2014-06-26 15:45:07 +02:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "precompiled.hpp"
|
|
|
|
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
|
|
|
|
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
|
|
|
|
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
|
|
|
|
#include "oops/oop.inline.hpp"
|
|
|
|
#include "oops/oop.pcgc.inline.hpp"
|
|
|
|
#include "runtime/prefetch.inline.hpp"
|
|
|
|
|
|
|
|
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
|
|
|
|
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
|
|
#endif // _MSC_VER
|
|
|
|
|
|
|
|
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
|
|
|
|
: _g1h(g1h),
|
|
|
|
_refs(g1h->task_queue(queue_num)),
|
|
|
|
_dcq(&g1h->dirty_card_queue_set()),
|
|
|
|
_ct_bs(g1h->g1_barrier_set()),
|
|
|
|
_g1_rem(g1h->g1_rem_set()),
|
|
|
|
_hash_seed(17), _queue_num(queue_num),
|
|
|
|
_term_attempts(0),
|
|
|
|
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
|
|
|
|
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
|
|
|
|
_age_table(false), _scanner(g1h, this, rp),
|
|
|
|
_strong_roots_time(0), _term_time(0),
|
|
|
|
_alloc_buffer_waste(0), _undo_waste(0) {
|
|
|
|
// we allocate G1YoungSurvRateNumRegions plus one entries, since
|
|
|
|
// we "sacrifice" entry 0 to keep track of surviving bytes for
|
|
|
|
// non-young regions (where the age is -1)
|
|
|
|
// We also add a few elements at the beginning and at the end in
|
|
|
|
// an attempt to eliminate cache contention
|
|
|
|
uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
|
|
|
|
uint array_length = PADDING_ELEM_NUM +
|
|
|
|
real_length +
|
|
|
|
PADDING_ELEM_NUM;
|
|
|
|
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
|
|
|
|
if (_surviving_young_words_base == NULL)
|
|
|
|
vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
|
|
|
|
"Not enough space for young surv histo.");
|
|
|
|
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
|
|
|
|
memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
|
|
|
|
|
|
|
|
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
|
|
|
|
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
|
|
|
|
|
|
|
|
_start = os::elapsedTime();
|
|
|
|
}
|
|
|
|
|
2014-06-26 15:48:05 +02:00
|
|
|
G1ParScanThreadState::~G1ParScanThreadState() {
|
|
|
|
retire_alloc_buffers();
|
|
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
|
|
|
|
}
|
|
|
|
|
2014-06-26 15:45:07 +02:00
|
|
|
void
|
|
|
|
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
|
|
|
|
{
|
|
|
|
st->print_raw_cr("GC Termination Stats");
|
|
|
|
st->print_raw_cr(" elapsed --strong roots-- -------termination-------"
|
|
|
|
" ------waste (KiB)------");
|
|
|
|
st->print_raw_cr("thr ms ms % ms % attempts"
|
|
|
|
" total alloc undo");
|
|
|
|
st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
|
|
|
|
" ------- ------- -------");
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
G1ParScanThreadState::print_termination_stats(int i,
|
|
|
|
outputStream* const st) const
|
|
|
|
{
|
|
|
|
const double elapsed_ms = elapsed_time() * 1000.0;
|
|
|
|
const double s_roots_ms = strong_roots_time() * 1000.0;
|
|
|
|
const double term_ms = term_time() * 1000.0;
|
|
|
|
st->print_cr("%3d %9.2f %9.2f %6.2f "
|
|
|
|
"%9.2f %6.2f " SIZE_FORMAT_W(8) " "
|
|
|
|
SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
|
|
|
|
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
|
|
|
|
term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
|
|
|
|
(alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
|
|
|
|
alloc_buffer_waste() * HeapWordSize / K,
|
|
|
|
undo_waste() * HeapWordSize / K);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
|
|
|
|
assert(ref != NULL, "invariant");
|
|
|
|
assert(UseCompressedOops, "sanity");
|
|
|
|
assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
|
|
|
|
oop p = oopDesc::load_decode_heap_oop(ref);
|
|
|
|
assert(_g1h->is_in_g1_reserved(p),
|
|
|
|
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool G1ParScanThreadState::verify_ref(oop* ref) const {
|
|
|
|
assert(ref != NULL, "invariant");
|
|
|
|
if (has_partial_array_mask(ref)) {
|
|
|
|
// Must be in the collection set--it's already been copied.
|
|
|
|
oop p = clear_partial_array_mask(ref);
|
|
|
|
assert(_g1h->obj_in_cs(p),
|
|
|
|
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
|
|
|
|
} else {
|
|
|
|
oop p = oopDesc::load_decode_heap_oop(ref);
|
|
|
|
assert(_g1h->is_in_g1_reserved(p),
|
|
|
|
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool G1ParScanThreadState::verify_task(StarTask ref) const {
|
|
|
|
if (ref.is_narrow()) {
|
|
|
|
return verify_ref((narrowOop*) ref);
|
|
|
|
} else {
|
|
|
|
return verify_ref((oop*) ref);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // ASSERT
|
|
|
|
|
|
|
|
void G1ParScanThreadState::trim_queue() {
|
|
|
|
assert(_evac_failure_cl != NULL, "not set");
|
|
|
|
|
|
|
|
StarTask ref;
|
|
|
|
do {
|
|
|
|
// Drain the overflow stack first, so other threads can steal.
|
2014-06-26 15:48:05 +02:00
|
|
|
while (_refs->pop_overflow(ref)) {
|
|
|
|
dispatch_reference(ref);
|
2014-06-26 15:45:07 +02:00
|
|
|
}
|
|
|
|
|
2014-06-26 15:48:05 +02:00
|
|
|
while (_refs->pop_local(ref)) {
|
|
|
|
dispatch_reference(ref);
|
2014-06-26 15:45:07 +02:00
|
|
|
}
|
2014-06-26 15:48:05 +02:00
|
|
|
} while (!_refs->is_empty());
|
2014-06-26 15:45:07 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
|
|
|
|
size_t word_sz = old->size();
|
|
|
|
HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
|
|
|
|
// +1 to make the -1 indexes valid...
|
|
|
|
int young_index = from_region->young_index_in_cset()+1;
|
|
|
|
assert( (from_region->is_young() && young_index > 0) ||
|
|
|
|
(!from_region->is_young() && young_index == 0), "invariant" );
|
|
|
|
G1CollectorPolicy* g1p = _g1h->g1_policy();
|
|
|
|
markOop m = old->mark();
|
|
|
|
int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
|
|
|
|
: m->age();
|
|
|
|
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
|
|
|
|
word_sz);
|
|
|
|
HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Should this evacuation fail?
|
|
|
|
if (_g1h->evacuation_should_fail()) {
|
|
|
|
if (obj_ptr != NULL) {
|
|
|
|
undo_allocation(alloc_purpose, obj_ptr, word_sz);
|
|
|
|
obj_ptr = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
|
|
|
|
|
|
if (obj_ptr == NULL) {
|
|
|
|
// This will either forward-to-self, or detect that someone else has
|
|
|
|
// installed a forwarding pointer.
|
|
|
|
return _g1h->handle_evacuation_failure_par(this, old);
|
|
|
|
}
|
|
|
|
|
|
|
|
oop obj = oop(obj_ptr);
|
|
|
|
|
|
|
|
// We're going to allocate linearly, so might as well prefetch ahead.
|
|
|
|
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
|
|
|
|
|
|
|
|
oop forward_ptr = old->forward_to_atomic(obj);
|
|
|
|
if (forward_ptr == NULL) {
|
|
|
|
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
|
|
|
|
|
|
|
|
// alloc_purpose is just a hint to allocate() above, recheck the type of region
|
|
|
|
// we actually allocated from and update alloc_purpose accordingly
|
|
|
|
HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
|
|
|
|
alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
|
|
|
|
|
|
|
|
if (g1p->track_object_age(alloc_purpose)) {
|
|
|
|
// We could simply do obj->incr_age(). However, this causes a
|
|
|
|
// performance issue. obj->incr_age() will first check whether
|
|
|
|
// the object has a displaced mark by checking its mark word;
|
|
|
|
// getting the mark word from the new location of the object
|
|
|
|
// stalls. So, given that we already have the mark word and we
|
|
|
|
// are about to install it anyway, it's better to increase the
|
|
|
|
// age on the mark word, when the object does not have a
|
|
|
|
// displaced mark word. We're not expecting many objects to have
|
|
|
|
// a displaced marked word, so that case is not optimized
|
|
|
|
// further (it could be...) and we simply call obj->incr_age().
|
|
|
|
|
|
|
|
if (m->has_displaced_mark_helper()) {
|
|
|
|
// in this case, we have to install the mark word first,
|
|
|
|
// otherwise obj looks to be forwarded (the old mark word,
|
|
|
|
// which contains the forward pointer, was copied)
|
|
|
|
obj->set_mark(m);
|
|
|
|
obj->incr_age();
|
|
|
|
} else {
|
|
|
|
m = m->incr_age();
|
|
|
|
obj->set_mark(m);
|
|
|
|
}
|
|
|
|
age_table()->add(obj, word_sz);
|
|
|
|
} else {
|
|
|
|
obj->set_mark(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (G1StringDedup::is_enabled()) {
|
|
|
|
G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
|
|
|
|
to_region->is_young(),
|
|
|
|
queue_num(),
|
|
|
|
obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t* surv_young_words = surviving_young_words();
|
|
|
|
surv_young_words[young_index] += word_sz;
|
|
|
|
|
|
|
|
if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
|
|
|
|
// We keep track of the next start index in the length field of
|
|
|
|
// the to-space object. The actual length can be found in the
|
|
|
|
// length field of the from-space object.
|
|
|
|
arrayOop(obj)->set_length(0);
|
|
|
|
oop* old_p = set_partial_array_mask(old);
|
|
|
|
push_on_queue(old_p);
|
|
|
|
} else {
|
|
|
|
// No point in using the slower heap_region_containing() method,
|
|
|
|
// given that we know obj is in the heap.
|
|
|
|
_scanner.set_region(_g1h->heap_region_containing_raw(obj));
|
|
|
|
obj->oop_iterate_backwards(&_scanner);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
undo_allocation(alloc_purpose, obj_ptr, word_sz);
|
|
|
|
obj = forward_ptr;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
}
|
2014-06-26 15:48:05 +02:00
|
|
|
|
|
|
|
HeapWord* G1ParScanThreadState::allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
|
|
|
|
HeapWord* obj = NULL;
|
|
|
|
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
|
|
|
|
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
|
|
|
|
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
|
|
|
|
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
|
|
|
|
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
|
|
|
|
|
|
|
|
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
|
|
|
|
if (buf == NULL) {
|
|
|
|
return NULL; // Let caller handle allocation failure.
|
|
|
|
}
|
|
|
|
// Otherwise.
|
|
|
|
alloc_buf->set_word_size(gclab_word_size);
|
|
|
|
alloc_buf->set_buf(buf);
|
|
|
|
|
|
|
|
obj = alloc_buf->allocate(word_sz);
|
|
|
|
assert(obj != NULL, "buffer was definitely big enough...");
|
|
|
|
} else {
|
|
|
|
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
}
|
|
|
|
|
|
|
|
void G1ParScanThreadState::undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
|
|
|
|
if (alloc_buffer(purpose)->contains(obj)) {
|
|
|
|
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
|
|
|
|
"should contain whole object");
|
|
|
|
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
|
|
|
|
} else {
|
|
|
|
CollectedHeap::fill_with_object(obj, word_sz);
|
|
|
|
add_to_undo_waste(word_sz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* G1ParScanThreadState::allocate(GCAllocPurpose purpose, size_t word_sz) {
|
|
|
|
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
|
|
|
|
if (obj != NULL) {
|
|
|
|
return obj;
|
|
|
|
}
|
|
|
|
return allocate_slow(purpose, word_sz);
|
|
|
|
}
|
|
|
|
|
|
|
|
void G1ParScanThreadState::retire_alloc_buffers() {
|
|
|
|
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
|
|
|
|
size_t waste = _alloc_buffers[ap]->words_remaining();
|
|
|
|
add_to_alloc_buffer_waste(waste);
|
|
|
|
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
|
|
|
|
true /* end_of_gc */,
|
|
|
|
false /* retain */);
|
|
|
|
}
|
|
|
|
}
|