jdk-24/test/micro/org/openjdk/bench/vm/compiler/FpMinMaxIntrinsics.java

174 lines
4.6 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2019, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.vm.compiler;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.*;
import java.util.concurrent.TimeUnit;
import java.util.Random;
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
@Warmup(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3)
public class FpMinMaxIntrinsics {
private static final int COUNT = 1000;
private double[] doubles = new double[COUNT];
private float[] floats = new float[COUNT];
private int c1, c2, s1, s2;
private Random r = new Random();
private static int stride = 1;
private static float acc;
@Setup
public void init() {
c1 = s1 = step();
c2 = COUNT - (s2 = step());
for (int i=0; i<COUNT; i++) {
floats[i] = r.nextFloat();
doubles[i] = r.nextDouble();
}
}
private int step() {
return (r.nextInt() & 0xf) + 1;
}
@Benchmark
public void dMax(Blackhole bh) {
for (int i=0; i<COUNT; i++)
bh.consume(dMaxBench());
}
@Benchmark
public void dMin(Blackhole bh) {
for (int i=0; i<COUNT; i++)
bh.consume(dMinBench());
}
@Benchmark
public void fMax(Blackhole bh) {
for (int i=0; i<COUNT; i++)
bh.consume(fMaxBench());
}
@Benchmark
public void fMin(Blackhole bh) {
for (int i=0; i<COUNT; i++)
bh.consume(fMinBench());
}
private double dMaxBench() {
inc();
return Math.max(doubles[c1], doubles[c2]);
}
private double dMinBench() {
inc();
return Math.min(doubles[c1], doubles[c2]);
}
private float fMaxBench() {
inc();
return Math.max(floats[c1], floats[c2]);
}
private float fMinBench() {
inc();
return Math.min(floats[c1], floats[c2]);
}
private void inc() {
c1 = c1 + s1 < COUNT ? c1 + s1 : (s1 = step());
c2 = c2 - s2 > 0 ? c2 - s2 : COUNT - (s2 = step());
}
@Benchmark
public float fMinReduce() {
float result = Float.MAX_VALUE;
for (int i=0; i<COUNT; i++)
result = Math.min(result, floats[i]);
return result;
}
@Benchmark
public double dMinReduce() {
double result = Double.MAX_VALUE;
for (int i=0; i<COUNT; i++)
result = Math.min(result, doubles[i]);
return result;
}
@Benchmark
public float fMinReducePartiallyUnrolled() {
float result = Float.MAX_VALUE;
for (int i = 0; i < COUNT / 2; i++) {
result = Math.min(result, floats[2*i]);
result = Math.min(result, floats[2*i + 1]);
}
return result;
}
@Benchmark
public float fMinReduceNonCounted() {
float result = Float.MAX_VALUE;
for (int i = 0; i < COUNT; i += stride)
result = Math.min(result, floats[i]);
return result;
}
@Benchmark
public float fMinReduceGlobalAccumulator() {
acc = Float.MAX_VALUE;
for (int i = 0; i < COUNT; i += stride)
acc = Math.min(acc, floats[i]);
return acc;
}
@Benchmark
public float fMinReduceInOuterLoop() {
float result = Float.MAX_VALUE;
int count = 0;
for (int i = 0; i < COUNT; i++) {
result = Math.min(result, floats[i]);
for (int j = 0; j < 10; j += stride) {
count++;
}
}
return result + count;
}
}