jdk-24/test/hotspot/gtest/metaspace/test_chunkManager_stress.cpp

294 lines
9.7 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2020 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/metaspace/chunkManager.hpp"
#include "memory/metaspace/metaspaceSettings.hpp"
#include "memory/metaspace/virtualSpaceList.hpp"
//#define LOG_PLEASE
#include "metaspaceGtestCommon.hpp"
#include "metaspaceGtestContexts.hpp"
#include "metaspaceGtestRangeHelpers.hpp"
#include "metaspaceGtestSparseArray.hpp"
using metaspace::ChunkManager;
using metaspace::Settings;
class ChunkManagerRandomChunkAllocTest {
static const size_t max_footprint_words = 8 * M;
ChunkGtestContext _context;
// All allocated live chunks
typedef SparseArray<Metachunk*> SparseArrayOfChunks;
SparseArrayOfChunks _chunks;
const ChunkLevelRange _chunklevel_range;
const float _commit_factor;
// Depending on a probability pattern, come up with a reasonable limit to number of live chunks
static int max_num_live_chunks(ChunkLevelRange r, float commit_factor) {
// Assuming we allocate only the largest type of chunk, committed to the fullest commit factor,
// how many chunks can we accomodate before hitting max_footprint_words?
const size_t largest_chunk_size = word_size_for_level(r.lowest());
int max_chunks = (max_footprint_words * commit_factor) / largest_chunk_size;
// .. but cap at (min) 50 and (max) 1000
max_chunks = MIN2(1000, max_chunks);
max_chunks = MAX2(50, max_chunks);
return max_chunks;
}
// Return true if, after an allocation error happened, a reserve error seems possible.
bool could_be_reserve_error() {
return _context.reserve_limit() < max_uintx;
}
// Return true if, after an allocation error happened, a commit error seems likely.
bool could_be_commit_error(size_t additional_word_size) {
// could it be commit limit hit?
if (Settings::new_chunks_are_fully_committed()) {
// For all we know we may have just failed to fully-commit a new root chunk.
additional_word_size = MAX_CHUNK_WORD_SIZE;
}
// Note that this is difficult to verify precisely, since there are
// several layers of truth:
// a) at the lowest layer (RootChunkArea) we have a bitmap of committed granules;
// b) at the vslist layer, we keep running counters of committed/reserved words;
// c) at the chunk layer, we keep a commit watermark (committed_words).
//
// (a) should mirror reality.
// (a) and (b) should be precisely in sync. This is tested by
// VirtualSpaceList::verify().
// (c) can be, by design, imprecise (too low).
//
// Here, I check (b) and trust it to be correct. We also call vslist::verify().
DEBUG_ONLY(_context.verify();)
const size_t commit_add = align_up(additional_word_size, Settings::commit_granule_words());
if (_context.commit_limit() <= (commit_add + _context.vslist().committed_words())) {
return true;
}
return false;
}
// Given a chunk level and a factor, return a random commit size.
static size_t random_committed_words(chunklevel_t lvl, float commit_factor) {
const size_t sz = word_size_for_level(lvl) * commit_factor;
if (sz < 2) {
return 0;
}
return MIN2(SizeRange(sz).random_value(), sz);
}
//// Chunk allocation ////
// Given an slot index, allocate a random chunk and set it into that slot. Slot must be empty.
// Returns false if allocation fails.
bool allocate_random_chunk_at(int slot) {
DEBUG_ONLY(_chunks.check_slot_is_null(slot);)
const ChunkLevelRange r = _chunklevel_range.random_subrange();
const chunklevel_t pref_level = r.lowest();
const chunklevel_t max_level = r.highest();
const size_t min_committed = random_committed_words(max_level, _commit_factor);
Metachunk* c = NULL;
_context.alloc_chunk(&c, r.lowest(), r.highest(), min_committed);
if (c == NULL) {
EXPECT_TRUE(could_be_reserve_error() ||
could_be_commit_error(min_committed));
LOG("Alloc chunk at %d failed.", slot);
return false;
}
_chunks.set_at(slot, c);
LOG("Allocated chunk at %d: " METACHUNK_FORMAT ".", slot, METACHUNK_FORMAT_ARGS(c));
return true;
}
// Allocates a random number of random chunks
bool allocate_random_chunks() {
int to_alloc = 1 + IntRange(MAX2(1, _chunks.size() / 8)).random_value();
bool success = true;
int slot = _chunks.first_null_slot();
while (to_alloc > 0 && slot != -1 && success) {
success = allocate_random_chunk_at(slot);
slot = _chunks.next_null_slot(slot);
to_alloc --;
}
return success && to_alloc == 0;
}
bool fill_all_slots_with_random_chunks() {
bool success = true;
for (int slot = _chunks.first_null_slot();
slot != -1 && success; slot = _chunks.next_null_slot(slot)) {
success = allocate_random_chunk_at(slot);
}
return success;
}
//// Chunk return ////
// Given an slot index, return the chunk in that slot to the chunk manager.
void return_chunk_at(int slot) {
Metachunk* c = _chunks.at(slot);
LOG("Returning chunk at %d: " METACHUNK_FORMAT ".", slot, METACHUNK_FORMAT_ARGS(c));
_context.return_chunk(c);
_chunks.set_at(slot, NULL);
}
// return a random number of chunks (at most a quarter of the full slot range)
void return_random_chunks() {
int to_free = 1 + IntRange(MAX2(1, _chunks.size() / 8)).random_value();
int index = _chunks.first_non_null_slot();
while (to_free > 0 && index != -1) {
return_chunk_at(index);
index = _chunks.next_non_null_slot(index);
to_free --;
}
}
void return_all_chunks() {
for (int slot = _chunks.first_non_null_slot();
slot != -1; slot = _chunks.next_non_null_slot(slot)) {
return_chunk_at(slot);
}
}
// adjust test if we change levels
STATIC_ASSERT(HIGHEST_CHUNK_LEVEL == CHUNK_LEVEL_1K);
STATIC_ASSERT(LOWEST_CHUNK_LEVEL == CHUNK_LEVEL_4M);
void one_test() {
fill_all_slots_with_random_chunks();
_chunks.shuffle();
IntRange rand(100);
for (int j = 0; j < 1000; j++) {
bool force_alloc = false;
bool force_free = true;
bool do_alloc =
force_alloc ? true :
(force_free ? false : rand.random_value() >= 50);
force_alloc = force_free = false;
if (do_alloc) {
if (!allocate_random_chunks()) {
force_free = true;
}
} else {
return_random_chunks();
}
_chunks.shuffle();
}
return_all_chunks();
}
public:
// A test with no limits
ChunkManagerRandomChunkAllocTest(ChunkLevelRange r, float commit_factor) :
_context(),
_chunks(max_num_live_chunks(r, commit_factor)),
_chunklevel_range(r),
_commit_factor(commit_factor)
{}
// A test with no reserve limit but commit limit
ChunkManagerRandomChunkAllocTest(size_t commit_limit,
ChunkLevelRange r, float commit_factor) :
_context(commit_limit),
_chunks(max_num_live_chunks(r, commit_factor)),
_chunklevel_range(r),
_commit_factor(commit_factor)
{}
// A test with both reserve and commit limit
// ChunkManagerRandomChunkAllocTest(size_t commit_limit, size_t reserve_limit,
// ChunkLevelRange r, float commit_factor)
// : _helper(commit_limit, reserve_limit),
// _chunks(max_num_live_chunks(r, commit_factor)),
// _chunklevel_range(r),
// _commit_factor(commit_factor)
// {}
void do_tests() {
const int num_runs = 5;
for (int n = 0; n < num_runs; n++) {
one_test();
}
}
};
#define DEFINE_TEST(name, range, commit_factor) \
TEST_VM(metaspace, chunkmanager_random_alloc_##name) { \
ChunkManagerRandomChunkAllocTest test(range, commit_factor); \
test.do_tests(); \
}
DEFINE_TEST(test_nolimit_1, ChunkLevelRanges::small_chunks(), 0.0f)
DEFINE_TEST(test_nolimit_2, ChunkLevelRanges::small_chunks(), 0.5f)
DEFINE_TEST(test_nolimit_3, ChunkLevelRanges::small_chunks(), 1.0f)
DEFINE_TEST(test_nolimit_4, ChunkLevelRanges::all_chunks(), 0.0f)
DEFINE_TEST(test_nolimit_5, ChunkLevelRanges::all_chunks(), 0.5f)
DEFINE_TEST(test_nolimit_6, ChunkLevelRanges::all_chunks(), 1.0f)
#define DEFINE_TEST_2(name, range, commit_factor) \
TEST_VM(metaspace, chunkmanager_random_alloc_##name) { \
const size_t commit_limit = 256 * K; \
ChunkManagerRandomChunkAllocTest test(commit_limit, range, commit_factor); \
test.do_tests(); \
}
DEFINE_TEST_2(test_with_limit_1, ChunkLevelRanges::small_chunks(), 0.0f)
DEFINE_TEST_2(test_with_limit_2, ChunkLevelRanges::small_chunks(), 0.5f)
DEFINE_TEST_2(test_with_limit_3, ChunkLevelRanges::small_chunks(), 1.0f)
DEFINE_TEST_2(test_with_limit_4, ChunkLevelRanges::all_chunks(), 0.0f)
DEFINE_TEST_2(test_with_limit_5, ChunkLevelRanges::all_chunks(), 0.5f)
DEFINE_TEST_2(test_with_limit_6, ChunkLevelRanges::all_chunks(), 1.0f)