810 lines
30 KiB
Java
Raw Normal View History

/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @key stress
*
* @summary converted from VM testbase nsk/stress/numeric/numeric010.
* VM testbase keywords: [stress, slow, nonconcurrent, quick]
* VM testbase readme:
* DESCRIPTION
* This test calculates the product A*A for a square matrix A, and checks
* if such product is calculated correctly. Elements of the matrix A are
* initiated with integer numbers, so that A*A must be the same if calculated
* with double, float, long, or int precision. The test just checks, if
* double, float, long, and int variants of the product calculation result
* in the same A*A matrix.
* The product A*A is calculated twice: in a single thread, and in N separate
* threads, where NxN is the size of square matrix A. When executing in N
* threads, each thread calculate distinct row of the resulting matrix.
* HotSpot releases 1.0 and 1.3 seem to do not adjust JVM for better
* performance in single-thread calculation, while milti-threads calculation
* usually runs much faster. I guess, that the 1-thread calculation is probably
* executed by HotSpot interpreter, and HotSpot compiler is probably involved
* to execute N-threads calculation. So, the test apparently checks accuracy
* of A*A calculation in both compilation and interpretation modes.
* By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if single-thread calculation is essentially
* slower than N-threads calculation (surely, the number of CPUs installed
* on the platform executing the test is taken into account for performance
* testing). The calculation algorithm is encoded with 3-levels cycle like:
* for (int line=0; line<N; line++)
* for (int column=0; column<N; column++) {
* float sum = 0;
* for (int k=0; k<N; k++)
* sum += A[line][k] A[k][column];
* AA[line][column] = sum;
* }
* In this test, N=200, so that A is 200x200 matrix; and multiplication
* A[line][k]*A[k][column] is executed 200**3=8 millions times in this
* cycle. I believe, that this is HotSpot bug to do not adjust JVM for
* best performance during such a huge series of executions of the rather
* compact portion of program code.
* COMMENTS
* The bug was filed referencing to the same numeric algorithm,
* which is used by this test:
* 4242172 (P3/S5) 2.0: poor performance in matrix calculations
* Note, that despite HotSpot works faster in milti-thread calculations,
* it still remains essentially slower than classic VM with JIT on.
*
* @run main/othervm nsk.stress.numeric.numeric010.numeric010 200 200
*/
package nsk.stress.numeric.numeric010;
import java.io.PrintStream;
/**
* This test calculates the product <code>A<sup>.</sup>A</code> for a square
* matrix <code>A</code>, and checks if such product is calculated correctly.
* Elements of the matrix <code>A</code> are initiated with integer numbers,
* so that <code>A<sup>.</sup>A</code> must be the same if calculated with
* <code>double</code>, <code>float</code>, <code>long</code>, or
* <code>int</code> precision. The test just checks, if <code>double</code>,
* <code>float</code>, <code>long</code>, and <code>int</code> variants of
* the product calculation result in the same <code>A<sup>.</sup>A</code>
* matrix.
* <p>
* <p>The product <code>A<sup>.</sup>A</code> is calculated twice: in a single
* thread, and in <code>N</code> separate threads, where <code>NxN</code> is
* the size of square matrix <code>A</code>. When executing in <code>N</code>
* threads, each thread calculate distinct row of the resulting matrix. HotSpot
* releases 1.0 and 1.3 seem to do not adjust JVM for better performance in
* single-thread calculation, while milti-threads calculation usually runs much
* faster. I guess, that the 1-thread calculation is probably executed by HotSpot
* interpreter, and HotSpot compiler is probably involved to execute
* <code>N</code>-threads calculation. So, the test apparently checks accuracy
* of <code>A<sup>.</sup>A</code> calculation in both compilation and
* interpretation modes.
* <p>
* <p>By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if single-thread calculation is essentially
* slower than <code>N</code>-threads calculation (surely, the number of CPUs
* installed on the platform executing the test is taken into account for
* performance testing). The calculation algorithm is encoded with 3-levels
* cycle like:
* <pre>
* for (int line=0; line&lt;N; line++)
* for (int column=0; column&lt;N; column++) {
* float sum = 0;
* for (int k=0; k&lt;N; k++)
* sum += A[line][k] * A[k][column];
* AA[line][column] = sum;
* }
* </pre>
* <p>
* In this test, <code>N</code>=200, so that <code>A</code> is 200x200 matrix;
* and multiplication <code>A[line][k]*A[k][column]</code> is executed
* 200<sup>3</sup>=8 millions times in this cycle. I believe, that this is HotSpot
* bug to do not adjust JVM for best performance during such a huge series of
* executions of the rather compact portion of program code.
* <p>
* <p>See the bug-report:
* <br>&nbsp;&nbsp;
* 4242172 (P3/S5) 2.0: poor performance in matrix calculations
*/
public class numeric010 {
/**
* When testing performance, 1-thread calculation is allowed to be 10%
* slower than multi-thread calculation (<code>tolerance</code> is
* assigned to 10 now).
*/
public static double tolerance = 100; // 10;
/**
* Re-assign this value to <code>true</code> for better diagnostics.
*
* @see #print(Object)
* @see #println(Object)
*/
private static boolean verbose = false;
/**
* Stream to print execution trace and/or error messages.
* This stream usually equals to <code>System.out</code>
*/
private static PrintStream out = null;
/**
* Print error-message.
*
* @see #out
*/
private static void complain(Object x) {
out.println("# " + x);
}
/**
* Print to execution trace, if mode is <code>verbose</code>.
*
* @see #verbose
* @see #out
*/
private static void print(Object x) {
if (verbose)
out.print(x);
}
/**
* Print line to execution trace, if mode is <code>verbose</code>.
*
* @see #verbose
* @see #out
*/
private static void println(Object x) {
print(x + "\n");
}
/**
* Re-invoke <code>run(args,out)</code> in order to simulate
* JCK-like test interface.
*/
public static void main(String args[]) {
int exitCode = run(args, System.out);
System.exit(exitCode + 95);
// JCK-like exit status
}
/**
* Parse command-line parameters stored in <code>args[]</code> and run
* the test.
* <p>
* <p>Command-line parameters are:
* <br>&nbsp;&nbsp;
* <code>java numeric010 [-verbose] [-performance]
* [-tolerance:<i>percents</i>] [-CPU:<i>number</i>]
* <i>matrixSize</i> [<i>threads</i>]</code>
* <p>
* <p>Here:
* <br>&nbsp;&nbsp;<code>-verbose</code> -
* keyword, which alows to print execution trace
* <br>&nbsp;&nbsp;<code>-performance</code> -
* keyword, which alows performance testing
* <br>&nbsp;&nbsp;<code>-tolerance</code> -
* setup tolerance of performance checking
* <br>&nbsp;&nbsp;<code><i>percents</i></code> -
* 1-thread calculation is allowed to be
* <code><i>percents</i></code>% slower
* <br>&nbsp;&nbsp;<code><i>number</i></code> -
* number of CPU installed on the computer just executing the test
* <br>&nbsp;&nbsp;<code><i>matrixSize</i></code> -
* number of rows (and columns) in square matrix to be tested
* <br>&nbsp;&nbsp;<code><i>threads</i></code> -
* for multi-thread calculation
* (default: <code><i>matrixSize</i></code>)
*
* @param args strings array containing command-line parameters
* @param out the test log, usually <code>System.out</code>
*/
public static int run(String args[], PrintStream out) {
numeric010.out = out;
boolean testPerformance = false;
int numberOfCPU = 1;
int argsShift = 0;
for (; argsShift < args.length; argsShift++) {
String argument = args[argsShift];
if (!argument.startsWith("-"))
break;
if (argument.equals("-performance")) {
testPerformance = true;
continue;
}
if (argument.equals("-verbose")) {
verbose = true;
continue;
}
if (argument.startsWith("-tolerance:")) {
String percents =
argument.substring("-tolerance:".length(), argument.length());
tolerance = Integer.parseInt(percents);
if ((tolerance < 0) || (tolerance > 100)) {
complain("Tolerance should be 0 to 100%: " + argument);
return 2; // failure
}
continue;
}
if (argument.startsWith("-CPU:")) {
String value =
argument.substring("-CPU:".length(), argument.length());
numberOfCPU = Integer.parseInt(value);
if (numberOfCPU < 1) {
complain("Illegal number of CPU: " + argument);
return 2; // failure
}
continue;
}
complain("Cannot recognize argument: args[" + argsShift + "]: " + argument);
return 2; // failure
}
if ((args.length < argsShift + 1) || (args.length > argsShift + 2)) {
complain("Illegal argument(s). Execute:");
complain(
" java numeric010 [-verbose] [-performance] " +
"[-tolerance:percents] [-CPU:number] matrixSize [threads]");
return 2; // failure
}
int size = Integer.parseInt(args[argsShift]);
if ((size < 100) || (size > 10000)) {
complain("Matrix size should be 100 to 1000 lines & columns.");
return 2; // failure
}
int threads = size;
if (args.length >= argsShift + 2)
threads = Integer.parseInt(args[argsShift + 1]);
if ((threads < 1) || (threads > size)) {
complain("Threads number should be 1 to matrix size.");
return 2; // failure
}
if ((size % threads) != 0) {
complain("Threads number should evenly divide matrix size.");
return 2; // failure
}
print("Preparing A[" + size + "," + size + "]:");
IntegerMatrix intA = new IntegerMatrix(size);
IntegerMatrix intAA = new IntegerMatrix(size);
LongMatrix longA = new LongMatrix(intA);
LongMatrix longAA = new LongMatrix(intA);
FloatMatrix floatA = new FloatMatrix(intA);
FloatMatrix floatAA = new FloatMatrix(intA);
DoubleMatrix doubleA = new DoubleMatrix(intA);
DoubleMatrix doubleAA = new DoubleMatrix(intA);
println(" done.");
double elapsed[] = {0, 0};
for (int i = 0; i < 2; i++) {
double seconds =
elapsedTime((i == 0 ? 1 : threads),
intA, intAA,
longA, longAA,
floatA, floatAA,
doubleA, doubleAA);
elapsed[i] = seconds;
print("Checking accuracy:");
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
if (intAA.value[line][column] != longAA.value[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Long results differ at:");
complain(" line=" + line + ", column=" + column);
complain(" intAA.value[line][column]=" + intAA.value[line][column]);
complain("longAA.value[line][column]=" + longAA.value[line][column]);
return 2; // FAILED
}
if (intAA.value[line][column] != floatAA.value[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Float results differ at:");
complain(" line=" + line + ", column=" + column);
complain(" intAA.value[line][column]=" + intAA.value[line][column]);
complain("floatAA.value[line][column]=" + floatAA.value[line][column]);
return 2; // FAILED
}
if (intAA.value[line][column] != doubleAA.value[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Double results differ at:");
complain(" line=" + line + ", column=" + column);
complain(" intAA.value[line][column]=" + intAA.value[line][column]);
complain("doubleAA.value[line][column]=" + doubleAA.value[line][column]);
return 2; // FAILED
}
}
println(" done.");
}
double overallTime = elapsed[0] + elapsed[1];
double averageTime = overallTime / 2; // 2 excutions
double averagePerformance = 4 * size * size * (size + size) / averageTime / 1e6;
println("");
println("Overall elapsed time: " + overallTime + " seconds.");
println("Average elapsed time: " + averageTime + " seconds.");
println("Average performance: " + averagePerformance + " MOPS");
if (testPerformance) {
println("");
print("Checking performance: ");
double elapsed1 = elapsed[0];
double elapsedM = elapsed[1] * numberOfCPU;
if (elapsed1 > elapsedM * (1 + tolerance / 100)) {
println("");
complain("Test failed:");
complain("Single-thread calculation is essentially slower:");
complain("Calculation time elapsed (seconds):");
complain(" single thread: " + elapsed[0]);
complain(" multi-threads: " + elapsed[1]);
complain(" number of CPU: " + numberOfCPU);
complain(" tolerance: " + tolerance + "%");
return 2; // FAILED
}
println("done.");
}
println("Test passed.");
return 0; // PASSED
}
/**
* Return time (in seconds) elapsed for calculation of matrix
* product <code>A*A</code> with <code>int</code>, <code>long</code>,
* <code>float</code>, and <code>double</code> representations.
*/
private static double elapsedTime(int threads,
IntegerMatrix intA, IntegerMatrix intAA,
LongMatrix longA, LongMatrix longAA,
FloatMatrix floatA, FloatMatrix floatAA,
DoubleMatrix doubleA, DoubleMatrix doubleAA) {
println("");
print("Computing A*A with " + threads + " thread(s):");
long mark1 = System.currentTimeMillis();
intAA.setSquareOf(intA, threads);
longAA.setSquareOf(longA, threads);
floatAA.setSquareOf(floatA, threads);
doubleAA.setSquareOf(doubleA, threads);
long mark2 = System.currentTimeMillis();
println(" done.");
int size = intA.size();
double sec = (mark2 - mark1) / 1000.0;
double perf = 4 * size * size * (size + size) / sec;
println("Elapsed time: " + sec + " seconds");
println("Performance: " + perf / 1e6 + " MOPS");
return sec;
}
/**
* Compute <code>A*A</code> for <code>int</code> matrix <code>A</code>.
*/
private static class IntegerMatrix {
volatile int value[][];
/**
* Number of lines and columns in <code>this</code> square matrix.
*/
public int size() {
return value.length;
}
/**
* New square matrix with random elements.
*/
public IntegerMatrix(int size) {
value = new int[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
value[line][column] =
Math.round((float) ((1 - 2 * Math.random()) * size));
}
/**
* Assign <code>this</code> matrix with <code>A*A</code>.
*
* @param threads Split computation into the given number of threads.
*/
public void setSquareOf(IntegerMatrix A, int threads) {
if (this.size() != A.size())
throw new IllegalArgumentException(
"this.size() != A.size()");
if ((size() % threads) != 0)
throw new IllegalArgumentException("size()%threads != 0");
int bunch = size() / threads;
Thread task[] = new Thread[threads];
for (int t = 0; t < threads; t++) {
int line0 = bunch * t;
MatrixComputer computer =
new MatrixComputer(value, A.value, line0, bunch);
task[t] = new Thread(computer);
}
for (int t = 0; t < threads; t++)
task[t].start();
for (int t = 0; t < threads; t++)
if (task[t].isAlive())
try {
task[t].join();
} catch (InterruptedException exception) {
throw new RuntimeException(exception.toString());
}
}
/**
* Thread to compute a bunch of lines of matrix square.
*/
private static class MatrixComputer implements Runnable {
private int result[][];
private int source[][];
private int line0;
private int bunch;
/**
* Register a task for matrix multiplication.
*/
public MatrixComputer(
int result[][], int source[][], int line0, int bunch) {
this.result = result; // reference to resulting matrix value
this.source = source; // reference to matrix to be squared
this.line0 = line0; // compute lines from line0 to ...
this.bunch = bunch; // number of resulting lines to compute
}
/**
* Do execute the task just registered for <code>this</code> thread.
*/
public void run() {
int line1 = line0 + bunch;
int size = result.length;
for (int line = line0; line < line1; line++)
for (int column = 0; column < size; column++) {
int sum = 0;
for (int i = 0; i < size; i++)
sum += source[line][i] * source[i][column];
result[line][column] = sum;
}
}
}
}
/**
* Compute <code>A*A</code> for <code>long</code> matrix <code>A</code>.
*/
private static class LongMatrix {
volatile long value[][];
/**
* Number of lines and columns in <code>this</code> square matrix.
*/
public int size() {
return value.length;
}
/**
* New square matrix with the given integer elements.
*/
public LongMatrix(IntegerMatrix A) {
int size = A.size();
value = new long[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
value[line][column] = A.value[line][column];
}
/**
* Assign <code>this</code> matrix with <code>A*A</code>.
*
* @param threads Split computation into the given number of threads.
*/
public void setSquareOf(LongMatrix A, int threads) {
if (this.size() != A.size())
throw new IllegalArgumentException(
"this.size() != A.size()");
if ((size() % threads) != 0)
throw new IllegalArgumentException("size()%threads != 0");
int bunch = size() / threads;
Thread task[] = new Thread[threads];
for (int t = 0; t < threads; t++) {
int line0 = bunch * t;
MatrixComputer computer =
new MatrixComputer(value, A.value, line0, bunch);
task[t] = new Thread(computer);
}
for (int t = 0; t < threads; t++)
task[t].start();
for (int t = 0; t < threads; t++)
if (task[t].isAlive())
try {
task[t].join();
} catch (InterruptedException exception) {
throw new RuntimeException(exception.toString());
}
}
/**
* Thread to compute a bunch of lines of matrix square.
*/
private static class MatrixComputer implements Runnable {
private long result[][];
private long source[][];
private int line0;
private int bunch;
/**
* Register a task for matrix multiplication.
*/
public MatrixComputer(
long result[][], long source[][], int line0, int bunch) {
this.result = result; // reference to resulting matrix value
this.source = source; // reference to matrix to be squared
this.line0 = line0; // compute lines from line0 to ...
this.bunch = bunch; // number of resulting lines to compute
}
/**
* Do execute the task just registered for <code>this</code> thread.
*/
public void run() {
int line1 = line0 + bunch;
int size = result.length;
for (int line = line0; line < line1; line++)
for (int column = 0; column < size; column++) {
long sum = 0;
for (int i = 0; i < size; i++)
sum += source[line][i] * source[i][column];
result[line][column] = sum;
}
}
}
}
/**
* Compute <code>A*A</code> for <code>float</code> matrix <code>A</code>.
*/
private static class FloatMatrix {
volatile float value[][];
/**
* Number of lines and columns in <code>this</code> square matrix.
*/
public int size() {
return value.length;
}
/**
* New square matrix with the given integer elements.
*/
public FloatMatrix(IntegerMatrix A) {
int size = A.size();
value = new float[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
value[line][column] = A.value[line][column];
}
/**
* Assign <code>this</code> matrix with <code>A*A</code>.
*
* @param threads Split computation into the given number of threads.
*/
public void setSquareOf(FloatMatrix A, int threads) {
if (this.size() != A.size())
throw new IllegalArgumentException(
"this.size() != A.size()");
if ((size() % threads) != 0)
throw new IllegalArgumentException("size()%threads != 0");
int bunch = size() / threads;
Thread task[] = new Thread[threads];
for (int t = 0; t < threads; t++) {
int line0 = bunch * t;
MatrixComputer computer =
new MatrixComputer(value, A.value, line0, bunch);
task[t] = new Thread(computer);
}
for (int t = 0; t < threads; t++)
task[t].start();
for (int t = 0; t < threads; t++)
if (task[t].isAlive())
try {
task[t].join();
} catch (InterruptedException exception) {
throw new RuntimeException(exception.toString());
}
}
/**
* Thread to compute a bunch of lines of matrix square.
*/
private static class MatrixComputer implements Runnable {
private float result[][];
private float source[][];
private int line0;
private int bunch;
/**
* Register a task for matrix multiplication.
*/
public MatrixComputer(
float result[][], float source[][], int line0, int bunch) {
this.result = result; // reference to resulting matrix value
this.source = source; // reference to matrix to be squared
this.line0 = line0; // compute lines from line0 to ...
this.bunch = bunch; // number of resulting lines to compute
}
/**
* Do execute the task just registered for <code>this</code> thread.
*/
public void run() {
int line1 = line0 + bunch;
int size = result.length;
for (int line = line0; line < line1; line++)
for (int column = 0; column < size; column++) {
float sum = 0;
for (int i = 0; i < size; i++)
sum += source[line][i] * source[i][column];
result[line][column] = sum;
}
}
}
}
/**
* Compute <code>A*A</code> for <code>float</code> matrix <code>A</code>.
*/
private static class DoubleMatrix {
volatile double value[][];
/**
* Number of lines and columns in <code>this</code> square matrix.
*/
public int size() {
return value.length;
}
/**
* New square matrix with the given integer elements.
*/
public DoubleMatrix(IntegerMatrix A) {
int size = A.size();
value = new double[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
value[line][column] = A.value[line][column];
}
/**
* Assign <code>this</code> matrix with <code>A*A</code>.
*
* @param threads Split computation into the given number of threads.
*/
public void setSquareOf(DoubleMatrix A, int threads) {
if (this.size() != A.size())
throw new IllegalArgumentException(
"this.size() != A.size()");
if ((size() % threads) != 0)
throw new IllegalArgumentException("size()%threads != 0");
int bunch = size() / threads;
Thread task[] = new Thread[threads];
for (int t = 0; t < threads; t++) {
int line0 = bunch * t;
MatrixComputer computer =
new MatrixComputer(value, A.value, line0, bunch);
task[t] = new Thread(computer);
}
for (int t = 0; t < threads; t++)
task[t].start();
for (int t = 0; t < threads; t++)
if (task[t].isAlive())
try {
task[t].join();
} catch (InterruptedException exception) {
throw new RuntimeException(exception.toString());
}
}
/**
* Thread to compute a bunch of lines of matrix square.
*/
private static class MatrixComputer implements Runnable {
private double result[][];
private double source[][];
private int line0;
private int bunch;
/**
* Register a task for matrix multiplication.
*/
public MatrixComputer(
double result[][], double source[][], int line0, int bunch) {
this.result = result; // reference to resulting matrix value
this.source = source; // reference to matrix to be squared
this.line0 = line0; // compute lines from line0 to ...
this.bunch = bunch; // number of resulting lines to compute
}
/**
* Do execute the task just registered for <code>this</code> thread.
*/
public void run() {
int line1 = line0 + bunch;
int size = result.length;
for (int line = line0; line < line1; line++)
for (int column = 0; column < size; column++) {
double sum = 0;
for (int i = 0; i < size; i++)
sum += source[line][i] * source[i][column];
result[line][column] = sum;
}
}
}
}
}