no_oop_result;
__ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
__ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
__ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1);
__ z_stg(Rlresult, oop_tmp_offset, Z_fp);
__ bind(no_oop_result);
}
// Reset handle block.
__ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
__ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset_in_bytes()), 4);
// Bandle exceptions (exception handling will handle unlocking!).
{
Label L;
__ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
__ z_bre(L);
__ MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
if (synchronized) {
Register Rfirst_monitor = Z_ARG2;
__ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
#ifdef ASSERT
NearLabel ok;
__ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
__ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
__ bind(ok);
#endif
__ unlock_object(Rfirst_monitor);
}
// JVMTI support. Result has already been saved above to the frame.
__ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
// Move native method result back into proper registers and return.
// C++ interpreter does not use result handler. So do we need to here? TODO(ZASM): check if correct.
{ NearLabel no_oop_or_null;
__ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
__ load_and_test_long(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
__ z_bre(no_oop_or_null); // No unboxing if the result is NULL.
__ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
__ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_or_null);
__ z_lg(Z_RET, oop_tmp_offset, Z_fp);
__ verify_oop(Z_RET);
__ bind(no_oop_or_null);
}
// Pop the native method's interpreter frame.
__ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
// Return to caller.
__ z_br(Z_R14);
if (inc_counter) {
// Handle overflow of counter and compile method.
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
BLOCK_COMMENT("} native_entry");
return entry_point;
}
//
// Generic interpreted method entry to template interpreter.
//
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
address entry_point = __ pc();
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// Interpreter entry for ordinary Java methods.
//
// Registers alive
// Z_SP - stack pointer
// Z_thread - JavaThread*
// Z_method - callee's method (method to be invoked)
// Z_esp - operand (or expression) stack pointer of caller. one slot above last arg.
// Z_R10 - sender sp (before modifications, e.g. by c2i adapter
// and as well by generate_fixed_frame below)
// Z_R14 - return address to caller (call_stub or c2i_adapter)
//
// Registers updated
// Z_SP - stack pointer
// Z_fp - callee's framepointer
// Z_esp - callee's operand stack pointer
// points to the slot above the value on top
// Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
// Z_tos - integer result, if any
// z_ftos - floating point result, if any
//
//
// stack layout at this point:
//
// F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
// frame was extended by c2i adapter)
// [outgoing Java arguments] <-- Z_esp
// ...
// PARENT [PARENT_IJAVA_FRAME_ABI]
// ...
//
// stack layout before dispatching the first bytecode:
//
// F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP
// [operand stack] <-- Z_esp
// monitor (optional, can grow)
// [IJAVA_STATE]
// F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP)
// [F0's locals] <-- Z_locals
// [F1's operand stack]
// [F1's monitors] (optional)
// [IJAVA_STATE]
// Make sure registers are different!
assert_different_registers(Z_thread, Z_method, Z_esp);
BLOCK_COMMENT("normal_entry {");
// Make sure method is not native and not abstract.
// Rethink these assertions - they can be simplified and shared.
#ifdef ASSERT
address reentry = NULL;
{ Label L;
__ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
__ z_bfalse(L);
reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
__ bind(L);
}
{ Label L;
__ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
__ z_bfalse(L);
reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
__ bind(L);
}
#endif // ASSERT
#ifdef ASSERT
// Save the return PC into the callers frame for assertion in generate_fixed_frame.
__ save_return_pc(Z_R14);
#endif
// Generate the code to allocate the interpreter stack frame.
generate_fixed_frame(false);
const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
__ z_mvi(do_not_unlock_if_synchronized, true);
__ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
// Increment invocation counter and check for overflow.
//
// Note: checking for negative value instead of overflow so we have a 'sticky'
// overflow test (may be of importance as soon as we have true MT/MP).
NearLabel invocation_counter_overflow;
NearLabel profile_method;
NearLabel profile_method_continue;
NearLabel Lcontinue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
__ bind(Lcontinue);
bang_stack_shadow_pages(false);
// Reset the _do_not_unlock_if_synchronized flag.
__ z_mvi(do_not_unlock_if_synchronized, false);
// Check for synchronized methods.
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
// Allocate monitor and lock method.
lock_method();
} else {
#ifdef ASSERT
{ Label L;
__ get_method(Z_R1_scratch);
__ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
__ z_bfalse(L);
reentry = __ stop_chain_static(reentry, "method needs synchronization");
__ bind(L);
}
#endif // ASSERT
}
// start execution
#ifdef ASSERT
__ verify_esp(Z_esp, Z_R1_scratch);
__ verify_thread();
#endif
// jvmti support
__ notify_method_entry();
// Start executing instructions.
__ dispatch_next(vtos);
// Dispatch_next does not return.
DEBUG_ONLY(__ should_not_reach_here());
// Invocation counter overflow.
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter.
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ z_bru(profile_method_continue);
}
// Handle invocation counter overflow.
__ bind(invocation_counter_overflow);
generate_counter_overflow(Lcontinue);
}
BLOCK_COMMENT("} normal_entry");
return entry_point;
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.update(int crc, int b)
*/
address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
if (UseCRC32Intrinsics) {
uint64_t entry_off = __ offset();
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
__ generate_safepoint_check(slow_path, Z_R1, false);
BLOCK_COMMENT("CRC32_update {");
// We don't generate local frame and don't align stack because
// we not even call stub code (we generate the code inline)
// and there is no safepoint on this path.
// Load java parameters.
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
const Register argP = Z_esp;
const Register crc = Z_ARG1; // crc value
const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address)
const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter.
const Register table = Z_ARG4; // address of crc32 table
// Arguments are reversed on java expression stack.
__ z_la(data, 3+1*wordSize, argP); // byte value (stack address).
// Being passed as an int, the single byte is at offset +3.
__ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
__ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true);
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
__ z_br(Z_R14);
BLOCK_COMMENT("} CRC32_update");
// Use a previously generated vanilla native entry as the slow path.
BIND(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
return __ addr_at(entry_off);
}
return NULL;
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len)
* int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
*/
address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32Intrinsics) {
uint64_t entry_off = __ offset();
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
__ generate_safepoint_check(slow_path, Z_R1, false);
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters.
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
const Register argP = Z_esp;
const Register crc = Z_ARG1; // crc value
const Register data = Z_ARG2; // address of java byte array
const Register dataLen = Z_ARG3; // source data len
const Register table = Z_ARG4; // address of crc32 table
const Register t0 = Z_R10; // work reg for kernel* emitters
const Register t1 = Z_R11; // work reg for kernel* emitters
const Register t2 = Z_R12; // work reg for kernel* emitters
const Register t3 = Z_R13; // work reg for kernel* emitters
// Arguments are reversed on java expression stack.
// Calculate address of start element.
if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
// crc @ (SP + 5W) (32bit)
// buf @ (SP + 3W) (64bit ptr to long array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off
BLOCK_COMMENT("CRC32_updateByteBuffer {");
__ z_llgf(crc, 5*wordSize, argP); // current crc state
__ z_lg(data, 3*wordSize, argP); // start of byte buffer
__ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
__ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process
} else { // Used for "updateBytes update".
// crc @ (SP + 4W) (32bit)
// buf @ (SP + 3W) (64bit ptr to byte array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off + base_offset
BLOCK_COMMENT("CRC32_updateBytes {");
__ z_llgf(crc, 4*wordSize, argP); // current crc state
__ z_lg(data, 3*wordSize, argP); // start of byte buffer
__ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
__ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process
__ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
}
StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
__ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
__ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers.
__ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true);
__ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack.
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
__ z_br(Z_R14);
BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
// Use a previously generated vanilla native entry as the slow path.
BIND(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
return __ addr_at(entry_off);
}
return NULL;
}
/**
* Method entry for intrinsic-candidate (non-native) methods:
* int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end)
* int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
* Unlike CRC32, CRC32C does not have any methods marked as native
* CRC32C also uses an "end" variable instead of the length variable CRC32 uses
*/
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32CIntrinsics) {
uint64_t entry_off = __ offset();
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters.
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
const Register argP = Z_esp;
const Register crc = Z_ARG1; // crc value
const Register data = Z_ARG2; // address of java byte array
const Register dataLen = Z_ARG3; // source data len
const Register table = Z_ARG4; // address of crc32 table
const Register t0 = Z_R10; // work reg for kernel* emitters
const Register t1 = Z_R11; // work reg for kernel* emitters
const Register t2 = Z_R12; // work reg for kernel* emitters
const Register t3 = Z_R13; // work reg for kernel* emitters
// Arguments are reversed on java expression stack.
// Calculate address of start element.
if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct".
// crc @ (SP + 5W) (32bit)
// buf @ (SP + 3W) (64bit ptr to long array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off
BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
__ z_llgf(crc, 5*wordSize, argP); // current crc state
__ z_lg(data, 3*wordSize, argP); // start of byte buffer
__ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
__ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as
__ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset)
} else { // Used for "updateBytes update".
// crc @ (SP + 4W) (32bit)
// buf @ (SP + 3W) (64bit ptr to byte array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off + base_offset
BLOCK_COMMENT("CRC32C_updateBytes {");
__ z_llgf(crc, 4*wordSize, argP); // current crc state
__ z_lg(data, 3*wordSize, argP); // start of byte buffer
__ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
__ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as
__ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset)
__ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
}
StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table);
__ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
__ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers.
__ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false);
__ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack.
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
__ z_br(Z_R14);
BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
return __ addr_at(entry_off);
}
return NULL;
}
void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
// Quick & dirty stack overflow checking: bang the stack & handle trap.
// Note that we do the banging after the frame is setup, since the exception
// handling code expects to find a valid interpreter frame on the stack.
// Doing the banging earlier fails if the caller frame is not an interpreter
// frame.
// (Also, the exception throwing code expects to unlock any synchronized
// method receiver, so do the banging after locking the receiver.)
// Bang each page in the shadow zone. We can't assume it's been done for
// an interpreter frame with greater than a page of locals, so each page
// needs to be checked. Only true for non-native. For native, we only bang the last page.
if (UseStackBanging) {
const int page_size = os::vm_page_size();
const int n_shadow_pages = (int)(JavaThread::stack_shadow_zone_size()/page_size);
const int start_page_num = native_call ? n_shadow_pages : 1;
for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
__ bang_stack_with_offset(pages*page_size);
}
}
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
BLOCK_COMMENT("throw_exception {");
// Entry point in previous activation (i.e., if the caller was interpreted).
Interpreter::_rethrow_exception_entry = __ pc();
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
// Z_ARG1 (==Z_tos): exception
// Z_ARG2 : Return address/pc that threw exception.
__ restore_bcp(); // R13 points to call/send.
__ restore_locals();
// Fallthrough, no need to restore Z_esp.
// Entry point for exceptions thrown within interpreter code.
Interpreter::_throw_exception_entry = __ pc();
// Expression stack is undefined here.
// Z_ARG1 (==Z_tos): exception
// Z_bcp: exception bcp
__ verify_oop(Z_ARG1);
__ z_lgr(Z_ARG2, Z_ARG1);
// Expression stack must be empty before entering the VM in case of
// an exception.
__ empty_expression_stack();
// Find exception handler address and preserve exception oop.
const Register Rpreserved_exc_oop = Z_tmp_1;
__ call_VM(Rpreserved_exc_oop,
CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
Z_ARG2);
// Z_RET: exception handler entry point
// Z_bcp: bcp for exception handler
__ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
__ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
// If the exception is not handled in the current frame the frame is
// removed and the exception is rethrown (i.e. exception
// continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bci for the instruction
// which caused the exception and the expression stack is
// empty. Thus, for any VM calls at this point, GC will find a legal
// oop map (with empty expression stack).
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
__ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
__ empty_expression_stack();
// Set the popframe_processing bit in pending_popframe_condition
// indicating that we are currently handling popframe, so that
// call_VMs that may happen later do not trigger new popframe
// handling cycles.
__ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
__ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
__ z_sty(Z_tmp_1, thread_(popframe_condition));
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
NearLabel caller_not_deoptimized;
__ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
__ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
// Compute size of arguments for saving when returning to
// deoptimized caller.
__ get_method(Z_ARG2);
__ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
__ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
__ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
__ restore_locals();
// Compute address of args to be saved.
__ z_lgr(Z_ARG3, Z_locals);
__ z_slgr(Z_ARG3, Z_ARG2);
__ add2reg(Z_ARG3, wordSize);
// Save these arguments.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
Z_thread, Z_ARG2, Z_ARG3);
__ remove_activation(vtos, Z_R14,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Inform deoptimization that it is responsible for restoring
// these arguments.
__ store_const(thread_(popframe_condition),
JavaThread::popframe_force_deopt_reexecution_bit,
Z_tmp_1, false);
// Continue in deoptimization handler.
__ z_br(Z_R14);
__ bind(caller_not_deoptimized);
}
// Clear the popframe condition flag.
__ clear_mem(thread_(popframe_condition), sizeof(int));
__ remove_activation(vtos,
noreg, // Retaddr is not used.
false, // throw_monitor_exception
false, // install_monitor_exception
false); // notify_jvmdi
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
__ restore_bcp();
__ restore_locals();
__ restore_esp();
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
#if INCLUDE_JVMTI
{
Label L_done;
__ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
__ z_brc(Assembler::bcondNotEqual, L_done);
// The member name argument must be restored if _invokestatic is
// re-executed after a PopFrame call. Detect such a case in the
// InterpreterRuntime function and return the member name
// argument, or NULL.
__ z_lg(Z_ARG2, Address(Z_locals));
__ get_method(Z_ARG3);
__ call_VM(Z_tmp_1,
CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
Z_ARG2, Z_ARG3, Z_bcp);
__ z_ltgr(Z_tmp_1, Z_tmp_1);
__ z_brc(Assembler::bcondEqual, L_done);
__ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
__ bind(L_done);
}
#endif // INCLUDE_JVMTI
__ dispatch_next(vtos);
// End of PopFrame support.
Interpreter::_remove_activation_entry = __ pc();
// In between activations - previous activation type unknown yet
// compute continuation point - the continuation point expects the
// following registers set up:
//
// Z_ARG1 (==Z_tos): exception
// Z_ARG2 : return address/pc that threw exception
Register return_pc = Z_tmp_1;
Register handler = Z_tmp_2;
assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc");
__ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
__ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
// Moved removing the activation after VM call, because the new top
// frame does not necessarily have the z_abi_160 required for a VM
// call (e.g. if it is compiled).
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
Z_thread, return_pc);
__ z_lgr(handler, Z_RET); // Save exception handler.
// Preserve exception over this code sequence.
__ pop_ptr(Z_ARG1);
__ set_vm_result(Z_ARG1);
// Remove the activation (without doing throws on illegalMonitorExceptions).
__ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
__ get_vm_result(Z_ARG1); // Restore exception.
__ verify_oop(Z_ARG1);
__ z_lgr(Z_ARG2, return_pc); // Restore return address.
#ifdef ASSERT
// The return_pc in the new top frame is dead... at least that's my
// current understanding. To assert this I overwrite it.
// Note: for compiled frames the handler is the deopt blob
// which writes Z_ARG2 into the return_pc slot.
__ load_const_optimized(return_pc, 0xb00b1);
__ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
#endif
// Z_ARG1 (==Z_tos): exception
// Z_ARG2 : return address/pc that threw exception
// Note that an "issuing PC" is actually the next PC after the call.
__ z_br(handler); // Jump to exception handler of caller.
BLOCK_COMMENT("} throw_exception");
}
//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
address entry = __ pc();
BLOCK_COMMENT("earlyret_entry {");
__ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
__ restore_bcp();
__ restore_locals();
__ restore_esp();
__ empty_expression_stack();
__ load_earlyret_value(state);
Register RjvmtiState = Z_tmp_1;
__ z_lg(RjvmtiState, thread_(jvmti_thread_state));
__ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
if (state == itos) {
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
__ narrow(Z_tos, Z_tmp_1); /* fall through */
}
__ remove_activation(state,
Z_tmp_1, // retaddr
false, // throw_monitor_exception
false, // install_monitor_exception
true); // notify_jvmdi
__ z_br(Z_tmp_1);
BLOCK_COMMENT("} earlyret_entry");
return entry;
}
//-----------------------------------------------------------------------------
// Helper for vtos entry point generation.
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
address& bep,
address& cep,
address& sep,
address& aep,
address& iep,
address& lep,
address& fep,
address& dep,
address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ z_bru(L);
fep = __ pc(); __ push_f(); __ z_bru(L);
dep = __ pc(); __ push_d(); __ z_bru(L);
lep = __ pc(); __ push_l(); __ z_bru(L);
bep = cep = sep =
iep = __ pc(); __ push_i();
vep = __ pc();
__ bind(L);
generate_and_dispatch(t);
}
//-----------------------------------------------------------------------------
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
address entry = __ pc();
NearLabel counter_below_trace_threshold;
if (TraceBytecodesAt > 0) {
// Skip runtime call, if the trace threshold is not yet reached.
__ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
__ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
__ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
__ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
__ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
}
int offset2 = state == ltos || state == dtos ? 2 : 1;
__ push(state);
// Preserved return pointer is in Z_R14.
// InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
__ z_lgr(Z_ARG2, Z_R14);
__ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
if (WizardMode) {
__ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
} else {
__ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
}
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
__ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
__ pop(state);
__ bind(counter_below_trace_threshold);
__ z_br(Z_R14); // return
return entry;
}
// Make feasible for old CPUs.
void TemplateInterpreterGenerator::count_bytecode() {
__ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
}
void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
__ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
Address index_addr(Z_tmp_1, (intptr_t) 0);
Register index = Z_tmp_2;
// Load previous index.
__ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
__ mem2reg_opt(index, index_addr, false);
// Mask with current bytecode and store as new previous index.
__ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
__ load_const_optimized(Z_R0_scratch,
(int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
__ z_or(index, Z_R0_scratch);
__ reg2mem_opt(index, index_addr, false);
// Load counter array's address.
__ z_lgfr(index, index); // Sign extend for addressing.
__ z_sllg(index, index, LogBytesPerInt); // index2bytes
__ load_absolute_address(Z_R1_scratch,
(address) &BytecodePairHistogram::_counters);
// Add index and increment counter.
__ z_agr(Z_R1_scratch, index);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
address entry = Interpreter::trace_code(t->tos_in());
guarantee(entry != NULL, "entry must have been generated");
__ call_stub(entry);
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
NearLabel L;
__ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
__ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
__ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
__ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
__ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
__ z_lgr(Z_tmp_1, Z_tos); // Save tos.
__ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
__ z_ldr(Z_F8, Z_ftos); // Save ftos.
// Use -XX:StopInterpreterAt=<num> to set the limit
// and break at breakpoint().
__ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
__ z_lgr(Z_tos, Z_tmp_1); // Restore tos.
__ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
__ z_ldr(Z_ftos, Z_F8); // Restore ftos.
__ bind(L);
}
#endif // !PRODUCT