jdk-24/test/hotspot/jtreg/compiler/c2/TestMergeStoresMemorySegment.java

427 lines
17 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.c2;
import compiler.lib.ir_framework.*;
import jdk.test.lib.Utils;
import java.nio.ByteBuffer;
import java.util.Map;
import java.util.HashMap;
import java.util.Random;
import java.lang.foreign.*;
/*
* @test id=byte-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment ByteArray
*/
/*
* @test id=char-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment CharArray
*/
/*
* @test id=short-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment ShortArray
*/
/*
* @test id=int-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment IntArray
*/
/*
* @test id=long-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment LongArray
*/
/*
* @test id=float-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment FloatArray
*/
/*
* @test id=double-array
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment DoubleArray
*/
/*
* @test id=byte-buffer
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment ByteBuffer
*/
/*
* @test id=byte-buffer-direct
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment ByteBufferDirect
*/
/*
* @test id=native
* @bug 8335392
* @summary Test MergeStores optimization for MemorySegment
* @library /test/lib /
* @run driver compiler.c2.TestMergeStoresMemorySegment Native
*/
// FAILS: mixed providers currently do not merge stores. Maybe there is some inlining issue.
// /*
// * @test id=mixed-array
// * @bug 8335392
// * @summary Test MergeStores optimization for MemorySegment
// * @library /test/lib /
// * @run driver compiler.c2.TestMergeStoresMemorySegment MixedArray
// */
//
// /*
// * @test id=MixedBuffer
// * @bug 8335392
// * @summary Test MergeStores optimization for MemorySegment
// * @library /test/lib /
// * @run driver compiler.c2.TestMergeStoresMemorySegment MixedBuffer
// */
//
// /*
// * @test id=mixed
// * @bug 8335392
// * @summary Test MergeStores optimization for MemorySegment
// * @library /test/lib /
// * @run driver compiler.c2.TestMergeStoresMemorySegment Mixed
// */
public class TestMergeStoresMemorySegment {
public static void main(String[] args) {
for (String unaligned : new String[]{"-XX:-UseUnalignedAccesses", "-XX:+UseUnalignedAccesses"}) {
TestFramework framework = new TestFramework(TestMergeStoresMemorySegmentImpl.class);
framework.addFlags("-DmemorySegmentProviderNameForTestVM=" + args[0], unaligned);
framework.start();
}
}
}
class TestMergeStoresMemorySegmentImpl {
static final int BACKING_SIZE = 1024 * 8;
static final Random RANDOM = Utils.getRandomInstance();
private static final String START = "(\\d+(\\s){2}(";
private static final String MID = ".*)+(\\s){2}===.*";
private static final String END = ")";
// Custom Regex: allows us to only match Store that come from MemorySegment internals.
private static final String REGEX_STORE_B_TO_MS_FROM_B = START + "StoreB" + MID + END + "ScopedMemoryAccess::putByteInternal";
private static final String REGEX_STORE_C_TO_MS_FROM_B = START + "StoreC" + MID + END + "ScopedMemoryAccess::putByteInternal";
private static final String REGEX_STORE_I_TO_MS_FROM_B = START + "StoreI" + MID + END + "ScopedMemoryAccess::putByteInternal";
private static final String REGEX_STORE_L_TO_MS_FROM_B = START + "StoreL" + MID + END + "ScopedMemoryAccess::putByteInternal";
interface TestFunction {
Object[] run();
}
interface MemorySegmentProvider {
MemorySegment newMemorySegment();
}
static MemorySegmentProvider provider;
static {
String providerName = System.getProperty("memorySegmentProviderNameForTestVM");
provider = switch (providerName) {
case "ByteArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfByteArray;
case "CharArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfCharArray;
case "ShortArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfShortArray;
case "IntArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfIntArray;
case "LongArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfLongArray;
case "FloatArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfFloatArray;
case "DoubleArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfDoubleArray;
case "ByteBuffer" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfByteBuffer;
case "ByteBufferDirect" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfByteBufferDirect;
case "Native" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfNative;
case "MixedArray" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfMixedArray;
case "MixedBuffer" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfMixedBuffer;
case "Mixed" -> TestMergeStoresMemorySegmentImpl::newMemorySegmentOfMixed;
default -> throw new RuntimeException("Test argument not recognized: " + providerName);
};
}
// List of tests
Map<String, TestFunction> tests = new HashMap<>();
// List of golden values, the results from the first run before compilation
Map<String, Object[]> golds = new HashMap<>();
public TestMergeStoresMemorySegmentImpl () {
// Generate two MemorySegments as inputs
MemorySegment a = newMemorySegment();
MemorySegment b = newMemorySegment();
fillRandom(a);
fillRandom(b);
// Future Work: add more test cases. For now, the issue seems to be that
// RangeCheck smearing does not remove the RangeChecks, thus
// we can only ever merge two stores.
//
// Ideas for more test cases, once they are better optimized:
//
// Have about 3 variables, each either int or long. Add all in int or
// long. Give them different scales. Compute the address in the same
// expression or separately. Use different element store sizes (BCIL).
//
tests.put("test_xxx", () -> test_xxx(copy(a), 5, 11, 31));
tests.put("test_yyy", () -> test_yyy(copy(a), 5, 11, 31));
tests.put("test_zzz", () -> test_zzz(copy(a), 5, 11, 31));
// Compute gold value for all test methods before compilation
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
Object[] gold = test.run();
golds.put(name, gold);
}
}
MemorySegment newMemorySegment() {
return provider.newMemorySegment();
}
MemorySegment copy(MemorySegment src) {
MemorySegment dst = newMemorySegment();
MemorySegment.copy(src, 0, dst, 0, src.byteSize());
return dst;
}
static MemorySegment newMemorySegmentOfByteArray() {
return MemorySegment.ofArray(new byte[BACKING_SIZE]);
}
static MemorySegment newMemorySegmentOfCharArray() {
return MemorySegment.ofArray(new char[BACKING_SIZE / 2]);
}
static MemorySegment newMemorySegmentOfShortArray() {
return MemorySegment.ofArray(new short[BACKING_SIZE / 2]);
}
static MemorySegment newMemorySegmentOfIntArray() {
return MemorySegment.ofArray(new int[BACKING_SIZE / 4]);
}
static MemorySegment newMemorySegmentOfLongArray() {
return MemorySegment.ofArray(new long[BACKING_SIZE / 8]);
}
static MemorySegment newMemorySegmentOfFloatArray() {
return MemorySegment.ofArray(new float[BACKING_SIZE / 4]);
}
static MemorySegment newMemorySegmentOfDoubleArray() {
return MemorySegment.ofArray(new double[BACKING_SIZE / 8]);
}
static MemorySegment newMemorySegmentOfByteBuffer() {
return MemorySegment.ofBuffer(ByteBuffer.allocate(BACKING_SIZE));
}
static MemorySegment newMemorySegmentOfByteBufferDirect() {
return MemorySegment.ofBuffer(ByteBuffer.allocateDirect(BACKING_SIZE));
}
static MemorySegment newMemorySegmentOfNative() {
// Auto arena: GC decides when there is no reference to the MemorySegment,
// and then it deallocates the backing memory.
return Arena.ofAuto().allocate(BACKING_SIZE, 1);
}
static MemorySegment newMemorySegmentOfMixedArray() {
switch(RANDOM.nextInt(7)) {
case 0 -> { return newMemorySegmentOfByteArray(); }
case 1 -> { return newMemorySegmentOfCharArray(); }
case 2 -> { return newMemorySegmentOfShortArray(); }
case 3 -> { return newMemorySegmentOfIntArray(); }
case 4 -> { return newMemorySegmentOfLongArray(); }
case 5 -> { return newMemorySegmentOfFloatArray(); }
default -> { return newMemorySegmentOfDoubleArray(); }
}
}
static MemorySegment newMemorySegmentOfMixedBuffer() {
switch (RANDOM.nextInt(2)) {
case 0 -> { return newMemorySegmentOfByteBuffer(); }
default -> { return newMemorySegmentOfByteBufferDirect(); }
}
}
static MemorySegment newMemorySegmentOfMixed() {
switch (RANDOM.nextInt(3)) {
case 0 -> { return newMemorySegmentOfMixedArray(); }
case 1 -> { return newMemorySegmentOfMixedBuffer(); }
default -> { return newMemorySegmentOfNative(); }
}
}
static void fillRandom(MemorySegment data) {
for (int i = 0; i < (int)data.byteSize(); i += 8) {
data.set(ValueLayout.JAVA_LONG_UNALIGNED, i, RANDOM.nextLong());
}
}
static void verify(String name, Object[] gold, Object[] result) {
if (gold.length != result.length) {
throw new RuntimeException("verify " + name + ": not the same number of outputs: gold.length = " +
gold.length + ", result.length = " + result.length);
}
for (int i = 0; i < gold.length; i++) {
Object g = gold[i];
Object r = result[i];
if (g == r) {
throw new RuntimeException("verify " + name + ": should be two separate objects (with identical content):" +
" gold[" + i + "] == result[" + i + "]");
}
if (!(g instanceof MemorySegment && r instanceof MemorySegment)) {
throw new RuntimeException("verify " + name + ": only MemorySegment supported, i=" + i);
}
MemorySegment mg = (MemorySegment)g;
MemorySegment mr = (MemorySegment)r;
if (mg.byteSize() != mr.byteSize()) {
throw new RuntimeException("verify " + name + ": MemorySegment must have same byteSize:" +
" gold[" + i + "].byteSize = " + mg.byteSize() +
" result[" + i + "].byteSize = " + mr.byteSize());
}
for (int j = 0; j < (int)mg.byteSize(); j++) {
byte vg = mg.get(ValueLayout.JAVA_BYTE, j);
byte vr = mr.get(ValueLayout.JAVA_BYTE, j);
if (vg != vr) {
throw new RuntimeException("verify " + name + ": MemorySegment must have same content:" +
" gold[" + i + "][" + j + "] = " + vg +
" result[" + i + "][" + j + "] = " + vr);
}
}
}
}
@Run(test = { "test_xxx", "test_yyy", "test_zzz" })
void runTests() {
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
// Recall gold value from before compilation
Object[] gold = golds.get(name);
// Compute new result
Object[] result = test.run();
// Compare gold and new result
verify(name, gold, result);
}
}
@Test
@IR(counts = {REGEX_STORE_B_TO_MS_FROM_B, "<=5", // 4x RC
REGEX_STORE_C_TO_MS_FROM_B, ">=3", // 4x merged
REGEX_STORE_I_TO_MS_FROM_B, "0",
REGEX_STORE_L_TO_MS_FROM_B, "0"},
phase = CompilePhase.PRINT_IDEAL,
applyIf = {"UseUnalignedAccesses", "true"})
static Object[] test_xxx(MemorySegment a, int xI, int yI, int zI) {
// All RangeChecks remain -> RC smearing not good enough?
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 0), (byte)'h');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 1), (byte)'e');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 2), (byte)'l');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 3), (byte)'l');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 4), (byte)'o');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 5), (byte)' ');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 6), (byte)':');
a.set(ValueLayout.JAVA_BYTE, (long)(xI + yI + zI + 7), (byte)')');
return new Object[]{ a };
}
@Test
@IR(counts = {REGEX_STORE_B_TO_MS_FROM_B, "<=5", // 4x RC
REGEX_STORE_C_TO_MS_FROM_B, ">=3", // 4x merged
REGEX_STORE_I_TO_MS_FROM_B, "0",
REGEX_STORE_L_TO_MS_FROM_B, "0"},
phase = CompilePhase.PRINT_IDEAL,
applyIf = {"UseUnalignedAccesses", "true"})
static Object[] test_yyy(MemorySegment a, int xI, int yI, int zI) {
// All RangeChecks remain -> RC smearing not good enough?
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 0L, (byte)'h');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 1L, (byte)'e');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 2L, (byte)'l');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 3L, (byte)'l');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 4L, (byte)'o');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 5L, (byte)' ');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 6L, (byte)':');
a.set(ValueLayout.JAVA_BYTE, (long)(xI) + (long)(yI) + (long)(zI) + 7L, (byte)')');
return new Object[]{ a };
}
@Test
@IR(counts = {REGEX_STORE_B_TO_MS_FROM_B, "<=5", // 4x RC
REGEX_STORE_C_TO_MS_FROM_B, ">=3", // 4x merged
REGEX_STORE_I_TO_MS_FROM_B, "0",
REGEX_STORE_L_TO_MS_FROM_B, "0"},
phase = CompilePhase.PRINT_IDEAL,
applyIf = {"UseUnalignedAccesses", "true"})
static Object[] test_zzz(MemorySegment a, long xL, long yL, long zL) {
// All RangeChecks remain -> RC smearing not good enough?
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 0L, (byte)'h');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 1L, (byte)'e');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 2L, (byte)'l');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 3L, (byte)'l');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 4L, (byte)'o');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 5L, (byte)' ');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 6L, (byte)':');
a.set(ValueLayout.JAVA_BYTE, xL + yL + zL + 7L, (byte)')');
return new Object[]{ a };
}
}