312 lines
9.9 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/hashtable.inline.hpp"
2007-12-01 00:00:00 +00:00
2007-12-01 00:00:00 +00:00
// This is a generic hashtable, designed to be used for the symbol
// and string tables.
//
// It is implemented as an open hash table with a fixed number of buckets.
//
// %note:
// - HashtableEntrys are allocated in blocks to reduce the space overhead.
template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
BasicHashtableEntry<F>* entry;
2007-12-01 00:00:00 +00:00
if (_free_list) {
entry = _free_list;
_free_list = _free_list->next();
} else {
if (_first_free_entry + _entry_size >= _end_block) {
int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
2007-12-01 00:00:00 +00:00
int len = _entry_size * block_size;
len = 1 << log2_intptr(len); // round down to power of 2
assert(len >= _entry_size, "");
_first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
2007-12-01 00:00:00 +00:00
_end_block = _first_free_entry + len;
}
entry = (BasicHashtableEntry<F>*)_first_free_entry;
2007-12-01 00:00:00 +00:00
_first_free_entry += _entry_size;
}
assert(_entry_size % HeapWordSize == 0, "");
2007-12-01 00:00:00 +00:00
entry->set_hash(hashValue);
return entry;
}
template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
HashtableEntry<T, F>* entry;
2007-12-01 00:00:00 +00:00
entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
entry->set_literal(obj);
2007-12-01 00:00:00 +00:00
return entry;
}
// Check to see if the hashtable is unbalanced. The caller set a flag to
// rehash at the next safepoint. If this bucket is 60 times greater than the
// expected average bucket length, it's an unbalanced hashtable.
// This is somewhat an arbitrary heuristic but if one bucket gets to
// rehash_count which is currently 100, there's probably something wrong.
template <MEMFLAGS F> bool BasicHashtable<F>::check_rehash_table(int count) {
assert(table_size() != 0, "underflow");
if (count > (((double)number_of_entries()/(double)table_size())*rehash_multiple)) {
// Set a flag for the next safepoint, which should be at some guaranteed
// safepoint interval.
return true;
}
return false;
}
// Create a new table and using alternate hash code, populate the new table
// with the existing elements. This can be used to change the hash code
// and could in the future change the size of the table.
template <class T, MEMFLAGS F> void Hashtable<T, F>::move_to(Hashtable<T, F>* new_table) {
int saved_entry_count = BasicHashtable<F>::number_of_entries();
// Iterate through the table and create a new entry for the new table
for (int i = 0; i < new_table->table_size(); ++i) {
for (HashtableEntry<T, F>* p = bucket(i); p != NULL; ) {
HashtableEntry<T, F>* next = p->next();
T string = p->literal();
// Use alternate hashing algorithm on the symbol in the first table
unsigned int hashValue = new_hash(string);
// Get a new index relative to the new table (can also change size)
int index = new_table->hash_to_index(hashValue);
p->set_hash(hashValue);
// Keep the shared bit in the Hashtable entry to indicate that this entry
// can't be deleted. The shared bit is the LSB in the _next field so
// walking the hashtable past these entries requires
// BasicHashtableEntry::make_ptr() call.
bool keep_shared = p->is_shared();
unlink_entry(p);
new_table->add_entry(index, p);
if (keep_shared) {
p->set_shared();
}
p = next;
}
}
// give the new table the free list as well
new_table->copy_freelist(this);
assert(new_table->number_of_entries() == saved_entry_count, "lost entry on dictionary copy?");
// Destroy memory used by the buckets in the hashtable. The memory
// for the elements has been used in a new table and is not
// destroyed. The memory reuse will benefit resizing the SystemDictionary
// to avoid a memory allocation spike at safepoint.
BasicHashtable<F>::free_buckets();
}
template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
if (NULL != _buckets) {
// Don't delete the buckets in the shared space. They aren't
// allocated by os::malloc
if (!UseSharedSpaces ||
!FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
FREE_C_HEAP_ARRAY(HashtableBucket, _buckets, F);
}
_buckets = NULL;
}
}
2007-12-01 00:00:00 +00:00
// Reverse the order of elements in the hash buckets.
template <MEMFLAGS F> void BasicHashtable<F>::reverse() {
2007-12-01 00:00:00 +00:00
for (int i = 0; i < _table_size; ++i) {
BasicHashtableEntry<F>* new_list = NULL;
BasicHashtableEntry<F>* p = bucket(i);
2007-12-01 00:00:00 +00:00
while (p != NULL) {
BasicHashtableEntry<F>* next = p->next();
2007-12-01 00:00:00 +00:00
p->set_next(new_list);
new_list = p;
p = next;
}
*bucket_addr(i) = new_list;
}
}
// Copy the table to the shared space.
template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {
2007-12-01 00:00:00 +00:00
// Dump the hash table entries.
intptr_t *plen = (intptr_t*)(*top);
*top += sizeof(*plen);
int i;
for (i = 0; i < _table_size; ++i) {
for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
2007-12-01 00:00:00 +00:00
*p != NULL;
p = (*p)->next_addr()) {
if (*top + entry_size() > end) {
report_out_of_shared_space(SharedMiscData);
2007-12-01 00:00:00 +00:00
}
*p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
2007-12-01 00:00:00 +00:00
*top += entry_size();
}
}
*plen = (char*)(*top) - (char*)plen - sizeof(*plen);
// Set the shared bit.
for (i = 0; i < _table_size; ++i) {
for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
2007-12-01 00:00:00 +00:00
p->set_shared();
}
}
}
// Reverse the order of elements in the hash buckets.
template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {
2007-12-01 00:00:00 +00:00
for (int i = 0; i < this->table_size(); ++i) {
HashtableEntry<T, F>* high_list = NULL;
HashtableEntry<T, F>* low_list = NULL;
HashtableEntry<T, F>* last_low_entry = NULL;
HashtableEntry<T, F>* p = bucket(i);
2007-12-01 00:00:00 +00:00
while (p != NULL) {
HashtableEntry<T, F>* next = p->next();
2007-12-01 00:00:00 +00:00
if ((void*)p->literal() >= boundary) {
p->set_next(high_list);
high_list = p;
} else {
p->set_next(low_list);
low_list = p;
if (last_low_entry == NULL) {
last_low_entry = p;
}
}
p = next;
}
if (low_list != NULL) {
*bucket_addr(i) = low_list;
last_low_entry->set_next(high_list);
} else {
*bucket_addr(i) = high_list;
}
}
}
// Dump the hash table buckets.
template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
intptr_t len = _table_size * sizeof(HashtableBucket<F>);
2007-12-01 00:00:00 +00:00
*(intptr_t*)(*top) = len;
*top += sizeof(intptr_t);
*(intptr_t*)(*top) = _number_of_entries;
*top += sizeof(intptr_t);
if (*top + len > end) {
report_out_of_shared_space(SharedMiscData);
2007-12-01 00:00:00 +00:00
}
_buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
2007-12-01 00:00:00 +00:00
*top += len;
}
#ifndef PRODUCT
template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
2007-12-01 00:00:00 +00:00
ResourceMark rm;
for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
HashtableEntry<T, F>* entry = bucket(i);
2007-12-01 00:00:00 +00:00
while(entry != NULL) {
tty->print("%d : ", i);
entry->literal()->print();
tty->cr();
entry = entry->next();
}
}
}
template <MEMFLAGS F> void BasicHashtable<F>::verify() {
2007-12-01 00:00:00 +00:00
int count = 0;
for (int i = 0; i < table_size(); i++) {
for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
2007-12-01 00:00:00 +00:00
++count;
}
}
assert(count == number_of_entries(), "number of hashtable entries incorrect");
}
#endif // PRODUCT
#ifdef ASSERT
template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
2007-12-01 00:00:00 +00:00
if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
warning("Performance bug: SystemDictionary lookup_count=%d "
"lookup_length=%d average=%lf load=%f",
_lookup_count, _lookup_length,
(double) _lookup_length / _lookup_count, load);
}
}
#endif
// Explicitly instantiate these types
template class Hashtable<constantPoolOop, mtClass>;
template class Hashtable<Symbol*, mtSymbol>;
template class Hashtable<klassOop, mtClass>;
template class Hashtable<oop, mtClass>;
#ifdef SOLARIS
template class Hashtable<oop, mtSymbol>;
#endif
template class Hashtable<oopDesc*, mtSymbol>;
template class Hashtable<Symbol*, mtClass>;
template class HashtableEntry<Symbol*, mtSymbol>;
template class HashtableEntry<Symbol*, mtClass>;
template class HashtableEntry<oop, mtSymbol>;
template class BasicHashtableEntry<mtSymbol>;
template class BasicHashtableEntry<mtCode>;
template class BasicHashtable<mtClass>;
template class BasicHashtable<mtSymbol>;
template class BasicHashtable<mtCode>;
template class BasicHashtable<mtInternal>;