2019-03-07 14:27:42 +00:00
|
|
|
/*
|
2023-04-27 09:39:53 +00:00
|
|
|
* Copyright (c) 2019, 2023, Oracle and/or its affiliates. All rights reserved.
|
2019-03-07 14:27:42 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*/
|
|
|
|
package org.openjdk.bench.vm.compiler;
|
|
|
|
|
|
|
|
import org.openjdk.jmh.annotations.*;
|
|
|
|
import org.openjdk.jmh.infra.*;
|
|
|
|
|
|
|
|
import java.util.concurrent.TimeUnit;
|
|
|
|
import java.util.Random;
|
|
|
|
|
|
|
|
@BenchmarkMode(Mode.AverageTime)
|
|
|
|
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
|
|
|
@State(Scope.Thread)
|
2022-08-03 18:01:26 +00:00
|
|
|
@Warmup(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
|
|
|
|
@Measurement(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
|
|
|
|
@Fork(value = 3)
|
2019-03-07 14:27:42 +00:00
|
|
|
public class FpMinMaxIntrinsics {
|
|
|
|
private static final int COUNT = 1000;
|
|
|
|
|
|
|
|
private double[] doubles = new double[COUNT];
|
|
|
|
private float[] floats = new float[COUNT];
|
|
|
|
|
|
|
|
private int c1, c2, s1, s2;
|
|
|
|
|
|
|
|
private Random r = new Random();
|
|
|
|
|
2023-04-27 09:39:53 +00:00
|
|
|
private static int stride = 1;
|
|
|
|
private static float acc;
|
|
|
|
|
2019-03-07 14:27:42 +00:00
|
|
|
@Setup
|
|
|
|
public void init() {
|
|
|
|
c1 = s1 = step();
|
|
|
|
c2 = COUNT - (s2 = step());
|
|
|
|
|
|
|
|
for (int i=0; i<COUNT; i++) {
|
|
|
|
floats[i] = r.nextFloat();
|
|
|
|
doubles[i] = r.nextDouble();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private int step() {
|
|
|
|
return (r.nextInt() & 0xf) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dMax(Blackhole bh) {
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
bh.consume(dMaxBench());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void dMin(Blackhole bh) {
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
bh.consume(dMinBench());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fMax(Blackhole bh) {
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
bh.consume(fMaxBench());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public void fMin(Blackhole bh) {
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
bh.consume(fMinBench());
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dMaxBench() {
|
|
|
|
inc();
|
|
|
|
return Math.max(doubles[c1], doubles[c2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
private double dMinBench() {
|
|
|
|
inc();
|
|
|
|
return Math.min(doubles[c1], doubles[c2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fMaxBench() {
|
|
|
|
inc();
|
|
|
|
return Math.max(floats[c1], floats[c2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
private float fMinBench() {
|
|
|
|
inc();
|
|
|
|
return Math.min(floats[c1], floats[c2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
private void inc() {
|
|
|
|
c1 = c1 + s1 < COUNT ? c1 + s1 : (s1 = step());
|
|
|
|
c2 = c2 - s2 > 0 ? c2 - s2 : COUNT - (s2 = step());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public float fMinReduce() {
|
|
|
|
float result = Float.MAX_VALUE;
|
|
|
|
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
result = Math.min(result, floats[i]);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public double dMinReduce() {
|
|
|
|
double result = Double.MAX_VALUE;
|
|
|
|
|
|
|
|
for (int i=0; i<COUNT; i++)
|
|
|
|
result = Math.min(result, doubles[i]);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
2023-04-27 09:39:53 +00:00
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public float fMinReducePartiallyUnrolled() {
|
|
|
|
float result = Float.MAX_VALUE;
|
|
|
|
for (int i = 0; i < COUNT / 2; i++) {
|
|
|
|
result = Math.min(result, floats[2*i]);
|
|
|
|
result = Math.min(result, floats[2*i + 1]);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public float fMinReduceNonCounted() {
|
|
|
|
float result = Float.MAX_VALUE;
|
|
|
|
for (int i = 0; i < COUNT; i += stride)
|
|
|
|
result = Math.min(result, floats[i]);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public float fMinReduceGlobalAccumulator() {
|
|
|
|
acc = Float.MAX_VALUE;
|
|
|
|
for (int i = 0; i < COUNT; i += stride)
|
|
|
|
acc = Math.min(acc, floats[i]);
|
|
|
|
return acc;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Benchmark
|
|
|
|
public float fMinReduceInOuterLoop() {
|
|
|
|
float result = Float.MAX_VALUE;
|
|
|
|
int count = 0;
|
|
|
|
for (int i = 0; i < COUNT; i++) {
|
|
|
|
result = Math.min(result, floats[i]);
|
|
|
|
for (int j = 0; j < 10; j += stride) {
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result + count;
|
|
|
|
}
|
|
|
|
|
2019-03-07 14:27:42 +00:00
|
|
|
}
|