223 lines
7.5 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class AdjoiningGenerations;
class GCTaskManager;
class PSAdaptiveSizePolicy;
class ParallelScavengeHeap : public CollectedHeap {
friend class VMStructs;
private:
static PSYoungGen* _young_gen;
static PSOldGen* _old_gen;
static PSPermGen* _perm_gen;
// Sizing policy for entire heap
static PSAdaptiveSizePolicy* _size_policy;
static PSGCAdaptivePolicyCounters* _gc_policy_counters;
static ParallelScavengeHeap* _psh;
size_t _perm_gen_alignment;
size_t _young_gen_alignment;
size_t _old_gen_alignment;
inline size_t set_alignment(size_t& var, size_t val);
// Collection of generations that are adjacent in the
// space reserved for the heap.
AdjoiningGenerations* _gens;
static GCTaskManager* _gc_task_manager; // The task manager.
protected:
static inline size_t total_invocations();
HeapWord* allocate_new_tlab(size_t size);
void fill_all_tlabs(bool retire);
public:
ParallelScavengeHeap() : CollectedHeap() {
set_alignment(_perm_gen_alignment, intra_generation_alignment());
set_alignment(_young_gen_alignment, intra_generation_alignment());
set_alignment(_old_gen_alignment, intra_generation_alignment());
}
// For use by VM operations
enum CollectionType {
Scavenge,
MarkSweep
};
ParallelScavengeHeap::Name kind() const {
return CollectedHeap::ParallelScavengeHeap;
}
static PSYoungGen* young_gen() { return _young_gen; }
static PSOldGen* old_gen() { return _old_gen; }
static PSPermGen* perm_gen() { return _perm_gen; }
virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
static ParallelScavengeHeap* heap();
static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
AdjoiningGenerations* gens() { return _gens; }
// Returns JNI_OK on success
virtual jint initialize();
void post_initialize();
void update_counters();
// The alignment used for the various generations.
size_t perm_gen_alignment() const { return _perm_gen_alignment; }
size_t young_gen_alignment() const { return _young_gen_alignment; }
size_t old_gen_alignment() const { return _old_gen_alignment; }
// The alignment used for eden and survivors within the young gen.
size_t intra_generation_alignment() const { return 64 * K; }
size_t capacity() const;
size_t used() const;
// Return "true" if all generations (but perm) have reached the
// maximal committed limit that they can reach, without a garbage
// collection.
virtual bool is_maximal_no_gc() const;
// Does this heap support heap inspection? (+PrintClassHistogram)
bool supports_heap_inspection() const { return true; }
size_t permanent_capacity() const;
size_t permanent_used() const;
size_t max_capacity() const;
// Whether p is in the allocated part of the heap
bool is_in(const void* p) const;
bool is_in_reserved(const void* p) const;
bool is_in_permanent(const void *p) const { // reserved part
return perm_gen()->reserved().contains(p);
}
bool is_permanent(const void *p) const { // committed part
return perm_gen()->is_in(p);
}
static bool is_in_young(oop *p); // reserved part
static bool is_in_old_or_perm(oop *p); // reserved part
// Memory allocation. "gc_time_limit_was_exceeded" will
// be set to true if the adaptive size policy determine that
// an excessive amount of time is being spent doing collections
// and caused a NULL to be returned. If a NULL is not returned,
// "gc_time_limit_was_exceeded" has an undefined meaning.
HeapWord* mem_allocate(size_t size,
bool is_noref,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
HeapWord* failed_mem_allocate(size_t size, bool is_tlab);
HeapWord* permanent_mem_allocate(size_t size);
HeapWord* failed_permanent_mem_allocate(size_t size);
// Support for System.gc()
void collect(GCCause::Cause cause);
// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
void collect_as_vm_thread(GCCause::Cause cause);
// These also should be called by the vm thread at a safepoint (e.g., from a
// VM operation).
//
// The first collects the young generation only, unless the scavenge fails; it
// will then attempt a full gc. The second collects the entire heap; if
// maximum_compaction is true, it will compact everything and clear all soft
// references.
inline void invoke_scavenge();
inline void invoke_full_gc(bool maximum_compaction);
size_t large_typearray_limit() { return FastAllocateSizeLimit; }
bool supports_inline_contig_alloc() const { return !UseNUMA; }
HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : NULL; }
HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : NULL; }
void ensure_parsability(bool retire_tlabs);
void accumulate_statistics_all_tlabs();
void resize_all_tlabs();
size_t unsafe_max_alloc();
bool supports_tlab_allocation() const { return true; }
size_t tlab_capacity(Thread* thr) const;
size_t unsafe_max_tlab_alloc(Thread* thr) const;
void oop_iterate(OopClosure* cl);
void object_iterate(ObjectClosure* cl);
void permanent_oop_iterate(OopClosure* cl);
void permanent_object_iterate(ObjectClosure* cl);
HeapWord* block_start(const void* addr) const;
size_t block_size(const HeapWord* addr) const;
bool block_is_obj(const HeapWord* addr) const;
jlong millis_since_last_gc();
void prepare_for_verify();
void print() const;
void print_on(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;
void verify(bool allow_dirty, bool silent);
void print_heap_change(size_t prev_used);
// Resize the young generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_young_gen(size_t eden_size, size_t survivor_size);
// Resize the old generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_old_gen(size_t desired_free_space);
};
inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val)
{
assert(is_power_of_2((intptr_t)val), "must be a power of 2");
var = round_to(val, intra_generation_alignment());
return var;
}