jdk-24/hotspot/src/cpu/x86/vm/methodHandles_x86.cpp

2432 lines
100 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
static RegisterOrConstant constant(int value) {
return RegisterOrConstant(value);
}
address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
address interpreted_entry) {
// Just before the actual machine code entry point, allocate space
// for a MethodHandleEntry::Data record, so that we can manage everything
// from one base pointer.
__ align(wordSize);
address target = __ pc() + sizeof(Data);
while (__ pc() < target) {
__ nop();
__ align(wordSize);
}
MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
me->set_end_address(__ pc()); // set a temporary end_address
me->set_from_interpreted_entry(interpreted_entry);
me->set_type_checking_entry(NULL);
return (address) me;
}
MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
address start_addr) {
MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
assert(me->end_address() == start_addr, "valid ME");
// Fill in the real end_address:
__ align(wordSize);
me->set_end_address(__ pc());
return me;
}
// stack walking support
frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
RicochetFrame* f = RicochetFrame::from_frame(fr);
if (map->update_map())
frame::update_map_with_saved_link(map, &f->_sender_link);
return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
}
void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
RicochetFrame* f = RicochetFrame::from_frame(fr);
// pick up the argument type descriptor:
Thread* thread = Thread::current();
Handle cookie(thread, f->compute_saved_args_layout(true, true));
// process fixed part
blk->do_oop((oop*)f->saved_target_addr());
blk->do_oop((oop*)f->saved_args_layout_addr());
// process variable arguments:
if (cookie.is_null()) return; // no arguments to describe
// the cookie is actually the invokeExact method for my target
// his argument signature is what I'm interested in
assert(cookie->is_method(), "");
methodHandle invoker(thread, methodOop(cookie()));
assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
assert(!invoker->is_static(), "must have MH argument");
int slot_count = invoker->size_of_parameters();
assert(slot_count >= 1, "must include 'this'");
intptr_t* base = f->saved_args_base();
intptr_t* retval = NULL;
if (f->has_return_value_slot())
retval = f->return_value_slot_addr();
int slot_num = slot_count;
intptr_t* loc = &base[slot_num -= 1];
//blk->do_oop((oop*) loc); // original target, which is irrelevant
int arg_num = 0;
for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
if (ss.at_return_type()) continue;
BasicType ptype = ss.type();
if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT
assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
loc = &base[slot_num -= type2size[ptype]];
bool is_oop = (ptype == T_OBJECT && loc != retval);
if (is_oop) blk->do_oop((oop*)loc);
arg_num += 1;
}
assert(slot_num == 0, "must have processed all the arguments");
}
oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
oop cookie = NULL;
if (read_cache) {
cookie = saved_args_layout();
if (cookie != NULL) return cookie;
}
oop target = saved_target();
oop mtype = java_lang_invoke_MethodHandle::type(target);
oop mtform = java_lang_invoke_MethodType::form(mtype);
cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
if (write_cache) {
(*saved_args_layout_addr()) = cookie;
}
return cookie;
}
void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words) {
(*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
address start = __ pc();
#ifdef ASSERT
__ hlt(); __ hlt(); __ hlt();
// here's a hint of something special:
__ push(MAGIC_NUMBER_1);
__ push(MAGIC_NUMBER_2);
#endif //ASSERT
__ hlt(); // not reached
// A return PC has just been popped from the stack.
// Return values are in registers.
// The ebp points into the RicochetFrame, which contains
// a cleanup continuation we must return to.
(*bounce_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.bounce");
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
trace_method_handle(_masm, "return/ricochet_blob.bounce");
__ jmp(frame_address(continuation_offset_in_bytes()));
__ hlt();
DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
(*exception_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.exception");
// compare this to Interpreter::rethrow_exception_entry, which is parallel code
// for example, see TemplateInterpreterGenerator::generate_throw_exception
// Live registers in:
// rax: exception
// rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
__ verify_oop(rax);
// no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
saved_last_sp_register(),
/*sender_pc_reg=*/ rdx);
// In between activations - previous activation type unknown yet
// compute continuation point - the continuation point expects the
// following registers set up:
//
// rax: exception
// rdx: return address/pc that threw exception
// rsp: expression stack of caller
// rbp: ebp of caller
__ push(rax); // save exception
__ push(rdx); // save return address
Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
NOT_LP64(__ get_thread(thread_reg));
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
thread_reg, rdx);
__ mov(rbx, rax); // save exception handler
__ pop(rdx); // restore return address
__ pop(rax); // restore exception
__ jmp(rbx); // jump to exception
// handler of caller
}
void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register rax_argv,
address return_handler,
Register rbx_temp) {
const Register saved_last_sp = saved_last_sp_register();
Address rcx_mh_vmtarget( rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
// Push the RicochetFrame a word at a time.
// This creates something similar to an interpreter frame.
// Cf. TemplateInterpreterGenerator::generate_fixed_frame.
BLOCK_COMMENT("push RicochetFrame {");
DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
#define RF_FIELD(push_value, name) \
{ push_value; \
assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
RF_FIELD(__ push(rbp), sender_link);
RF_FIELD(__ push(saved_last_sp), exact_sender_sp); // rsi/r13
RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
RF_FIELD(__ push(rax_argv), saved_args_base); // can be updated if args are shifted
RF_FIELD(__ push((int32_t) NULL_WORD), saved_args_layout); // cache for GC layout cookie
if (UseCompressedOops) {
__ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
RF_FIELD(__ push(rbx_temp), saved_target);
} else {
RF_FIELD(__ pushptr(rcx_mh_vmtarget), saved_target);
}
__ lea(rbx_temp, ExternalAddress(return_handler));
RF_FIELD(__ push(rbx_temp), continuation);
#undef RF_FIELD
assert(rfo == 0, "fully initialized the RicochetFrame");
// compute new frame pointer:
__ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
// Push guard word #1 in debug mode.
DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
// For debugging, leave behind an indication of which stub built this frame.
DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
BLOCK_COMMENT("} RicochetFrame");
}
void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register new_sp_reg,
Register sender_pc_reg) {
assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
const Register saved_last_sp = saved_last_sp_register();
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
BLOCK_COMMENT("end_ricochet_frame {");
// TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
// This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
if (rcx_recv->is_valid())
__ movptr(rcx_recv, RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
__ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
__ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
__ movptr(rbp, RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
__ mov(rsp, new_sp_reg);
BLOCK_COMMENT("} end_ricochet_frame");
}
// Emit code to verify that RBP is pointing at a valid ricochet frame.
#ifdef ASSERT
enum {
ARG_LIMIT = 255, SLOP = 4,
// use this parameter for checking for garbage stack movements:
UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
// the slop defends against false alarms due to fencepost errors
};
void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
// The stack should look like this:
// ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
// Check various invariants.
verify_offsets();
Register rdi_temp = rdi;
Register rcx_temp = rcx;
{ __ push(rdi_temp); __ push(rcx_temp); }
#define UNPUSH_TEMPS \
{ __ pop(rcx_temp); __ pop(rdi_temp); }
Address magic_number_1_addr = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
Address magic_number_2_addr = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
Address continuation_addr = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
Label L_bad, L_ok;
BLOCK_COMMENT("verify_clean {");
// Magic numbers must check out:
__ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
__ jcc(Assembler::notEqual, L_bad);
__ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
__ jcc(Assembler::notEqual, L_bad);
// Arguments pointer must look reasonable:
__ movptr(rcx_temp, saved_args_base_addr);
__ cmpptr(rcx_temp, rbp);
__ jcc(Assembler::below, L_bad);
__ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
__ cmpptr(rcx_temp, rbp);
__ jcc(Assembler::above, L_bad);
load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
__ cmpl(rdi_temp, T_VOID);
__ jcc(Assembler::equal, L_ok);
__ movptr(rcx_temp, saved_args_base_addr);
load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
__ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
(int32_t) RETURN_VALUE_PLACEHOLDER);
__ jcc(Assembler::equal, L_ok);
__ BIND(L_bad);
UNPUSH_TEMPS;
__ stop("damaged ricochet frame");
__ BIND(L_ok);
UNPUSH_TEMPS;
BLOCK_COMMENT("} verify_clean");
#undef UNPUSH_TEMPS
}
#endif //ASSERT
void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
if (VerifyMethodHandles)
verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
"AMH argument is a Class");
__ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
}
void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
int bits = BitsPerByte;
int offset = (CONV_VMINFO_SHIFT / bits);
int shift = (CONV_VMINFO_SHIFT % bits);
__ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
assert(shift == 0, "no shift needed");
}
void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
int bits = BitsPerByte;
int offset = (CONV_DEST_TYPE_SHIFT / bits);
int shift = (CONV_DEST_TYPE_SHIFT % bits);
__ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
__ shrl(reg, shift);
DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
assert((shift + conv_type_bits) == bits, "left justified in byte");
}
void MethodHandles::load_stack_move(MacroAssembler* _masm,
Register rdi_stack_move,
Register rcx_amh,
bool might_be_negative) {
BLOCK_COMMENT("load_stack_move {");
Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
__ movl(rdi_stack_move, rcx_amh_conversion);
__ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
#ifdef _LP64
if (might_be_negative) {
// clean high bits of stack motion register (was loaded as an int)
__ movslq(rdi_stack_move, rdi_stack_move);
}
#endif //_LP64
if (VerifyMethodHandles) {
Label L_ok, L_bad;
int32_t stack_move_limit = 0x4000; // extra-large
__ cmpptr(rdi_stack_move, stack_move_limit);
__ jcc(Assembler::greaterEqual, L_bad);
__ cmpptr(rdi_stack_move, -stack_move_limit);
__ jcc(Assembler::greater, L_ok);
__ bind(L_bad);
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
BLOCK_COMMENT("} load_stack_move");
}
#ifdef ASSERT
void MethodHandles::RicochetFrame::verify_offsets() {
// Check compatibility of this struct with the more generally used offsets of class frame:
int ebp_off = sender_link_offset_in_bytes(); // offset from struct base to local rbp value
assert(ebp_off + wordSize*frame::interpreter_frame_method_offset == saved_args_base_offset_in_bytes(), "");
assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset == conversion_offset_in_bytes(), "");
assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset == exact_sender_sp_offset_in_bytes(), "");
// These last two have to be exact:
assert(ebp_off + wordSize*frame::link_offset == sender_link_offset_in_bytes(), "");
assert(ebp_off + wordSize*frame::return_addr_offset == sender_pc_offset_in_bytes(), "");
}
void MethodHandles::RicochetFrame::verify() const {
verify_offsets();
assert(magic_number_1() == MAGIC_NUMBER_1, "");
assert(magic_number_2() == MAGIC_NUMBER_2, "");
if (!Universe::heap()->is_gc_active()) {
if (saved_args_layout() != NULL) {
assert(saved_args_layout()->is_method(), "must be valid oop");
}
if (saved_target() != NULL) {
assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
}
}
int conv_op = adapter_conversion_op(conversion());
assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
"must be a sane conversion");
if (has_return_value_slot()) {
assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
}
}
#endif //PRODUCT
#ifdef ASSERT
void MethodHandles::verify_argslot(MacroAssembler* _masm,
Register argslot_reg,
const char* error_message) {
// Verify that argslot lies within (rsp, rbp].
Label L_ok, L_bad;
BLOCK_COMMENT("verify_argslot {");
__ cmpptr(argslot_reg, rbp);
__ jccb(Assembler::above, L_bad);
__ cmpptr(rsp, argslot_reg);
__ jccb(Assembler::below, L_ok);
__ bind(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslot");
}
void MethodHandles::verify_argslots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register arg_slot_base_reg,
bool negate_argslots,
const char* error_message) {
// Verify that [argslot..argslot+size) lies within (rsp, rbp).
Label L_ok, L_bad;
Register rdi_temp = rdi;
BLOCK_COMMENT("verify_argslots {");
__ push(rdi_temp);
if (negate_argslots) {
if (arg_slots.is_constant()) {
arg_slots = -1 * arg_slots.as_constant();
} else {
__ movptr(rdi_temp, arg_slots);
__ negptr(rdi_temp);
arg_slots = rdi_temp;
}
}
__ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
__ cmpptr(rdi_temp, rbp);
__ pop(rdi_temp);
__ jcc(Assembler::above, L_bad);
__ cmpptr(rsp, arg_slot_base_reg);
__ jcc(Assembler::below, L_ok);
__ bind(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslots");
}
// Make sure that arg_slots has the same sign as the given direction.
// If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
void MethodHandles::verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots, int direction) {
bool allow_zero = arg_slots.is_constant();
if (direction == 0) { direction = +1; allow_zero = true; }
assert(stack_move_unit() == -1, "else add extra checks here");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
BLOCK_COMMENT("verify_stack_move {");
// testl(arg_slots.as_register(), -stack_move_unit() - 1); // no need
// jcc(Assembler::notZero, L_bad);
__ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
if (direction > 0) {
__ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
__ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
__ jcc(Assembler::less, L_ok);
} else {
__ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
__ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
__ jcc(Assembler::greater, L_ok);
}
__ bind(L_bad);
if (direction > 0)
__ stop("assert arg_slots > 0");
else
__ stop("assert arg_slots < 0");
__ BIND(L_ok);
BLOCK_COMMENT("} verify_stack_move");
} else {
intptr_t size = arg_slots.as_constant();
if (direction < 0) size = -size;
assert(size >= 0, "correct direction of constant move");
assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
}
}
void MethodHandles::verify_klass(MacroAssembler* _masm,
Register obj, KlassHandle klass,
const char* error_message) {
oop* klass_addr = klass.raw_value();
assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
"must be one of the SystemDictionaryHandles");
Register temp = rdi;
Label L_ok, L_bad;
BLOCK_COMMENT("verify_klass {");
__ verify_oop(obj);
__ testptr(obj, obj);
__ jcc(Assembler::zero, L_bad);
__ push(temp);
__ load_klass(temp, obj);
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ jcc(Assembler::equal, L_ok);
intptr_t super_check_offset = klass->super_check_offset();
__ movptr(temp, Address(temp, super_check_offset));
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ jcc(Assembler::equal, L_ok);
__ pop(temp);
__ bind(L_bad);
__ stop(error_message);
__ BIND(L_ok);
__ pop(temp);
BLOCK_COMMENT("} verify_klass");
}
#endif //ASSERT
void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
if (JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
#ifdef _LP64
Register rthread = r15_thread;
#else
Register rthread = temp;
__ get_thread(rthread);
#endif
// interp_only is an int, on little endian it is sufficient to test the byte only
// Is a cmpl faster?
__ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
__ jccb(Assembler::zero, run_compiled_code);
__ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
__ bind(run_compiled_code);
}
__ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
}
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
// rbx: methodOop
// rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
// rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// rdx, rdi: garbage temp, blown away
Register rbx_method = rbx;
Register rcx_recv = rcx;
Register rax_mtype = rax;
Register rdx_temp = rdx;
Register rdi_temp = rdi;
// emit WrongMethodType path first, to enable jccb back-branch from main path
Label wrong_method_type;
__ bind(wrong_method_type);
Label invoke_generic_slow_path, invoke_exact_error_path;
assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
__ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
__ jcc(Assembler::notEqual, invoke_generic_slow_path);
__ jmp(invoke_exact_error_path);
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
// fetch the MethodType from the method handle into rax (the 'check' register)
// FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
// This would simplify several touchy bits of code.
// See 6984712: JSR 292 method handle calls need a clean argument base pointer
{
Register tem = rbx_method;
for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
__ movptr(rax_mtype, Address(tem, *pchase));
tem = rax_mtype; // in case there is another indirection
}
}
// given the MethodType, find out where the MH argument is buried
__ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
Register rdx_vmslots = rdx_temp;
__ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
__ movptr(rcx_recv, mh_receiver_slot_addr);
trace_method_handle(_masm, "invokeExact");
__ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
// Nobody uses the MH receiver slot after this. Make sure.
DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
__ jump_to_method_handle_entry(rcx_recv, rdi_temp);
// error path for invokeExact (only)
__ bind(invoke_exact_error_path);
// Stub wants expected type in rax and the actual type in rcx
__ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
// for invokeGeneric (only), apply argument and result conversions on the fly
__ bind(invoke_generic_slow_path);
#ifdef ASSERT
if (VerifyMethodHandles) {
Label L;
__ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
__ jcc(Assembler::equal, L);
__ stop("bad methodOop::intrinsic_id");
__ bind(L);
}
#endif //ASSERT
Register rbx_temp = rbx_method; // don't need it now
// make room on the stack for another pointer:
Register rcx_argslot = rcx_recv;
__ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
insert_arg_slots(_masm, 2 * stack_move_unit(),
rcx_argslot, rbx_temp, rdx_temp);
// load up an adapter from the calling type (Java weaves this)
Register rdx_adapter = rdx_temp;
__ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
__ load_heap_oop(rdx_adapter, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
__ verify_oop(rdx_adapter);
__ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
// As a trusted first argument, pass the type being called, so the adapter knows
// the actual types of the arguments and return values.
// (Generic invokers are shared among form-families of method-type.)
__ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
// FIXME: assert that rdx_adapter is of the right method-type.
__ mov(rcx, rdx_adapter);
trace_method_handle(_masm, "invokeGeneric");
__ jump_to_method_handle_entry(rcx, rdi_temp);
return entry_point;
}
// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and < 0
// rax_argslot is decremented to point to the new (shifted) location of the argslot
// But, rdx_temp ends up holding the original value of rax_argslot.
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp) {
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
(!arg_slots.is_register() ? rsp : arg_slots.as_register()));
if (VerifyMethodHandles)
verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, -1);
// Make space on the stack for the inserted argument(s).
// Then pull down everything shallower than rax_argslot.
// The stacked return address gets pulled down with everything else.
// That is, copy [rsp, argslot) downward by -size words. In pseudo-code:
// rsp -= size;
// for (rdx = rsp + size; rdx < argslot; rdx++)
// rdx[-size] = rdx[0]
// argslot -= size;
BLOCK_COMMENT("insert_arg_slots {");
__ mov(rdx_temp, rsp); // source pointer for copy
__ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
{
Label loop;
__ BIND(loop);
// pull one word down each time through the loop
__ movptr(rbx_temp, Address(rdx_temp, 0));
__ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
__ addptr(rdx_temp, wordSize);
__ cmpptr(rdx_temp, rax_argslot);
__ jcc(Assembler::below, loop);
}
// Now move the argslot down, to point to the opened-up space.
__ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
BLOCK_COMMENT("} insert_arg_slots");
}
// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and > 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp) {
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
(!arg_slots.is_register() ? rsp : arg_slots.as_register()));
if (VerifyMethodHandles)
verify_argslots(_masm, arg_slots, rax_argslot, false,
"deleted argument(s) must fall within current frame");
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, +1);
BLOCK_COMMENT("remove_arg_slots {");
// Pull up everything shallower than rax_argslot.
// Then remove the excess space on the stack.
// The stacked return address gets pulled up with everything else.
// That is, copy [rsp, argslot) upward by size words. In pseudo-code:
// for (rdx = argslot-1; rdx >= rsp; --rdx)
// rdx[size] = rdx[0]
// argslot += size;
// rsp += size;
__ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
{
Label loop;
__ BIND(loop);
// pull one word up each time through the loop
__ movptr(rbx_temp, Address(rdx_temp, 0));
__ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
__ addptr(rdx_temp, -wordSize);
__ cmpptr(rdx_temp, rsp);
__ jcc(Assembler::aboveEqual, loop);
}
// Now move the argslot up, to point to the just-copied block.
__ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
// And adjust the argslot address to point at the deletion point.
__ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
BLOCK_COMMENT("} remove_arg_slots");
}
// Helper to copy argument slots to the top of the stack.
// The sequence starts with rax_argslot and is counted by slot_count
// slot_count must be a multiple of stack_move_unit() and >= 0
// This function blows the temps but does not change rax_argslot.
void MethodHandles::push_arg_slots(MacroAssembler* _masm,
Register rax_argslot,
RegisterOrConstant slot_count,
int skip_words_count,
Register rbx_temp, Register rdx_temp) {
assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
(!slot_count.is_register() ? rbp : slot_count.as_register()),
rsp);
assert(Interpreter::stackElementSize == wordSize, "else change this code");
if (VerifyMethodHandles)
verify_stack_move(_masm, slot_count, 0);
// allow constant zero
if (slot_count.is_constant() && slot_count.as_constant() == 0)
return;
BLOCK_COMMENT("push_arg_slots {");
Register rbx_top = rbx_temp;
// There is at most 1 word to carry down with the TOS.
switch (skip_words_count) {
case 1: __ pop(rdx_temp); break;
case 0: break;
default: ShouldNotReachHere();
}
if (slot_count.is_constant()) {
for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
__ pushptr(Address(rax_argslot, i * wordSize));
}
} else {
Label L_plural, L_loop, L_break;
// Emit code to dynamically check for the common cases, zero and one slot.
__ cmpl(slot_count.as_register(), (int32_t) 1);
__ jccb(Assembler::greater, L_plural);
__ jccb(Assembler::less, L_break);
__ pushptr(Address(rax_argslot, 0));
__ jmpb(L_break);
__ BIND(L_plural);
// Loop for 2 or more:
// rbx = &rax[slot_count]
// while (rbx > rax) *(--rsp) = *(--rbx)
__ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
__ BIND(L_loop);
__ subptr(rbx_top, wordSize);
__ pushptr(Address(rbx_top, 0));
__ cmpptr(rbx_top, rax_argslot);
__ jcc(Assembler::above, L_loop);
__ bind(L_break);
}
switch (skip_words_count) {
case 1: __ push(rdx_temp); break;
case 0: break;
default: ShouldNotReachHere();
}
BLOCK_COMMENT("} push_arg_slots");
}
// in-place movement; no change to rsp
// blows rax_temp, rdx_temp
void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
Register rbx_bottom, // invariant
Address top_addr, // can use rax_temp
RegisterOrConstant positive_distance_in_slots,
Register rax_temp, Register rdx_temp) {
BLOCK_COMMENT("move_arg_slots_up {");
assert_different_registers(rbx_bottom,
rax_temp, rdx_temp,
positive_distance_in_slots.register_or_noreg());
Label L_loop, L_break;
Register rax_top = rax_temp;
if (!top_addr.is_same_address(Address(rax_top, 0)))
__ lea(rax_top, top_addr);
// Detect empty (or broken) loop:
#ifdef ASSERT
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (positive_distance_in_slots.is_register()) {
__ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
__ jcc(Assembler::lessEqual, L_bad);
}
__ cmpptr(rbx_bottom, rax_top);
__ jcc(Assembler::below, L_ok);
__ bind(L_bad);
__ stop("valid bounds (copy up)");
__ BIND(L_ok);
}
#endif
__ cmpptr(rbx_bottom, rax_top);
__ jccb(Assembler::aboveEqual, L_break);
// work rax down to rbx, copying contiguous data upwards
// In pseudo-code:
// [rbx, rax) = &[bottom, top)
// while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
__ BIND(L_loop);
__ subptr(rax_top, wordSize);
__ movptr(rdx_temp, Address(rax_top, 0));
__ movptr( Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
__ cmpptr(rax_top, rbx_bottom);
__ jcc(Assembler::above, L_loop);
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ bind(L_break);
BLOCK_COMMENT("} move_arg_slots_up");
}
// in-place movement; no change to rsp
// blows rax_temp, rdx_temp
void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use rax_temp
Register rbx_top, // invariant
RegisterOrConstant negative_distance_in_slots,
Register rax_temp, Register rdx_temp) {
BLOCK_COMMENT("move_arg_slots_down {");
assert_different_registers(rbx_top,
negative_distance_in_slots.register_or_noreg(),
rax_temp, rdx_temp);
Label L_loop, L_break;
Register rax_bottom = rax_temp;
if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
__ lea(rax_bottom, bottom_addr);
// Detect empty (or broken) loop:
#ifdef ASSERT
assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (negative_distance_in_slots.is_register()) {
__ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
__ jcc(Assembler::greaterEqual, L_bad);
}
__ cmpptr(rax_bottom, rbx_top);
__ jcc(Assembler::below, L_ok);
__ bind(L_bad);
__ stop("valid bounds (copy down)");
__ BIND(L_ok);
}
#endif
__ cmpptr(rax_bottom, rbx_top);
__ jccb(Assembler::aboveEqual, L_break);
// work rax up to rbx, copying contiguous data downwards
// In pseudo-code:
// [rax, rbx) = &[bottom, top)
// while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
__ BIND(L_loop);
__ movptr(rdx_temp, Address(rax_bottom, 0));
__ movptr( Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
__ addptr(rax_bottom, wordSize);
__ cmpptr(rax_bottom, rbx_top);
__ jcc(Assembler::below, L_loop);
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ bind(L_break);
BLOCK_COMMENT("} move_arg_slots_down");
}
// Copy from a field or array element to a stacked argument slot.
// is_element (ignored) says whether caller is loading an array element instead of an instance field.
void MethodHandles::move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address slot_dest, Address value_src,
Register rbx_temp, Register rdx_temp) {
BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
if (type == T_OBJECT || type == T_ARRAY) {
__ load_heap_oop(rbx_temp, value_src);
__ movptr(slot_dest, rbx_temp);
} else if (type != T_VOID) {
int arg_size = type2aelembytes(type);
bool arg_is_signed = is_signed_subword_type(type);
int slot_size = (arg_size > wordSize) ? arg_size : wordSize;
__ load_sized_value( rdx_temp, value_src, arg_size, arg_is_signed, rbx_temp);
__ store_sized_value( slot_dest, rdx_temp, slot_size, rbx_temp);
}
BLOCK_COMMENT("} move_typed_arg");
}
void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot) {
BLOCK_COMMENT("move_return_value {");
// Old versions of the JVM must clean the FPU stack after every return.
#ifndef _LP64
#ifdef COMPILER2
// The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
for (int i = 1; i < 8; i++) {
__ ffree(i);
}
} else if (UseSSE < 2) {
__ empty_FPU_stack();
}
#endif //COMPILER2
#endif //!_LP64
// Look at the type and pull the value out of the corresponding register.
if (type == T_VOID) {
// nothing to do
} else if (type == T_OBJECT) {
__ movptr(return_slot, rax);
} else if (type == T_INT || is_subword_type(type)) {
// write the whole word, even if only 32 bits is significant
__ movptr(return_slot, rax);
} else if (type == T_LONG) {
// store the value by parts
// Note: We assume longs are continguous (if misaligned) on the interpreter stack.
__ store_sized_value(return_slot, rax, BytesPerLong, rdx);
} else if (NOT_LP64((type == T_FLOAT && UseSSE < 1) ||
(type == T_DOUBLE && UseSSE < 2) ||)
false) {
// Use old x86 FPU registers:
if (type == T_FLOAT)
__ fstp_s(return_slot);
else
__ fstp_d(return_slot);
} else if (type == T_FLOAT) {
__ movflt(return_slot, xmm0);
} else if (type == T_DOUBLE) {
__ movdbl(return_slot, xmm0);
} else {
ShouldNotReachHere();
}
BLOCK_COMMENT("} move_return_value");
}
#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
oop mh,
intptr_t* saved_regs,
intptr_t* entry_sp,
intptr_t* saved_sp,
intptr_t* saved_bp) {
// called as a leaf from native code: do not block the JVM!
bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have rcx_mh
intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
intptr_t* base_sp = last_sp;
typedef MethodHandles::RicochetFrame RicochetFrame;
RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
if (!UseRicochetFrames || Universe::heap()->is_in((address) rfp->saved_args_base())) {
// Probably an interpreter frame.
base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
}
intptr_t mh_reg = (intptr_t)mh;
const char* mh_reg_name = "rcx_mh";
if (!has_mh) mh_reg_name = "rcx";
tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
adaptername, mh_reg_name, mh_reg,
(intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
if (Verbose) {
tty->print(" reg dump: ");
int saved_regs_count = (entry_sp-1) - saved_regs;
// 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
int i;
for (i = 0; i <= saved_regs_count; i++) {
if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
tty->cr();
tty->print(" + dump: ");
}
tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
}
tty->cr();
if (last_sp != saved_sp && last_sp != NULL)
tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
int stack_dump_count = 16;
if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
stack_dump_count = (int)(saved_bp + 2 - saved_sp);
if (stack_dump_count > 64) stack_dump_count = 48;
for (i = 0; i < stack_dump_count; i += 4) {
tty->print_cr(" dump at SP[%d] "PTR_FORMAT": "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT,
i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
}
if (has_mh)
print_method_handle(mh);
}
}
// The stub wraps the arguments in a struct on the stack to avoid
// dealing with the different calling conventions for passing 6
// arguments.
struct MethodHandleStubArguments {
const char* adaptername;
oopDesc* mh;
intptr_t* saved_regs;
intptr_t* entry_sp;
intptr_t* saved_sp;
intptr_t* saved_bp;
};
void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
trace_method_handle_stub(args->adaptername,
args->mh,
args->saved_regs,
args->entry_sp,
args->saved_sp,
args->saved_bp);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
if (!TraceMethodHandles) return;
BLOCK_COMMENT("trace_method_handle {");
__ push(rax);
__ lea(rax, Address(rsp, wordSize * NOT_LP64(6) LP64_ONLY(14))); // entry_sp __ pusha();
__ pusha();
__ mov(rbx, rsp);
__ enter();
// incoming state:
// rcx: method handle
// r13 or rsi: saved sp
// To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
__ push(rbp); // saved_bp
__ push(rsi); // saved_sp
__ push(rax); // entry_sp
__ push(rbx); // pusha saved_regs
__ push(rcx); // mh
__ push(rcx); // adaptername
__ movptr(Address(rsp, 0), (intptr_t) adaptername);
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
__ leave();
__ popa();
__ pop(rax);
BLOCK_COMMENT("} trace_method_handle");
}
#endif //PRODUCT
// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
//OP_PRIM_TO_REF is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
//OP_COLLECT_ARGS is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
|(!UseRicochetFrames ? 0 :
java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
))
);
}
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
// Here is the register state during an interpreted call,
// as set up by generate_method_handle_interpreter_entry():
// - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
// - rcx: receiver method handle
// - rax: method handle type (only used by the check_mtype entry point)
// - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// - rdx: garbage temp, can blow away
const Register rcx_recv = rcx;
const Register rax_argslot = rax;
const Register rbx_temp = rbx;
const Register rdx_temp = rdx;
const Register rdi_temp = rdi;
// This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
// and gen_c2i_adapter (from compiled calls):
const Register saved_last_sp = saved_last_sp_register();
// Argument registers for _raise_exception.
// 32-bit: Pass first two oop/int args in registers ECX and EDX.
const Register rarg0_code = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
const Register rarg1_actual = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
// some handy addresses
Address rcx_mh_vmtarget( rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
Address rcx_dmh_vmindex( rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
Address rcx_bmh_vmargslot( rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
Address rcx_bmh_argument( rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
Address rcx_amh_vmargslot( rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
Address rcx_amh_argument( rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
Address vmarg; // __ argument_address(vmargslot)
const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
if (have_entry(ek)) {
__ nop(); // empty stubs make SG sick
return;
}
#ifdef ASSERT
__ push((int32_t) 0xEEEEEEEE);
__ push((int32_t) (intptr_t) entry_name(ek));
LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
__ push((int32_t) 0x33333333);
#endif //ASSERT
address interp_entry = __ pc();
trace_method_handle(_masm, entry_name(ek));
BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
switch ((int) ek) {
case _raise_exception:
{
// Not a real MH entry, but rather shared code for raising an
// exception. Since we use the compiled entry, arguments are
// expected in compiler argument registers.
assert(raise_exception_method(), "must be set");
assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
const Register rax_pc = rax;
__ pop(rax_pc); // caller PC
__ mov(rsp, saved_last_sp); // cut the stack back to where the caller started
Register rbx_method = rbx_temp;
__ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
const int jobject_oop_offset = 0;
__ movptr(rbx_method, Address(rbx_method, jobject_oop_offset)); // dereference the jobject
__ movptr(saved_last_sp, rsp);
__ subptr(rsp, 3 * wordSize);
__ push(rax_pc); // restore caller PC
__ movl (__ argument_address(constant(2)), rarg0_code);
__ movptr(__ argument_address(constant(1)), rarg1_actual);
__ movptr(__ argument_address(constant(0)), rarg2_required);
jump_from_method_handle(_masm, rbx_method, rax);
}
break;
case _invokestatic_mh:
case _invokespecial_mh:
{
Register rbx_method = rbx_temp;
__ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
__ verify_oop(rbx_method);
// same as TemplateTable::invokestatic or invokespecial,
// minus the CP setup and profiling:
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv);
__ verify_oop(rcx_recv);
}
jump_from_method_handle(_masm, rbx_method, rax);
}
break;
case _invokevirtual_mh:
{
// same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
// pick out the vtable index and receiver offset from the MH,
// and then we can discard it:
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
Register rbx_index = rbx_temp;
__ movl(rbx_index, rcx_dmh_vmindex);
// Note: The verifier allows us to ignore rcx_mh_vmtarget.
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
// get receiver klass
Register rax_klass = rax_argslot;
__ load_klass(rax_klass, rcx_recv);
__ verify_oop(rax_klass);
// get target methodOop & entry point
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
Address vtable_entry_addr(rax_klass,
rbx_index, Address::times_ptr,
base + vtableEntry::method_offset_in_bytes());
Register rbx_method = rbx_temp;
__ movptr(rbx_method, vtable_entry_addr);
__ verify_oop(rbx_method);
jump_from_method_handle(_masm, rbx_method, rax);
}
break;
case _invokeinterface_mh:
{
// same as TemplateTable::invokeinterface,
// minus the CP setup and profiling:
// pick out the interface and itable index from the MH.
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
Register rdx_intf = rdx_temp;
Register rbx_index = rbx_temp;
__ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
__ movl(rbx_index, rcx_dmh_vmindex);
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
// get receiver klass
Register rax_klass = rax_argslot;
__ load_klass(rax_klass, rcx_recv);
__ verify_oop(rax_klass);
Register rbx_method = rbx_index;
// get interface klass
Label no_such_interface;
__ verify_oop(rdx_intf);
__ lookup_interface_method(rax_klass, rdx_intf,
// note: next two args must be the same:
rbx_index, rbx_method,
rdi_temp,
no_such_interface);
__ verify_oop(rbx_method);
jump_from_method_handle(_masm, rbx_method, rax);
__ hlt();
__ bind(no_such_interface);
// Throw an exception.
// For historical reasons, it will be IncompatibleClassChangeError.
__ mov(rbx_temp, rcx_recv); // rarg2_required might be RCX
assert_different_registers(rarg2_required, rbx_temp);
__ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset)); // required interface
__ mov( rarg1_actual, rbx_temp); // bad receiver
__ movl( rarg0_code, (int) Bytecodes::_invokeinterface); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
}
break;
case _bound_ref_mh:
case _bound_int_mh:
case _bound_long_mh:
case _bound_ref_direct_mh:
case _bound_int_direct_mh:
case _bound_long_direct_mh:
{
const bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = ek_bound_mh_arg_type(ek);
int arg_slots = type2size[arg_type];
// make room for the new argument:
__ movl(rax_argslot, rcx_bmh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
// store bound argument into the new stack slot:
__ load_heap_oop(rbx_temp, rcx_bmh_argument);
if (arg_type == T_OBJECT) {
__ movptr(Address(rax_argslot, 0), rbx_temp);
} else {
Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
move_typed_arg(_masm, arg_type, false,
Address(rax_argslot, 0),
prim_value_addr,
rbx_temp, rdx_temp);
}
if (direct_to_method) {
Register rbx_method = rbx_temp;
__ load_heap_oop(rbx_method, rcx_mh_vmtarget);
__ verify_oop(rbx_method);
jump_from_method_handle(_masm, rbx_method, rax);
} else {
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ verify_oop(rcx_recv);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
}
break;
case _adapter_opt_profiling:
if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
__ incrementl(rcx_mh_vmcount);
}
// fall through
case _adapter_retype_only:
case _adapter_retype_raw:
// immediately jump to the next MH layer:
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ verify_oop(rcx_recv);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
// This is OK when all parameter types widen.
// It is also OK when a return type narrows.
break;
case _adapter_check_cast:
{
// temps:
Register rbx_klass = rbx_temp; // interesting AMH data
// check a reference argument before jumping to the next layer of MH:
__ movl(rax_argslot, rcx_amh_vmargslot);
vmarg = __ argument_address(rax_argslot);
// What class are we casting to?
__ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
load_klass_from_Class(_masm, rbx_klass);
Label done;
__ movptr(rdx_temp, vmarg);
__ testptr(rdx_temp, rdx_temp);
__ jcc(Assembler::zero, done); // no cast if null
__ load_klass(rdx_temp, rdx_temp);
// live at this point:
// - rbx_klass: klass required by the target method
// - rdx_temp: argument klass to test
// - rcx_recv: adapter method handle
__ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
// If we get here, the type check failed!
// Call the wrong_method_type stub, passing the failing argument type in rax.
Register rax_mtype = rax_argslot;
__ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field
__ movptr(rdx_temp, vmarg);
assert_different_registers(rarg2_required, rdx_temp);
__ load_heap_oop(rarg2_required, rcx_amh_argument); // required class
__ mov( rarg1_actual, rdx_temp); // bad object
__ movl( rarg0_code, (int) Bytecodes::_checkcast); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
__ bind(done);
// get the new MH:
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_prim_to_prim:
case _adapter_ref_to_prim:
case _adapter_prim_to_ref:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
{
// perform an in-place conversion to int or an int subword
__ movl(rax_argslot, rcx_amh_vmargslot);
vmarg = __ argument_address(rax_argslot);
switch (ek) {
case _adapter_opt_i2i:
__ movl(rdx_temp, vmarg);
break;
case _adapter_opt_l2i:
{
// just delete the extra slot; on a little-endian machine we keep the first
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
remove_arg_slots(_masm, -stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
__ movl(rdx_temp, vmarg);
}
break;
case _adapter_opt_unboxi:
{
// Load the value up from the heap.
__ movptr(rdx_temp, vmarg);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)))
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
}
#endif
__ null_check(rdx_temp, value_offset);
__ movl(rdx_temp, Address(rdx_temp, value_offset));
// We load this as a word. Because we are little-endian,
// the low bits will be correct, but the high bits may need cleaning.
// The vminfo will guide us to clean those bits.
}
break;
default:
ShouldNotReachHere();
}
// Do the requested conversion and store the value.
Register rbx_vminfo = rbx_temp;
load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
// get the new MH:
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
// (now we are done with the old MH)
// original 32-bit vmdata word must be of this form:
// | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
__ xchgptr(rcx, rbx_vminfo); // free rcx for shifts
__ shll(rdx_temp /*, rcx*/);
Label zero_extend, done;
__ testl(rcx, CONV_VMINFO_SIGN_FLAG);
__ jccb(Assembler::zero, zero_extend);
// this path is taken for int->byte, int->short
__ sarl(rdx_temp /*, rcx*/);
__ jmpb(done);
__ bind(zero_extend);
// this is taken for int->char
__ shrl(rdx_temp /*, rcx*/);
__ bind(done);
__ movl(vmarg, rdx_temp); // Store the value.
__ xchgptr(rcx, rbx_vminfo); // restore rcx_recv
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
{
// perform an in-place int-to-long or ref-to-long conversion
__ movl(rax_argslot, rcx_amh_vmargslot);
// on a little-endian machine we keep the first slot and add another after
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
insert_arg_slots(_masm, stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
switch (ek) {
case _adapter_opt_i2l:
{
#ifdef _LP64
__ movslq(rdx_temp, vmarg1); // Load sign-extended
__ movq(vmarg1, rdx_temp); // Store into first slot
#else
__ movl(rdx_temp, vmarg1);
__ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign()
__ movl(vmarg2, rdx_temp); // store second word
#endif
}
break;
case _adapter_opt_unboxl:
{
// Load the value up from the heap.
__ movptr(rdx_temp, vmarg1);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
__ null_check(rdx_temp, value_offset);
#ifdef _LP64
__ movq(rbx_temp, Address(rdx_temp, value_offset));
__ movq(vmarg1, rbx_temp);
#else
__ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
__ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
__ movl(vmarg1, rbx_temp);
__ movl(vmarg2, rdx_temp);
#endif
}
break;
default:
ShouldNotReachHere();
}
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim
{
// perform an in-place floating primitive conversion
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
if (ek == _adapter_opt_f2d) {
insert_arg_slots(_masm, stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
}
Address vmarg(rax_argslot, -Interpreter::stackElementSize);
#ifdef _LP64
if (ek == _adapter_opt_f2d) {
__ movflt(xmm0, vmarg);
__ cvtss2sd(xmm0, xmm0);
__ movdbl(vmarg, xmm0);
} else {
__ movdbl(xmm0, vmarg);
__ cvtsd2ss(xmm0, xmm0);
__ movflt(vmarg, xmm0);
}
#else //_LP64
if (ek == _adapter_opt_f2d) {
__ fld_s(vmarg); // load float to ST0
__ fstp_d(vmarg); // store double
} else {
__ fld_d(vmarg); // load double to ST0
__ fstp_s(vmarg); // store single
}
#endif //_LP64
if (ek == _adapter_opt_d2f) {
remove_arg_slots(_masm, -stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
}
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_swap_args:
case _adapter_rot_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_swap_1:
case _adapter_opt_swap_2:
case _adapter_opt_rot_1_up:
case _adapter_opt_rot_1_down:
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
{
int swap_slots = ek_adapter_opt_swap_slots(ek);
int rotate = ek_adapter_opt_swap_mode(ek);
// 'argslot' is the position of the first argument to swap
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// 'vminfo' is the second
Register rbx_destslot = rbx_temp;
load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
__ lea(rbx_destslot, __ argument_address(rbx_destslot));
if (VerifyMethodHandles)
verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
if (!rotate) {
// simple swap
for (int i = 0; i < swap_slots; i++) {
__ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
__ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
__ movptr(Address(rax_argslot, i * wordSize), rdx_temp);
__ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
}
} else {
// A rotate is actually pair of moves, with an "odd slot" (or pair)
// changing place with a series of other slots.
// First, push the "odd slot", which is going to get overwritten
for (int i = swap_slots - 1; i >= 0; i--) {
// handle one with rdi_temp instead of a push:
if (i == 0) __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
else __ pushptr( Address(rax_argslot, i * wordSize));
}
if (rotate > 0) {
// Here is rotate > 0:
// (low mem) (high mem)
// | dest: more_slots... | arg: odd_slot :arg+1 |
// =>
// | dest: odd_slot | dest+1: more_slots... :arg+1 |
// work argslot down to destslot, copying contiguous data upwards
// pseudo-code:
// rax = src_addr - swap_bytes
// rbx = dest_addr
// while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
move_arg_slots_up(_masm,
rbx_destslot,
Address(rax_argslot, 0),
swap_slots,
rax_argslot, rdx_temp);
} else {
// Here is the other direction, rotate < 0:
// (low mem) (high mem)
// | arg: odd_slot | arg+1: more_slots... :dest+1 |
// =>
// | arg: more_slots... | dest: odd_slot :dest+1 |
// work argslot up to destslot, copying contiguous data downwards
// pseudo-code:
// rax = src_addr + swap_bytes
// rbx = dest_addr
// while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
// dest_slot denotes an exclusive upper limit
int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
if (limit_bias != 0)
__ addptr(rbx_destslot, - limit_bias * wordSize);
move_arg_slots_down(_masm,
Address(rax_argslot, swap_slots * wordSize),
rbx_destslot,
-swap_slots,
rax_argslot, rdx_temp);
__ subptr(rbx_destslot, swap_slots * wordSize);
}
// pop the original first chunk into the destination slot, now free
for (int i = 0; i < swap_slots; i++) {
if (i == 0) __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
else __ popptr(Address(rbx_destslot, i * wordSize));
}
}
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_dup_args:
{
// 'argslot' is the position of the first argument to duplicate
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// 'stack_move' is negative number of words to duplicate
Register rdi_stack_move = rdi_temp;
load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
if (VerifyMethodHandles) {
verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
"copied argument(s) must fall within current frame");
}
// insert location is always the bottom of the argument list:
Address insert_location = __ argument_address(constant(0));
int pre_arg_words = insert_location.disp() / wordSize; // return PC is pushed
assert(insert_location.base() == rsp, "");
__ negl(rdi_stack_move);
push_arg_slots(_masm, rax_argslot, rdi_stack_move,
pre_arg_words, rbx_temp, rdx_temp);
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_drop_args:
{
// 'argslot' is the position of the first argument to nuke
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// (must do previous push after argslot address is taken)
// 'stack_move' is number of words to drop
Register rdi_stack_move = rdi_temp;
load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
remove_arg_slots(_masm, rdi_stack_move,
rax_argslot, rbx_temp, rdx_temp);
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_collect_args:
case _adapter_fold_args:
case _adapter_spread_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_collect_ref:
case _adapter_opt_collect_int:
case _adapter_opt_collect_long:
case _adapter_opt_collect_float:
case _adapter_opt_collect_double:
case _adapter_opt_collect_void:
case _adapter_opt_collect_0_ref:
case _adapter_opt_collect_1_ref:
case _adapter_opt_collect_2_ref:
case _adapter_opt_collect_3_ref:
case _adapter_opt_collect_4_ref:
case _adapter_opt_collect_5_ref:
case _adapter_opt_filter_S0_ref:
case _adapter_opt_filter_S1_ref:
case _adapter_opt_filter_S2_ref:
case _adapter_opt_filter_S3_ref:
case _adapter_opt_filter_S4_ref:
case _adapter_opt_filter_S5_ref:
case _adapter_opt_collect_2_S0_ref:
case _adapter_opt_collect_2_S1_ref:
case _adapter_opt_collect_2_S2_ref:
case _adapter_opt_collect_2_S3_ref:
case _adapter_opt_collect_2_S4_ref:
case _adapter_opt_collect_2_S5_ref:
case _adapter_opt_fold_ref:
case _adapter_opt_fold_int:
case _adapter_opt_fold_long:
case _adapter_opt_fold_float:
case _adapter_opt_fold_double:
case _adapter_opt_fold_void:
case _adapter_opt_fold_1_ref:
case _adapter_opt_fold_2_ref:
case _adapter_opt_fold_3_ref:
case _adapter_opt_fold_4_ref:
case _adapter_opt_fold_5_ref:
{
// Given a fresh incoming stack frame, build a new ricochet frame.
// On entry, TOS points at a return PC, and RBP is the callers frame ptr.
// RSI/R13 has the caller's exact stack pointer, which we must also preserve.
// RCX contains an AdapterMethodHandle of the indicated kind.
// Relevant AMH fields:
// amh.vmargslot:
// points to the trailing edge of the arguments
// to filter, collect, or fold. For a boxing operation,
// it points just after the single primitive value.
// amh.argument:
// recursively called MH, on |collect| arguments
// amh.vmtarget:
// final destination MH, on return value, etc.
// amh.conversion.dest:
// tells what is the type of the return value
// (not needed here, since dest is also derived from ek)
// amh.conversion.vminfo:
// points to the trailing edge of the return value
// when the vmtarget is to be called; this is
// equal to vmargslot + (retained ? |collect| : 0)
// Pass 0 or more argument slots to the recursive target.
int collect_count_constant = ek_adapter_opt_collect_count(ek);
// The collected arguments are copied from the saved argument list:
int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
assert(ek_orig == _adapter_collect_args ||
ek_orig == _adapter_fold_args, "");
bool retain_original_args = (ek_orig == _adapter_fold_args);
// The return value is replaced (or inserted) at the 'vminfo' argslot.
// Sometimes we can compute this statically.
int dest_slot_constant = -1;
if (!retain_original_args)
dest_slot_constant = collect_slot_constant;
else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
// We are preserving all the arguments, and the return value is prepended,
// so the return slot is to the left (above) the |collect| sequence.
dest_slot_constant = collect_slot_constant + collect_count_constant;
// Replace all those slots by the result of the recursive call.
// The result type can be one of ref, int, long, float, double, void.
// In the case of void, nothing is pushed on the stack after return.
BasicType dest = ek_adapter_opt_collect_type(ek);
assert(dest == type2wfield[dest], "dest is a stack slot type");
int dest_count = type2size[dest];
assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
// Choose a return continuation.
EntryKind ek_ret = _adapter_opt_return_any;
if (dest != T_CONFLICT && OptimizeMethodHandles) {
switch (dest) {
case T_INT : ek_ret = _adapter_opt_return_int; break;
case T_LONG : ek_ret = _adapter_opt_return_long; break;
case T_FLOAT : ek_ret = _adapter_opt_return_float; break;
case T_DOUBLE : ek_ret = _adapter_opt_return_double; break;
case T_OBJECT : ek_ret = _adapter_opt_return_ref; break;
case T_VOID : ek_ret = _adapter_opt_return_void; break;
default : ShouldNotReachHere();
}
if (dest == T_OBJECT && dest_slot_constant >= 0) {
EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
if (ek_try <= _adapter_opt_return_LAST &&
ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
ek_ret = ek_try;
}
}
assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
}
// Already pushed: ... keep1 | collect | keep2 | sender_pc |
// push(sender_pc);
// Compute argument base:
Register rax_argv = rax_argslot;
__ lea(rax_argv, __ argument_address(constant(0)));
// Push a few extra argument words, if we need them to store the return value.
{
int extra_slots = 0;
if (retain_original_args) {
extra_slots = dest_count;
} else if (collect_count_constant == -1) {
extra_slots = dest_count; // collect_count might be zero; be generous
} else if (dest_count > collect_count_constant) {
extra_slots = (dest_count - collect_count_constant);
} else {
// else we know we have enough dead space in |collect| to repurpose for return values
}
DEBUG_ONLY(extra_slots += 1);
if (extra_slots > 0) {
__ pop(rbx_temp); // return value
__ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
// Push guard word #2 in debug mode.
DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
__ push(rbx_temp);
}
}
RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
entry(ek_ret)->from_interpreted_entry(), rbx_temp);
// Now pushed: ... keep1 | collect | keep2 | RF |
// some handy frame slots:
Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
#ifdef ASSERT
if (VerifyMethodHandles && dest != T_CONFLICT) {
BLOCK_COMMENT("verify AMH.conv.dest");
load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
Label L_dest_ok;
__ cmpl(rbx_temp, (int) dest);
__ jcc(Assembler::equal, L_dest_ok);
if (dest == T_INT) {
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt))) {
__ cmpl(rbx_temp, (int) bt);
__ jcc(Assembler::equal, L_dest_ok);
}
}
}
__ stop("bad dest in AMH.conv");
__ BIND(L_dest_ok);
}
#endif //ASSERT
// Find out where the original copy of the recursive argument sequence begins.
Register rax_coll = rax_argv;
{
RegisterOrConstant collect_slot = collect_slot_constant;
if (collect_slot_constant == -1) {
__ movl(rdi_temp, rcx_amh_vmargslot);
collect_slot = rdi_temp;
}
if (collect_slot_constant != 0)
__ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
// rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
}
// Replace the old AMH with the recursive MH. (No going back now.)
// In the case of a boxing call, the recursive call is to a 'boxer' method,
// such as Integer.valueOf or Long.valueOf. In the case of a filter
// or collect call, it will take one or more arguments, transform them,
// and return some result, to store back into argument_base[vminfo].
__ load_heap_oop(rcx_recv, rcx_amh_argument);
if (VerifyMethodHandles) verify_method_handle(_masm, rcx_recv);
// Push a space for the recursively called MH first:
__ push((int32_t)NULL_WORD);
// Calculate |collect|, the number of arguments we are collecting.
Register rdi_collect_count = rdi_temp;
RegisterOrConstant collect_count;
if (collect_count_constant >= 0) {
collect_count = collect_count_constant;
} else {
__ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
collect_count = rdi_collect_count;
}
#ifdef ASSERT
if (VerifyMethodHandles && collect_count_constant >= 0) {
__ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
Label L_count_ok;
__ cmpl(rbx_temp, collect_count_constant);
__ jcc(Assembler::equal, L_count_ok);
__ stop("bad vminfo in AMH.conv");
__ BIND(L_count_ok);
}
#endif //ASSERT
// copy |collect| slots directly to TOS:
push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
// Now pushed: ... keep1 | collect | keep2 | RF... | collect |
// rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
// If necessary, adjust the saved arguments to make room for the eventual return value.
// Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
// If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect |
// In the non-retaining case, this might move keep2 either up or down.
// We don't have to copy the whole | RF... collect | complex,
// but we must adjust RF.saved_args_base.
// Also, from now on, we will forget about the original copy of |collect|.
// If we are retaining it, we will treat it as part of |keep2|.
// For clarity we will define |keep3| = |collect|keep2| or |keep2|.
BLOCK_COMMENT("adjust trailing arguments {");
// Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
int open_count = dest_count;
RegisterOrConstant close_count = collect_count_constant;
Register rdi_close_count = rdi_collect_count;
if (retain_original_args) {
close_count = constant(0);
} else if (collect_count_constant == -1) {
close_count = rdi_collect_count;
}
// How many slots need moving? This is simply dest_slot (0 => no |keep3|).
RegisterOrConstant keep3_count;
Register rsi_keep3_count = rsi; // can repair from RF.exact_sender_sp
if (dest_slot_constant >= 0) {
keep3_count = dest_slot_constant;
} else {
load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
keep3_count = rsi_keep3_count;
}
#ifdef ASSERT
if (VerifyMethodHandles && dest_slot_constant >= 0) {
load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
Label L_vminfo_ok;
__ cmpl(rbx_temp, dest_slot_constant);
__ jcc(Assembler::equal, L_vminfo_ok);
__ stop("bad vminfo in AMH.conv");
__ BIND(L_vminfo_ok);
}
#endif //ASSERT
// tasks remaining:
bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
if (stomp_dest | fix_arg_base) {
// we will probably need an updated rax_argv value
if (collect_slot_constant >= 0) {
// rax_coll already holds the leading edge of |keep2|, so tweak it
assert(rax_coll == rax_argv, "elided a move");
if (collect_slot_constant != 0)
__ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
} else {
// Just reload from RF.saved_args_base.
__ movptr(rax_argv, saved_args_base_addr);
}
}
// Old and new argument locations (based at slot 0).
// Net shift (&new_argv - &old_argv) is (close_count - open_count).
bool zero_open_count = (open_count == 0); // remember this bit of info
if (move_keep3 && fix_arg_base) {
// It will be easier to have everything in one register:
if (close_count.is_register()) {
// Deduct open_count from close_count register to get a clean +/- value.
__ subptr(close_count.as_register(), open_count);
} else {
close_count = close_count.as_constant() - open_count;
}
open_count = 0;
}
Address old_argv(rax_argv, 0);
Address new_argv(rax_argv, close_count, Interpreter::stackElementScale(),
- open_count * Interpreter::stackElementSize);
// First decide if any actual data are to be moved.
// We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
// (As it happens, all movements involve an argument list size change.)
// If there are variable parameters, use dynamic checks to skip around the whole mess.
Label L_done;
if (!keep3_count.is_constant()) {
__ testl(keep3_count.as_register(), keep3_count.as_register());
__ jcc(Assembler::zero, L_done);
}
if (!close_count.is_constant()) {
__ cmpl(close_count.as_register(), open_count);
__ jcc(Assembler::equal, L_done);
}
if (move_keep3 && fix_arg_base) {
bool emit_move_down = false, emit_move_up = false, emit_guard = false;
if (!close_count.is_constant()) {
emit_move_down = emit_guard = !zero_open_count;
emit_move_up = true;
} else if (open_count != close_count.as_constant()) {
emit_move_down = (open_count > close_count.as_constant());
emit_move_up = !emit_move_down;
}
Label L_move_up;
if (emit_guard) {
__ cmpl(close_count.as_register(), open_count);
__ jcc(Assembler::greater, L_move_up);
}
if (emit_move_down) {
// Move arguments down if |+dest+| > |-collect-|
// (This is rare, except when arguments are retained.)
// This opens space for the return value.
if (keep3_count.is_constant()) {
for (int i = 0; i < keep3_count.as_constant(); i++) {
__ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
__ movptr( new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
}
} else {
Register rbx_argv_top = rbx_temp;
__ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
move_arg_slots_down(_masm,
old_argv, // beginning of old argv
rbx_argv_top, // end of old argv
close_count, // distance to move down (must be negative)
rax_argv, rdx_temp);
// Used argv as an iteration variable; reload from RF.saved_args_base.
__ movptr(rax_argv, saved_args_base_addr);
}
}
if (emit_guard) {
__ jmp(L_done); // assumes emit_move_up is true also
__ BIND(L_move_up);
}
if (emit_move_up) {
// Move arguments up if |+dest+| < |-collect-|
// (This is usual, except when |keep3| is empty.)
// This closes up the space occupied by the now-deleted collect values.
if (keep3_count.is_constant()) {
for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
__ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
__ movptr( new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
}
} else {
Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
move_arg_slots_up(_masm,
rax_argv, // beginning of old argv
argv_top, // end of old argv
close_count, // distance to move up (must be positive)
rbx_temp, rdx_temp);
}
}
}
__ BIND(L_done);
if (fix_arg_base) {
// adjust RF.saved_args_base by adding (close_count - open_count)
if (!new_argv.is_same_address(Address(rax_argv, 0)))
__ lea(rax_argv, new_argv);
__ movptr(saved_args_base_addr, rax_argv);
}
if (stomp_dest) {
// Stomp the return slot, so it doesn't hold garbage.
// This isn't strictly necessary, but it may help detect bugs.
int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
__ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
(int32_t) forty_two);
// uses rsi_keep3_count
}
BLOCK_COMMENT("} adjust trailing arguments");
BLOCK_COMMENT("do_recursive_call");
__ mov(saved_last_sp, rsp); // set rsi/r13 for callee
__ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
// The globally unique bounce address has two purposes:
// 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
// 2. When returned to, it cuts back the stack and redirects control flow
// to the return handler.
// The return handler will further cut back the stack when it takes
// down the RF. Perhaps there is a way to streamline this further.
// State during recursive call:
// ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
break;
}
case _adapter_opt_return_ref:
case _adapter_opt_return_int:
case _adapter_opt_return_long:
case _adapter_opt_return_float:
case _adapter_opt_return_double:
case _adapter_opt_return_void:
case _adapter_opt_return_S0_ref:
case _adapter_opt_return_S1_ref:
case _adapter_opt_return_S2_ref:
case _adapter_opt_return_S3_ref:
case _adapter_opt_return_S4_ref:
case _adapter_opt_return_S5_ref:
{
BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
int dest_slot_constant = ek_adapter_opt_return_slot(ek);
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
if (dest_slot_constant == -1) {
// The current stub is a general handler for this dest_type.
// It can be called from _adapter_opt_return_any below.
// Stash the address in a little table.
assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
address return_handler = __ pc();
_adapter_return_handlers[dest_type_constant] = return_handler;
if (dest_type_constant == T_INT) {
// do the subword types too
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)) &&
_adapter_return_handlers[bt] == NULL) {
_adapter_return_handlers[bt] = return_handler;
}
}
}
}
Register rbx_arg_base = rbx_temp;
assert_different_registers(rax, rdx, // possibly live return value registers
rdi_temp, rbx_arg_base);
Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
__ movptr(rbx_arg_base, saved_args_base_addr);
RegisterOrConstant dest_slot = dest_slot_constant;
if (dest_slot_constant == -1) {
load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
dest_slot = rdi_temp;
}
// Store the result back into the argslot.
// This code uses the interpreter calling sequence, in which the return value
// is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
// There are certain irregularities with floating point values, which can be seen
// in TemplateInterpreterGenerator::generate_return_entry_for.
move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
__ push(rdx_temp); // repush the return PC
// Load the final target and go.
if (VerifyMethodHandles) verify_method_handle(_masm, rcx_recv);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
__ hlt(); // --------------------
break;
}
case _adapter_opt_return_any:
{
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
Register rdi_conv = rdi_temp;
assert_different_registers(rax, rdx, // possibly live return value registers
rdi_conv, rbx_temp);
Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
__ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
__ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
#ifdef ASSERT
{ Label L_badconv;
__ testptr(rbx_temp, rbx_temp);
__ jccb(Assembler::zero, L_badconv);
__ jmp(rbx_temp);
__ bind(L_badconv);
__ stop("bad method handle return");
}
#else //ASSERT
__ jmp(rbx_temp);
#endif //ASSERT
break;
}
case _adapter_opt_spread_0:
case _adapter_opt_spread_1_ref:
case _adapter_opt_spread_2_ref:
case _adapter_opt_spread_3_ref:
case _adapter_opt_spread_4_ref:
case _adapter_opt_spread_5_ref:
case _adapter_opt_spread_ref:
case _adapter_opt_spread_byte:
case _adapter_opt_spread_char:
case _adapter_opt_spread_short:
case _adapter_opt_spread_int:
case _adapter_opt_spread_long:
case _adapter_opt_spread_float:
case _adapter_opt_spread_double:
{
// spread an array out into a group of arguments
int length_constant = ek_adapter_opt_spread_count(ek);
bool length_can_be_zero = (length_constant == 0);
if (length_constant < 0) {
// some adapters with variable length must handle the zero case
if (!OptimizeMethodHandles ||
ek_adapter_opt_spread_type(ek) != T_OBJECT)
length_can_be_zero = true;
}
// find the address of the array argument
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// grab another temp
Register rsi_temp = rsi;
{ if (rsi_temp == saved_last_sp) __ push(saved_last_sp); }
// (preceding push must be done after argslot address is taken!)
#define UNPUSH_RSI \
{ if (rsi_temp == saved_last_sp) __ pop(saved_last_sp); }
// arx_argslot points both to the array and to the first output arg
vmarg = Address(rax_argslot, 0);
// Get the array value.
Register rsi_array = rsi_temp;
Register rdx_array_klass = rdx_temp;
BasicType elem_type = ek_adapter_opt_spread_type(ek);
int elem_slots = type2size[elem_type]; // 1 or 2
int array_slots = 1; // array is always a T_OBJECT
int length_offset = arrayOopDesc::length_offset_in_bytes();
int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type);
__ movptr(rsi_array, vmarg);
Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
if (length_can_be_zero) {
// handle the null pointer case, if zero is allowed
Label L_skip;
if (length_constant < 0) {
load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
__ testl(rbx_temp, rbx_temp);
__ jcc(Assembler::notZero, L_skip);
}
__ testptr(rsi_array, rsi_array);
__ jcc(Assembler::zero, L_array_is_empty);
__ bind(L_skip);
}
__ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
__ load_klass(rdx_array_klass, rsi_array);
// Check the array type.
Register rbx_klass = rbx_temp;
__ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
load_klass_from_Class(_masm, rbx_klass);
Label ok_array_klass, bad_array_klass, bad_array_length;
__ check_klass_subtype(rdx_array_klass, rbx_klass, rdi_temp, ok_array_klass);
// If we get here, the type check failed!
__ jmp(bad_array_klass);
__ BIND(ok_array_klass);
// Check length.
if (length_constant >= 0) {
__ cmpl(Address(rsi_array, length_offset), length_constant);
} else {
Register rbx_vminfo = rbx_temp;
load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
__ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
}
__ jcc(Assembler::notEqual, bad_array_length);
Register rdx_argslot_limit = rdx_temp;
// Array length checks out. Now insert any required stack slots.
if (length_constant == -1) {
// Form a pointer to the end of the affected region.
__ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
// 'stack_move' is negative number of words to insert
// This number already accounts for elem_slots.
Register rdi_stack_move = rdi_temp;
load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
__ cmpptr(rdi_stack_move, 0);
assert(stack_move_unit() < 0, "else change this comparison");
__ jcc(Assembler::less, L_insert_arg_space);
__ jcc(Assembler::equal, L_copy_args);
// single argument case, with no array movement
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
rax_argslot, rbx_temp, rdx_temp);
__ jmp(L_args_done); // no spreading to do
__ BIND(L_insert_arg_space);
// come here in the usual case, stack_move < 0 (2 or more spread arguments)
Register rsi_temp = rsi_array; // spill this
insert_arg_slots(_masm, rdi_stack_move,
rax_argslot, rbx_temp, rsi_temp);
// reload the array since rsi was killed
// reload from rdx_argslot_limit since rax_argslot is now decremented
__ movptr(rsi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
} else if (length_constant >= 1) {
int new_slots = (length_constant * elem_slots) - array_slots;
insert_arg_slots(_masm, new_slots * stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
} else if (length_constant == 0) {
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
rax_argslot, rbx_temp, rdx_temp);
} else {
ShouldNotReachHere();
}
// Copy from the array to the new slots.
// Note: Stack change code preserves integrity of rax_argslot pointer.
// So even after slot insertions, rax_argslot still points to first argument.
// Beware: Arguments that are shallow on the stack are deep in the array,
// and vice versa. So a downward-growing stack (the usual) has to be copied
// elementwise in reverse order from the source array.
__ BIND(L_copy_args);
if (length_constant == -1) {
// [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
// Array element [0] goes at rdx_argslot_limit[-wordSize].
Register rsi_source = rsi_array;
__ lea(rsi_source, Address(rsi_array, elem0_offset));
Register rdx_fill_ptr = rdx_argslot_limit;
Label loop;
__ BIND(loop);
__ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
move_typed_arg(_masm, elem_type, true,
Address(rdx_fill_ptr, 0), Address(rsi_source, 0),
rbx_temp, rdi_temp);
__ addptr(rsi_source, type2aelembytes(elem_type));
__ cmpptr(rdx_fill_ptr, rax_argslot);
__ jcc(Assembler::above, loop);
} else if (length_constant == 0) {
// nothing to copy
} else {
int elem_offset = elem0_offset;
int slot_offset = length_constant * Interpreter::stackElementSize;
for (int index = 0; index < length_constant; index++) {
slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward
move_typed_arg(_masm, elem_type, true,
Address(rax_argslot, slot_offset), Address(rsi_array, elem_offset),
rbx_temp, rdi_temp);
elem_offset += type2aelembytes(elem_type);
}
}
__ BIND(L_args_done);
// Arguments are spread. Move to next method handle.
UNPUSH_RSI;
__ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
__ bind(bad_array_klass);
UNPUSH_RSI;
assert(!vmarg.uses(rarg2_required), "must be different registers");
__ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset)); // required type
__ movptr( rarg1_actual, vmarg); // bad array
__ movl( rarg0_code, (int) Bytecodes::_aaload); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
__ bind(bad_array_length);
UNPUSH_RSI;
assert(!vmarg.uses(rarg2_required), "must be different registers");
__ mov( rarg2_required, rcx_recv); // AMH requiring a certain length
__ movptr( rarg1_actual, vmarg); // bad array
__ movl( rarg0_code, (int) Bytecodes::_arraylength); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
#undef UNPUSH_RSI
break;
}
default:
// do not require all platforms to recognize all adapter types
__ nop();
return;
}
BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
__ hlt();
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}