2021-05-14 17:16:28 +00:00
|
|
|
/*
|
2022-03-31 00:46:44 +00:00
|
|
|
* Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
|
2021-05-14 17:16:28 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*/
|
|
|
|
package org.openjdk.bench.vm.compiler;
|
|
|
|
|
|
|
|
import org.openjdk.jmh.annotations.Benchmark;
|
|
|
|
import org.openjdk.jmh.annotations.*;
|
|
|
|
|
|
|
|
import java.util.Random;
|
|
|
|
import java.util.concurrent.TimeUnit;
|
|
|
|
import org.openjdk.jmh.infra.Blackhole;
|
|
|
|
|
|
|
|
@BenchmarkMode({Mode.AverageTime})
|
|
|
|
@OutputTimeUnit(TimeUnit.MICROSECONDS)
|
|
|
|
@State(Scope.Thread)
|
2022-08-03 18:01:26 +00:00
|
|
|
@Warmup(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
|
|
|
|
@Measurement(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
|
|
|
|
@Fork(value = 3)
|
2021-05-14 17:16:28 +00:00
|
|
|
public class MaxMinOptimizeTest {
|
|
|
|
private static final int COUNT = 100000;
|
|
|
|
|
|
|
|
private float[] floats_a = new float[COUNT];
|
|
|
|
private float[] floats_b = new float[COUNT];
|
|
|
|
private double[] doubles_a = new double[COUNT];
|
|
|
|
private double[] doubles_b = new double[COUNT];
|
|
|
|
|
|
|
|
private Random r = new Random();
|
|
|
|
|
|
|
|
@Setup
|
|
|
|
public void init() {
|
|
|
|
for (int i=0; i<COUNT; i++) {
|
|
|
|
floats_a[i] = r.nextFloat();
|
|
|
|
floats_b[i] = r.nextFloat();
|
|
|
|
doubles_a[i] = r.nextDouble();
|
|
|
|
doubles_b[i] = r.nextDouble();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fAdd(Blackhole bh) {
|
|
|
|
float sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += fAddBench(floats_a[i], floats_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fMul(Blackhole bh) {
|
|
|
|
float sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += fMulBench(floats_a[i], floats_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fMax(Blackhole bh) {
|
|
|
|
float sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += fMaxBench(floats_a[i], floats_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fMin(Blackhole bh) {
|
|
|
|
float sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += fMinBench(floats_a[i], floats_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fAddBench(float a, float b) {
|
|
|
|
return Math.max(a, b) + Math.min(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fMulBench(float a, float b) {
|
|
|
|
return Math.max(a, b) * Math.min(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fMaxBench(float a, float b) {
|
|
|
|
return Math.max(Math.max(a, b), Math.min(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fMinBench(float a, float b) {
|
|
|
|
return Math.min(Math.max(a, b), Math.min(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dAdd(Blackhole bh) {
|
|
|
|
double sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += dAddBench(doubles_a[i], doubles_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dMul(Blackhole bh) {
|
|
|
|
double sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += dMulBench(doubles_a[i], doubles_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dMax(Blackhole bh) {
|
|
|
|
double sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += dMaxBench(doubles_a[i], doubles_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dMin(Blackhole bh) {
|
|
|
|
double sum = 0;
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
sum += dMinBench(doubles_a[i], doubles_b[i]);
|
|
|
|
bh.consume(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dAddBench(double a, double b) {
|
|
|
|
return Math.max(a, b) + Math.min(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dMulBench(double a, double b) {
|
|
|
|
return Math.max(a, b) * Math.min(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dMaxBench(double a, double b) {
|
|
|
|
return Math.max(Math.max(a, b), Math.min(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dMinBench(double a, double b) {
|
|
|
|
return Math.min(Math.max(a, b), Math.min(a, b));
|
|
|
|
}
|
|
|
|
}
|