jdk-24/hotspot/src/share/vm/gc/g1/g1RemSet.cpp

788 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/concurrentG1Refine.hpp"
#include "gc/g1/dirtyCardQueue.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1FromCardCache.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HotCardCache.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1RemSet.inline.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/intHisto.hpp"
#include "utilities/stack.inline.hpp"
// Collects information about the overall remembered set scan progress during an evacuation.
class G1RemSetScanState : public CHeapObj<mtGC> {
private:
class G1ClearCardTableTask : public AbstractGangTask {
G1CollectedHeap* _g1h;
uint* _dirty_region_list;
size_t _num_dirty_regions;
size_t _chunk_length;
size_t volatile _cur_dirty_regions;
public:
G1ClearCardTableTask(G1CollectedHeap* g1h,
uint* dirty_region_list,
size_t num_dirty_regions,
size_t chunk_length) :
AbstractGangTask("G1 Clear Card Table Task"),
_g1h(g1h),
_dirty_region_list(dirty_region_list),
_num_dirty_regions(num_dirty_regions),
_chunk_length(chunk_length),
_cur_dirty_regions(0) {
assert(chunk_length > 0, "must be");
}
static size_t chunk_size() { return M; }
void work(uint worker_id) {
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
while (_cur_dirty_regions < _num_dirty_regions) {
size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
for (size_t i = next; i < max; i++) {
HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
if (!r->is_survivor()) {
ct_bs->clear(MemRegion(r->bottom(), r->end()));
}
}
}
}
};
size_t _max_regions;
// Scan progress for the remembered set of a single region. Transitions from
// Unclaimed -> Claimed -> Complete.
// At each of the transitions the thread that does the transition needs to perform
// some special action once. This is the reason for the extra "Claimed" state.
typedef jint G1RemsetIterState;
static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
static const G1RemsetIterState Claimed = 1; // The remembered set is currently being scanned.
static const G1RemsetIterState Complete = 2; // The remembered set has been completely scanned.
G1RemsetIterState volatile* _iter_states;
// The current location where the next thread should continue scanning in a region's
// remembered set.
size_t volatile* _iter_claims;
// Temporary buffer holding the regions we used to store remembered set scan duplicate
// information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
uint* _dirty_region_buffer;
typedef jbyte IsDirtyRegionState;
static const IsDirtyRegionState Clean = 0;
static const IsDirtyRegionState Dirty = 1;
// Holds a flag for every region whether it is in the _dirty_region_buffer already
// to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
IsDirtyRegionState* _in_dirty_region_buffer;
size_t _cur_dirty_region;
public:
G1RemSetScanState() :
_max_regions(0),
_iter_states(NULL),
_iter_claims(NULL),
_dirty_region_buffer(NULL),
_in_dirty_region_buffer(NULL),
_cur_dirty_region(0) {
}
~G1RemSetScanState() {
if (_iter_states != NULL) {
FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
}
if (_iter_claims != NULL) {
FREE_C_HEAP_ARRAY(size_t, _iter_claims);
}
if (_dirty_region_buffer != NULL) {
FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
}
if (_in_dirty_region_buffer != NULL) {
FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
}
}
void initialize(uint max_regions) {
assert(_iter_states == NULL, "Must not be initialized twice");
assert(_iter_claims == NULL, "Must not be initialized twice");
_max_regions = max_regions;
_iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
_iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
_dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
_in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
}
void reset() {
for (uint i = 0; i < _max_regions; i++) {
_iter_states[i] = Unclaimed;
}
memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
_cur_dirty_region = 0;
}
// Attempt to claim the remembered set of the region for iteration. Returns true
// if this call caused the transition from Unclaimed to Claimed.
inline bool claim_iter(uint region) {
assert(region < _max_regions, "Tried to access invalid region %u", region);
if (_iter_states[region] != Unclaimed) {
return false;
}
jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
return (res == Unclaimed);
}
// Try to atomically sets the iteration state to "complete". Returns true for the
// thread that caused the transition.
inline bool set_iter_complete(uint region) {
if (iter_is_complete(region)) {
return false;
}
jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
return (res == Claimed);
}
// Returns true if the region's iteration is complete.
inline bool iter_is_complete(uint region) const {
assert(region < _max_regions, "Tried to access invalid region %u", region);
return _iter_states[region] == Complete;
}
// The current position within the remembered set of the given region.
inline size_t iter_claimed(uint region) const {
assert(region < _max_regions, "Tried to access invalid region %u", region);
return _iter_claims[region];
}
// Claim the next block of cards within the remembered set of the region with
// step size.
inline size_t iter_claimed_next(uint region, size_t step) {
return Atomic::add(step, &_iter_claims[region]) - step;
}
void add_dirty_region(uint region) {
if (_in_dirty_region_buffer[region] == Dirty) {
return;
}
bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
if (marked_as_dirty) {
size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1;
_dirty_region_buffer[allocated] = region;
}
}
// Clear the card table of "dirty" regions.
void clear_card_table(WorkGang* workers) {
if (_cur_dirty_region == 0) {
return;
}
size_t const num_chunks = align_size_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
// Iterate over the dirty cards region list.
G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
"units of work for " SIZE_FORMAT " regions.",
cl.name(), num_workers, num_chunks, _cur_dirty_region);
workers->run_task(&cl, num_workers);
#ifndef PRODUCT
// Need to synchronize with concurrent cleanup since it needs to
// finish its card table clearing before we can verify.
G1CollectedHeap::heap()->wait_while_free_regions_coming();
G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
#endif
}
};
G1RemSet::G1RemSet(G1CollectedHeap* g1,
CardTableModRefBS* ct_bs,
G1HotCardCache* hot_card_cache) :
_g1(g1),
_scan_state(new G1RemSetScanState()),
_conc_refine_cards(0),
_ct_bs(ct_bs),
_g1p(_g1->g1_policy()),
_hot_card_cache(hot_card_cache),
_prev_period_summary(),
_into_cset_dirty_card_queue_set(false)
{
if (log_is_enabled(Trace, gc, remset)) {
_prev_period_summary.initialize(this);
}
// Initialize the card queue set used to hold cards containing
// references into the collection set.
_into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
DirtyCardQ_CBL_mon,
DirtyCardQ_FL_lock,
-1, // never trigger processing
-1, // no limit on length
Shared_DirtyCardQ_lock,
&JavaThread::dirty_card_queue_set());
}
G1RemSet::~G1RemSet() {
if (_scan_state != NULL) {
delete _scan_state;
}
}
uint G1RemSet::num_par_rem_sets() {
return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads);
}
void G1RemSet::initialize(size_t capacity, uint max_regions) {
G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
_scan_state->initialize(max_regions);
{
GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
_card_live_data.initialize(capacity, max_regions);
}
if (G1PretouchAuxiliaryMemory) {
GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
_card_live_data.pretouch();
}
}
G1ScanRSClosure::G1ScanRSClosure(G1RemSetScanState* scan_state,
G1ParPushHeapRSClosure* push_heap_cl,
CodeBlobClosure* code_root_cl,
uint worker_i) :
_scan_state(scan_state),
_push_heap_cl(push_heap_cl),
_code_root_cl(code_root_cl),
_strong_code_root_scan_time_sec(0.0),
_cards(0),
_cards_done(0),
_worker_i(worker_i) {
_g1h = G1CollectedHeap::heap();
_bot = _g1h->bot();
_ct_bs = _g1h->g1_barrier_set();
_block_size = MAX2<size_t>(G1RSetScanBlockSize, 1);
}
void G1ScanRSClosure::scan_card(size_t index, HeapRegion *r) {
// Stack allocate the DirtyCardToOopClosure instance
HeapRegionDCTOC cl(_g1h, r, _push_heap_cl, CardTableModRefBS::Precise);
// Set the "from" region in the closure.
_push_heap_cl->set_region(r);
MemRegion card_region(_bot->address_for_index(index), BOTConstants::N_words);
MemRegion pre_gc_allocated(r->bottom(), r->scan_top());
MemRegion mr = pre_gc_allocated.intersection(card_region);
if (!mr.is_empty() && !_ct_bs->is_card_claimed(index)) {
// We make the card as "claimed" lazily (so races are possible
// but they're benign), which reduces the number of duplicate
// scans (the rsets of the regions in the cset can intersect).
_ct_bs->set_card_claimed(index);
_cards_done++;
cl.do_MemRegion(mr);
}
}
void G1ScanRSClosure::scan_strong_code_roots(HeapRegion* r) {
double scan_start = os::elapsedTime();
r->strong_code_roots_do(_code_root_cl);
_strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
}
bool G1ScanRSClosure::doHeapRegion(HeapRegion* r) {
assert(r->in_collection_set(), "should only be called on elements of CS.");
uint region_idx = r->hrm_index();
if (_scan_state->iter_is_complete(region_idx)) {
return false;
}
if (_scan_state->claim_iter(region_idx)) {
// If we ever free the collection set concurrently, we should also
// clear the card table concurrently therefore we won't need to
// add regions of the collection set to the dirty cards region.
_scan_state->add_dirty_region(region_idx);
}
HeapRegionRemSetIterator iter(r->rem_set());
size_t card_index;
// We claim cards in block so as to reduce the contention. The block size is determined by
// the G1RSetScanBlockSize parameter.
size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size);
for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
if (current_card >= claimed_card_block + _block_size) {
claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size);
}
if (current_card < claimed_card_block) {
continue;
}
HeapWord* card_start = _g1h->bot()->address_for_index(card_index);
HeapRegion* card_region = _g1h->heap_region_containing(card_start);
_cards++;
_scan_state->add_dirty_region(card_region->hrm_index());
// If the card is dirty, then we will scan it during updateRS.
if (!card_region->in_collection_set() &&
!_ct_bs->is_card_dirty(card_index)) {
scan_card(card_index, card_region);
}
}
if (_scan_state->set_iter_complete(region_idx)) {
// Scan the strong code root list attached to the current region
scan_strong_code_roots(r);
}
return false;
}
size_t G1RemSet::scan_rem_set(G1ParPushHeapRSClosure* oops_in_heap_closure,
CodeBlobClosure* heap_region_codeblobs,
uint worker_i) {
double rs_time_start = os::elapsedTime();
G1ScanRSClosure cl(_scan_state, oops_in_heap_closure, heap_region_codeblobs, worker_i);
_g1->collection_set_iterate_from(&cl, worker_i);
double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
cl.strong_code_root_scan_time_sec();
_g1p->phase_times()->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
_g1p->phase_times()->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
return cl.cards_done();
}
// Closure used for updating RSets and recording references that
// point into the collection set. Only called during an
// evacuation pause.
class RefineRecordRefsIntoCSCardTableEntryClosure: public CardTableEntryClosure {
G1RemSet* _g1rs;
DirtyCardQueue* _into_cset_dcq;
G1ParPushHeapRSClosure* _cl;
public:
RefineRecordRefsIntoCSCardTableEntryClosure(G1CollectedHeap* g1h,
DirtyCardQueue* into_cset_dcq,
G1ParPushHeapRSClosure* cl) :
_g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _cl(cl)
{}
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
// The only time we care about recording cards that
// contain references that point into the collection set
// is during RSet updating within an evacuation pause.
// In this case worker_i should be the id of a GC worker thread.
assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
assert(worker_i < ParallelGCThreads, "should be a GC worker");
if (_g1rs->refine_card(card_ptr, worker_i, _cl)) {
// 'card_ptr' contains references that point into the collection
// set. We need to record the card in the DCQS
// (_into_cset_dirty_card_queue_set)
// that's used for that purpose.
//
// Enqueue the card
_into_cset_dcq->enqueue(card_ptr);
}
return true;
}
};
void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq,
G1ParPushHeapRSClosure* oops_in_heap_closure,
uint worker_i) {
RefineRecordRefsIntoCSCardTableEntryClosure into_cset_update_rs_cl(_g1, into_cset_dcq, oops_in_heap_closure);
G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
if (G1HotCardCache::default_use_cache()) {
// Apply the closure to the entries of the hot card cache.
G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
_g1->iterate_hcc_closure(&into_cset_update_rs_cl, worker_i);
}
// Apply the closure to all remaining log entries.
_g1->iterate_dirty_card_closure(&into_cset_update_rs_cl, worker_i);
}
void G1RemSet::cleanupHRRS() {
HeapRegionRemSet::cleanup();
}
size_t G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* cl,
CodeBlobClosure* heap_region_codeblobs,
uint worker_i) {
// A DirtyCardQueue that is used to hold cards containing references
// that point into the collection set. This DCQ is associated with a
// special DirtyCardQueueSet (see g1CollectedHeap.hpp). Under normal
// circumstances (i.e. the pause successfully completes), these cards
// are just discarded (there's no need to update the RSets of regions
// that were in the collection set - after the pause these regions
// are wholly 'free' of live objects. In the event of an evacuation
// failure the cards/buffers in this queue set are passed to the
// DirtyCardQueueSet that is used to manage RSet updates
DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
update_rem_set(&into_cset_dcq, cl, worker_i);
return scan_rem_set(cl, heap_region_codeblobs, worker_i);;
}
void G1RemSet::prepare_for_oops_into_collection_set_do() {
_g1->set_refine_cte_cl_concurrency(false);
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
dcqs.concatenate_logs();
_scan_state->reset();
}
void G1RemSet::cleanup_after_oops_into_collection_set_do() {
G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
// Cleanup after copy
_g1->set_refine_cte_cl_concurrency(true);
// Set all cards back to clean.
double start = os::elapsedTime();
_scan_state->clear_card_table(_g1->workers());
phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set;
if (_g1->evacuation_failed()) {
double restore_remembered_set_start = os::elapsedTime();
// Restore remembered sets for the regions pointing into the collection set.
// We just need to transfer the completed buffers from the DirtyCardQueueSet
// used to hold cards that contain references that point into the collection set
// to the DCQS used to hold the deferred RS updates.
_g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs);
phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0);
}
// Free any completed buffers in the DirtyCardQueueSet used to hold cards
// which contain references that point into the collection.
_into_cset_dirty_card_queue_set.clear();
assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0,
"all buffers should be freed");
_into_cset_dirty_card_queue_set.clear_n_completed_buffers();
}
class G1ScrubRSClosure: public HeapRegionClosure {
G1CollectedHeap* _g1h;
G1CardLiveData* _live_data;
public:
G1ScrubRSClosure(G1CardLiveData* live_data) :
_g1h(G1CollectedHeap::heap()),
_live_data(live_data) { }
bool doHeapRegion(HeapRegion* r) {
if (!r->is_continues_humongous()) {
r->rem_set()->scrub(_live_data);
}
return false;
}
};
void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
G1ScrubRSClosure scrub_cl(&_card_live_data);
_g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer);
}
G1TriggerClosure::G1TriggerClosure() :
_triggered(false) { }
G1InvokeIfNotTriggeredClosure::G1InvokeIfNotTriggeredClosure(G1TriggerClosure* t_cl,
OopClosure* oop_cl) :
_trigger_cl(t_cl), _oop_cl(oop_cl) { }
G1Mux2Closure::G1Mux2Closure(OopClosure *c1, OopClosure *c2) :
_c1(c1), _c2(c2) { }
G1UpdateRSOrPushRefOopClosure::
G1UpdateRSOrPushRefOopClosure(G1CollectedHeap* g1h,
G1RemSet* rs,
G1ParPushHeapRSClosure* push_ref_cl,
bool record_refs_into_cset,
uint worker_i) :
_g1(g1h), _g1_rem_set(rs), _from(NULL),
_record_refs_into_cset(record_refs_into_cset),
_push_ref_cl(push_ref_cl), _worker_i(worker_i) { }
// Returns true if the given card contains references that point
// into the collection set, if we're checking for such references;
// false otherwise.
bool G1RemSet::refine_card(jbyte* card_ptr,
uint worker_i,
G1ParPushHeapRSClosure* oops_in_heap_closure) {
assert(_g1->is_in_exact(_ct_bs->addr_for(card_ptr)),
"Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
p2i(card_ptr),
_ct_bs->index_for(_ct_bs->addr_for(card_ptr)),
p2i(_ct_bs->addr_for(card_ptr)),
_g1->addr_to_region(_ct_bs->addr_for(card_ptr)));
bool check_for_refs_into_cset = oops_in_heap_closure != NULL;
// If the card is no longer dirty, nothing to do.
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
// No need to return that this card contains refs that point
// into the collection set.
return false;
}
// Construct the region representing the card.
HeapWord* start = _ct_bs->addr_for(card_ptr);
// And find the region containing it.
HeapRegion* r = _g1->heap_region_containing(start);
// Why do we have to check here whether a card is on a young region,
// given that we dirty young regions and, as a result, the
// post-barrier is supposed to filter them out and never to enqueue
// them? When we allocate a new region as the "allocation region" we
// actually dirty its cards after we release the lock, since card
// dirtying while holding the lock was a performance bottleneck. So,
// as a result, it is possible for other threads to actually
// allocate objects in the region (after the acquire the lock)
// before all the cards on the region are dirtied. This is unlikely,
// and it doesn't happen often, but it can happen. So, the extra
// check below filters out those cards.
if (r->is_young()) {
return false;
}
// While we are processing RSet buffers during the collection, we
// actually don't want to scan any cards on the collection set,
// since we don't want to update remembered sets with entries that
// point into the collection set, given that live objects from the
// collection set are about to move and such entries will be stale
// very soon. This change also deals with a reliability issue which
// involves scanning a card in the collection set and coming across
// an array that was being chunked and looking malformed. Note,
// however, that if evacuation fails, we have to scan any objects
// that were not moved and create any missing entries.
if (r->in_collection_set()) {
return false;
}
// The result from the hot card cache insert call is either:
// * pointer to the current card
// (implying that the current card is not 'hot'),
// * null
// (meaning we had inserted the card ptr into the "hot" card cache,
// which had some headroom),
// * a pointer to a "hot" card that was evicted from the "hot" cache.
//
if (_hot_card_cache->use_cache()) {
assert(!check_for_refs_into_cset, "sanity");
assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
card_ptr = _hot_card_cache->insert(card_ptr);
if (card_ptr == NULL) {
// There was no eviction. Nothing to do.
return false;
}
start = _ct_bs->addr_for(card_ptr);
r = _g1->heap_region_containing(start);
// Checking whether the region we got back from the cache
// is young here is inappropriate. The region could have been
// freed, reallocated and tagged as young while in the cache.
// Hence we could see its young type change at any time.
}
// Don't use addr_for(card_ptr + 1) which can ask for
// a card beyond the heap. This is not safe without a perm
// gen at the upper end of the heap.
HeapWord* end = start + CardTableModRefBS::card_size_in_words;
MemRegion dirtyRegion(start, end);
G1UpdateRSOrPushRefOopClosure update_rs_oop_cl(_g1,
_g1->g1_rem_set(),
oops_in_heap_closure,
check_for_refs_into_cset,
worker_i);
update_rs_oop_cl.set_from(r);
G1TriggerClosure trigger_cl;
FilterIntoCSClosure into_cs_cl(_g1, &trigger_cl);
G1InvokeIfNotTriggeredClosure invoke_cl(&trigger_cl, &into_cs_cl);
G1Mux2Closure mux(&invoke_cl, &update_rs_oop_cl);
FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r,
(check_for_refs_into_cset ?
(OopClosure*)&mux :
(OopClosure*)&update_rs_oop_cl));
// The region for the current card may be a young region. The
// current card may have been a card that was evicted from the
// card cache. When the card was inserted into the cache, we had
// determined that its region was non-young. While in the cache,
// the region may have been freed during a cleanup pause, reallocated
// and tagged as young.
//
// We wish to filter out cards for such a region but the current
// thread, if we're running concurrently, may "see" the young type
// change at any time (so an earlier "is_young" check may pass or
// fail arbitrarily). We tell the iteration code to perform this
// filtering when it has been determined that there has been an actual
// allocation in this region and making it safe to check the young type.
bool filter_young = true;
HeapWord* stop_point =
r->oops_on_card_seq_iterate_careful(dirtyRegion,
&filter_then_update_rs_oop_cl,
filter_young,
card_ptr);
// If stop_point is non-null, then we encountered an unallocated region
// (perhaps the unfilled portion of a TLAB.) For now, we'll dirty the
// card and re-enqueue: if we put off the card until a GC pause, then the
// unallocated portion will be filled in. Alternatively, we might try
// the full complexity of the technique used in "regular" precleaning.
if (stop_point != NULL) {
// The card might have gotten re-dirtied and re-enqueued while we
// worked. (In fact, it's pretty likely.)
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
*card_ptr = CardTableModRefBS::dirty_card_val();
MutexLockerEx x(Shared_DirtyCardQ_lock,
Mutex::_no_safepoint_check_flag);
DirtyCardQueue* sdcq =
JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
sdcq->enqueue(card_ptr);
}
} else {
_conc_refine_cards++;
}
// This gets set to true if the card being refined has
// references that point into the collection set.
bool has_refs_into_cset = trigger_cl.triggered();
// We should only be detecting that the card contains references
// that point into the collection set if the current thread is
// a GC worker thread.
assert(!has_refs_into_cset || SafepointSynchronize::is_at_safepoint(),
"invalid result at non safepoint");
return has_refs_into_cset;
}
void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
(period_count % G1SummarizeRSetStatsPeriod == 0)) {
if (!_prev_period_summary.initialized()) {
_prev_period_summary.initialize(this);
}
G1RemSetSummary current;
current.initialize(this);
_prev_period_summary.subtract_from(&current);
Log(gc, remset) log;
log.trace("%s", header);
ResourceMark rm;
_prev_period_summary.print_on(log.trace_stream());
_prev_period_summary.set(&current);
}
}
void G1RemSet::print_summary_info() {
Log(gc, remset, exit) log;
if (log.is_trace()) {
log.trace(" Cumulative RS summary");
G1RemSetSummary current;
current.initialize(this);
ResourceMark rm;
current.print_on(log.trace_stream());
}
}
void G1RemSet::prepare_for_verify() {
if (G1HRRSFlushLogBuffersOnVerify &&
(VerifyBeforeGC || VerifyAfterGC)
&& (!_g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC)) {
cleanupHRRS();
_g1->set_refine_cte_cl_concurrency(false);
if (SafepointSynchronize::is_at_safepoint()) {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
dcqs.concatenate_logs();
}
bool use_hot_card_cache = _hot_card_cache->use_cache();
_hot_card_cache->set_use_cache(false);
DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
update_rem_set(&into_cset_dcq, NULL, 0);
_into_cset_dirty_card_queue_set.clear();
_hot_card_cache->set_use_cache(use_hot_card_cache);
assert(JavaThread::dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
}
}
void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
_card_live_data.create(workers, mark_bitmap);
}
void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
_card_live_data.finalize(workers, mark_bitmap);
}
void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
_card_live_data.verify(workers, bitmap);
}
void G1RemSet::clear_card_live_data(WorkGang* workers) {
_card_live_data.clear(workers);
}
#ifdef ASSERT
void G1RemSet::verify_card_live_data_is_clear() {
_card_live_data.verify_is_clear();
}
#endif