588 lines
22 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*
*/
#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/runtime.hpp"
2007-12-01 00:00:00 +00:00
// Static initialization
// This declares the position where vars are kept in the cvstate
// For some degree of consistency we use the TypeFunc enum to
// soak up spots in the inputs even though we only use early Control
// and Memory slots. (So far.)
const uint IdealKit::first_var = TypeFunc::Parms + 1;
//----------------------------IdealKit-----------------------------------------
IdealKit::IdealKit(GraphKit* gkit, bool delay_all_transforms, bool has_declarations) :
C(gkit->C), _gvn(gkit->gvn()) {
_initial_ctrl = gkit->control();
_initial_memory = gkit->merged_memory();
_initial_i_o = gkit->i_o();
2007-12-01 00:00:00 +00:00
_delay_all_transforms = delay_all_transforms;
_var_ct = 0;
_cvstate = NULL;
// We can go memory state free or else we need the entire memory state
assert(_initial_memory == NULL || _initial_memory->Opcode() == Op_MergeMem, "memory must be pre-split");
assert(!_gvn.is_IterGVN(), "IdealKit can't be used during Optimize phase");
2007-12-01 00:00:00 +00:00
int init_size = 5;
_pending_cvstates = new (C->node_arena()) GrowableArray<Node*>(C->node_arena(), init_size, 0, 0);
DEBUG_ONLY(_state = new (C->node_arena()) GrowableArray<int>(C->node_arena(), init_size, 0, 0));
if (!has_declarations) {
declarations_done();
}
2007-12-01 00:00:00 +00:00
}
//----------------------------sync_kit-----------------------------------------
void IdealKit::sync_kit(GraphKit* gkit) {
set_all_memory(gkit->merged_memory());
set_i_o(gkit->i_o());
set_ctrl(gkit->control());
}
2007-12-01 00:00:00 +00:00
//-------------------------------if_then-------------------------------------
// Create: if(left relop right)
// / \
// iffalse iftrue
// Push the iffalse cvstate onto the stack. The iftrue becomes the current cvstate.
void IdealKit::if_then(Node* left, BoolTest::mask relop,
Node* right, float prob, float cnt, bool push_new_state) {
assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new If");
Node* bol;
if (left->bottom_type()->isa_ptr() == NULL) {
if (left->bottom_type()->isa_int() != NULL) {
bol = Bool(CmpI(left, right), relop);
} else {
assert(left->bottom_type()->isa_long() != NULL, "what else?");
bol = Bool(CmpL(left, right), relop);
}
} else {
bol = Bool(CmpP(left, right), relop);
}
// Delay gvn.tranform on if-nodes until construction is finished
// to prevent a constant bool input from discarding a control output.
IfNode* iff = delay_transform(new IfNode(ctrl(), bol, prob, cnt))->as_If();
2007-12-01 00:00:00 +00:00
Node* then = IfTrue(iff);
Node* elsen = IfFalse(iff);
Node* else_cvstate = copy_cvstate();
else_cvstate->set_req(TypeFunc::Control, elsen);
_pending_cvstates->push(else_cvstate);
DEBUG_ONLY(if (push_new_state) _state->push(IfThenS));
set_ctrl(then);
}
//-------------------------------else_-------------------------------------
// Pop the else cvstate off the stack, and push the (current) then cvstate.
// The else cvstate becomes the current cvstate.
void IdealKit::else_() {
assert(state() == IfThenS, "bad state for new Else");
Node* else_cvstate = _pending_cvstates->pop();
DEBUG_ONLY(_state->pop());
// save current (then) cvstate for later use at endif
_pending_cvstates->push(_cvstate);
DEBUG_ONLY(_state->push(ElseS));
_cvstate = else_cvstate;
}
//-------------------------------end_if-------------------------------------
// Merge the "then" and "else" cvstates.
//
// The if_then() pushed a copy of the current state for later use
2007-12-01 00:00:00 +00:00
// as the initial state for a future "else" clause. The
// current state then became the initial state for the
// then clause. If an "else" clause was encountered, it will
// pop the top state and use it for it's initial state.
// It will also push the current state (the state at the end of
// the "then" clause) for latter use at the end_if.
//
// At the endif, the states are:
// 1) else exists a) current state is end of "else" clause
// b) top stack state is end of "then" clause
//
// 2) no else: a) current state is end of "then" clause
// b) top stack state is from the "if_then" which
// would have been the initial state of the else.
//
// Merging the states is accomplished by:
// 1) make a label for the merge
// 2) terminate the current state with a goto to the label
// 3) pop the top state from the stack and make it the
// current state
// 4) bind the label at the current state. Binding a label
// terminates the current state with a goto to the
// label and makes the label's state the current state.
//
void IdealKit::end_if() {
assert(state() & (IfThenS|ElseS), "bad state for new Endif");
Node* lab = make_label(1);
// Node* join_state = _pending_cvstates->pop();
/* merging, join */
goto_(lab);
_cvstate = _pending_cvstates->pop();
bind(lab);
DEBUG_ONLY(_state->pop());
}
//-------------------------------loop-------------------------------------
// Create the loop head portion (*) of:
// * iv = init
// * top: (region node)
// * if (iv relop limit) {
// loop body
// i = i + 1
// goto top
// * } else // exits loop
//
// Pushes the loop top cvstate first, then the else (loop exit) cvstate
// onto the stack.
void IdealKit::loop(GraphKit* gkit, int nargs, IdealVariable& iv, Node* init, BoolTest::mask relop, Node* limit, float prob, float cnt) {
2007-12-01 00:00:00 +00:00
assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new loop");
if (UseLoopPredicate) {
// Sync IdealKit and graphKit.
gkit->sync_kit(*this);
// Add loop predicate.
gkit->add_predicate(nargs);
// Update IdealKit memory.
sync_kit(gkit);
}
2007-12-01 00:00:00 +00:00
set(iv, init);
Node* head = make_label(1);
bind(head);
_pending_cvstates->push(head); // push for use at end_loop
_cvstate = copy_cvstate();
if_then(value(iv), relop, limit, prob, cnt, false /* no new state */);
DEBUG_ONLY(_state->push(LoopS));
assert(ctrl()->is_IfTrue(), "true branch stays in loop");
assert(_pending_cvstates->top()->in(TypeFunc::Control)->is_IfFalse(), "false branch exits loop");
}
//-------------------------------end_loop-------------------------------------
// Creates the goto top label.
// Expects the else (loop exit) cvstate to be on top of the
// stack, and the loop top cvstate to be 2nd.
void IdealKit::end_loop() {
assert((state() == LoopS), "bad state for new end_loop");
Node* exit = _pending_cvstates->pop();
Node* head = _pending_cvstates->pop();
goto_(head);
clear(head);
DEBUG_ONLY(_state->pop());
_cvstate = exit;
}
//-------------------------------make_label-------------------------------------
// Creates a label. The number of goto's
// must be specified (which should be 1 less than
// the number of precedessors.)
Node* IdealKit::make_label(int goto_ct) {
assert(_cvstate != NULL, "must declare variables before labels");
Node* lab = new_cvstate();
int sz = 1 + goto_ct + 1 /* fall thru */;
Node* reg = delay_transform(new RegionNode(sz));
2007-12-01 00:00:00 +00:00
lab->init_req(TypeFunc::Control, reg);
return lab;
}
//-------------------------------bind-------------------------------------
// Bind a label at the current cvstate by simulating
// a goto to the label.
void IdealKit::bind(Node* lab) {
goto_(lab, true /* bind */);
_cvstate = lab;
}
//-------------------------------goto_-------------------------------------
// Make the current cvstate a predecessor of the label,
// creating phi's to merge values. If bind is true and
// this is not the last control edge, then ensure that
// all live values have phis created. Used to create phis
// at loop-top regions.
void IdealKit::goto_(Node* lab, bool bind) {
Node* reg = lab->in(TypeFunc::Control);
// find next empty slot in region
uint slot = 1;
while (slot < reg->req() && reg->in(slot) != NULL) slot++;
assert(slot < reg->req(), "too many gotos");
// If this is last predecessor, then don't force phi creation
if (slot == reg->req() - 1) bind = false;
reg->init_req(slot, ctrl());
assert(first_var + _var_ct == _cvstate->req(), "bad _cvstate size");
for (uint i = first_var; i < _cvstate->req(); i++) {
// l is the value of var reaching the label. Could be a single value
// reaching the label, or a phi that merges multiples values reaching
// the label. The latter is true if the label's input: in(..) is
// a phi whose control input is the region node for the label.
Node* l = lab->in(i);
// Get the current value of the var
Node* m = _cvstate->in(i);
// If the var went unused no need for a phi
if (m == NULL) {
continue;
} else if (l == NULL || m == l) {
// Only one unique value "m" is known to reach this label so a phi
// is not yet necessary unless:
// the label is being bound and all predecessors have not been seen,
// in which case "bind" will be true.
if (bind) {
m = promote_to_phi(m, reg);
}
// Record the phi/value used for this var in the label's cvstate
lab->set_req(i, m);
} else {
// More than one value for the variable reaches this label so
// a create a phi if one does not already exist.
if (!was_promoted_to_phi(l, reg)) {
l = promote_to_phi(l, reg);
lab->set_req(i, l);
}
// Record in the phi, the var's value from the current state
l->set_req(slot, m);
}
}
do_memory_merge(_cvstate, lab);
stop();
}
//-----------------------------promote_to_phi-----------------------------------
Node* IdealKit::promote_to_phi(Node* n, Node* reg) {
assert(!was_promoted_to_phi(n, reg), "n already promoted to phi on this region");
// Get a conservative type for the phi
const BasicType bt = n->bottom_type()->basic_type();
const Type* ct = Type::get_const_basic_type(bt);
return delay_transform(PhiNode::make(reg, n, ct));
}
//-----------------------------declarations_done-------------------------------
void IdealKit::declarations_done() {
2007-12-01 00:00:00 +00:00
_cvstate = new_cvstate(); // initialize current cvstate
set_ctrl(_initial_ctrl); // initialize control in current cvstate
set_all_memory(_initial_memory);// initialize memory in current cvstate
set_i_o(_initial_i_o); // initialize i_o in current cvstate
2007-12-01 00:00:00 +00:00
DEBUG_ONLY(_state->push(BlockS));
}
//-----------------------------transform-----------------------------------
Node* IdealKit::transform(Node* n) {
if (_delay_all_transforms) {
return delay_transform(n);
} else {
n = gvn().transform(n);
C->record_for_igvn(n);
return n;
2007-12-01 00:00:00 +00:00
}
}
//-----------------------------delay_transform-----------------------------------
Node* IdealKit::delay_transform(Node* n) {
// Delay transform until IterativeGVN
gvn().set_type(n, n->bottom_type());
C->record_for_igvn(n);
2007-12-01 00:00:00 +00:00
return n;
}
//-----------------------------new_cvstate-----------------------------------
Node* IdealKit::new_cvstate() {
uint sz = _var_ct + first_var;
return new Node(sz);
2007-12-01 00:00:00 +00:00
}
//-----------------------------copy_cvstate-----------------------------------
Node* IdealKit::copy_cvstate() {
Node* ns = new_cvstate();
for (uint i = 0; i < ns->req(); i++) ns->init_req(i, _cvstate->in(i));
// We must clone memory since it will be updated as we do stores.
ns->set_req(TypeFunc::Memory, MergeMemNode::make(ns->in(TypeFunc::Memory)));
2007-12-01 00:00:00 +00:00
return ns;
}
//-----------------------------clear-----------------------------------
void IdealKit::clear(Node* m) {
for (uint i = 0; i < m->req(); i++) m->set_req(i, NULL);
}
//-----------------------------IdealVariable----------------------------
IdealVariable::IdealVariable(IdealKit &k) {
k.declare(this);
}
Node* IdealKit::memory(uint alias_idx) {
MergeMemNode* mem = merged_memory();
Node* p = mem->memory_at(alias_idx);
_gvn.set_type(p, Type::MEMORY); // must be mapped
2007-12-01 00:00:00 +00:00
return p;
}
void IdealKit::set_memory(Node* mem, uint alias_idx) {
merged_memory()->set_memory_at(alias_idx, mem);
}
//----------------------------- make_load ----------------------------
Node* IdealKit::load(Node* ctl,
Node* adr,
const Type* t,
BasicType bt,
int adr_idx,
bool require_atomic_access) {
assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
const TypePtr* adr_type = NULL; // debug-mode-only argument
debug_only(adr_type = C->get_adr_type(adr_idx));
Node* mem = memory(adr_idx);
Node* ld;
if (require_atomic_access && bt == T_LONG) {
ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, MemNode::unordered);
2007-12-01 00:00:00 +00:00
} else {
ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, MemNode::unordered);
2007-12-01 00:00:00 +00:00
}
return transform(ld);
}
Node* IdealKit::store(Node* ctl, Node* adr, Node *val, BasicType bt,
int adr_idx,
MemNode::MemOrd mo, bool require_atomic_access,
bool mismatched) {
assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory");
2007-12-01 00:00:00 +00:00
const TypePtr* adr_type = NULL;
debug_only(adr_type = C->get_adr_type(adr_idx));
Node *mem = memory(adr_idx);
Node* st;
if (require_atomic_access && bt == T_LONG) {
st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
2007-12-01 00:00:00 +00:00
} else {
st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
2007-12-01 00:00:00 +00:00
}
if (mismatched) {
st->as_Store()->set_mismatched_access();
}
2007-12-01 00:00:00 +00:00
st = transform(st);
set_memory(st, adr_idx);
return st;
}
// Card mark store. Must be ordered so that it will come after the store of
// the oop.
Node* IdealKit::storeCM(Node* ctl, Node* adr, Node *val, Node* oop_store, int oop_adr_idx,
2007-12-01 00:00:00 +00:00
BasicType bt,
int adr_idx) {
assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
const TypePtr* adr_type = NULL;
debug_only(adr_type = C->get_adr_type(adr_idx));
Node *mem = memory(adr_idx);
// Add required edge to oop_store, optimizer does not support precedence edges.
// Convert required edge to precedence edge before allocation.
Node* st = new StoreCMNode(ctl, mem, adr, adr_type, val, oop_store, oop_adr_idx);
2007-12-01 00:00:00 +00:00
st = transform(st);
set_memory(st, adr_idx);
return st;
}
//---------------------------- do_memory_merge --------------------------------
// The memory from one merging cvstate needs to be merged with the memory for another
// join cvstate. If the join cvstate doesn't have a merged memory yet then we
// can just copy the state from the merging cvstate
// Merge one slow path into the rest of memory.
void IdealKit::do_memory_merge(Node* merging, Node* join) {
// Get the region for the join state
Node* join_region = join->in(TypeFunc::Control);
assert(join_region != NULL, "join region must exist");
if (join->in(TypeFunc::I_O) == NULL ) {
join->set_req(TypeFunc::I_O, merging->in(TypeFunc::I_O));
}
2007-12-01 00:00:00 +00:00
if (join->in(TypeFunc::Memory) == NULL ) {
join->set_req(TypeFunc::Memory, merging->in(TypeFunc::Memory));
return;
}
// The control flow for merging must have already been attached to the join region
// we need its index for the phis.
uint slot;
for (slot = 1; slot < join_region->req() ; slot ++ ) {
if (join_region->in(slot) == merging->in(TypeFunc::Control)) break;
}
assert(slot != join_region->req(), "edge must already exist");
MergeMemNode* join_m = join->in(TypeFunc::Memory)->as_MergeMem();
MergeMemNode* merging_m = merging->in(TypeFunc::Memory)->as_MergeMem();
// join_m should be an ancestor mergemem of merging
// Slow path memory comes from the current map (which is from a slow call)
// Fast path/null path memory comes from the call's input
// Merge the other fast-memory inputs with the new slow-default memory.
// for (MergeMemStream mms(merged_memory(), fast_mem->as_MergeMem()); mms.next_non_empty2(); ) {
for (MergeMemStream mms(join_m, merging_m); mms.next_non_empty2(); ) {
Node* join_slice = mms.force_memory();
Node* merging_slice = mms.memory2();
if (join_slice != merging_slice) {
PhiNode* phi;
// bool new_phi = false;
// Is the phi for this slice one that we created for this join region or simply
// one we copied? If it is ours then add
if (join_slice->is_Phi() && join_slice->as_Phi()->region() == join_region) {
phi = join_slice->as_Phi();
} else {
// create the phi with join_slice filling supplying memory for all of the
// control edges to the join region
phi = PhiNode::make(join_region, join_slice, Type::MEMORY, mms.adr_type(C));
phi = (PhiNode*) delay_transform(phi);
// gvn().set_type(phi, Type::MEMORY);
// new_phi = true;
}
// Now update the phi with the slice for the merging slice
phi->set_req(slot, merging_slice/* slow_path, slow_slice */);
// this updates join_m with the phi
mms.set_memory(phi);
}
}
Node* join_io = join->in(TypeFunc::I_O);
Node* merging_io = merging->in(TypeFunc::I_O);
if (join_io != merging_io) {
PhiNode* phi;
if (join_io->is_Phi() && join_io->as_Phi()->region() == join_region) {
phi = join_io->as_Phi();
} else {
phi = PhiNode::make(join_region, join_io, Type::ABIO);
phi = (PhiNode*) delay_transform(phi);
join->set_req(TypeFunc::I_O, phi);
}
phi->set_req(slot, merging_io);
}
2007-12-01 00:00:00 +00:00
}
//----------------------------- make_call ----------------------------
// Trivial runtime call
Node* IdealKit::make_leaf_call(const TypeFunc *slow_call_type,
address slow_call,
const char *leaf_name,
Node* parm0,
Node* parm1,
Node* parm2,
Node* parm3) {
2007-12-01 00:00:00 +00:00
// We only handle taking in RawMem and modifying RawMem
const TypePtr* adr_type = TypeRawPtr::BOTTOM;
uint adr_idx = C->get_alias_index(adr_type);
// Slow-path leaf call
CallNode *call = (CallNode*)new CallLeafNode( slow_call_type, slow_call, leaf_name, adr_type);
2007-12-01 00:00:00 +00:00
// Set fixed predefined input arguments
call->init_req( TypeFunc::Control, ctrl() );
call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
// Narrow memory as only memory input
call->init_req( TypeFunc::Memory , memory(adr_idx));
call->init_req( TypeFunc::FramePtr, top() /* frameptr() */ );
call->init_req( TypeFunc::ReturnAdr, top() );
if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2);
if (parm3 != NULL) call->init_req(TypeFunc::Parms+3, parm3);
// Node *c = _gvn.transform(call);
call = (CallNode *) _gvn.transform(call);
Node *c = call; // dbx gets confused with call call->dump()
// Slow leaf call has no side-effects, sets few values
set_ctrl(transform( new ProjNode(call,TypeFunc::Control) ));
// Make memory for the call
Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
// Set the RawPtr memory state only.
set_memory(mem, adr_idx);
assert(C->alias_type(call->adr_type()) == C->alias_type(adr_type),
"call node must be constructed correctly");
Node* res = NULL;
if (slow_call_type->range()->cnt() > TypeFunc::Parms) {
assert(slow_call_type->range()->cnt() == TypeFunc::Parms+1, "only one return value");
res = transform(new ProjNode(call, TypeFunc::Parms));
}
return res;
}
void IdealKit::make_leaf_call_no_fp(const TypeFunc *slow_call_type,
address slow_call,
const char *leaf_name,
const TypePtr* adr_type,
Node* parm0,
Node* parm1,
Node* parm2,
Node* parm3) {
// We only handle taking in RawMem and modifying RawMem
uint adr_idx = C->get_alias_index(adr_type);
// Slow-path leaf call
CallNode *call = (CallNode*)new CallLeafNoFPNode( slow_call_type, slow_call, leaf_name, adr_type);
// Set fixed predefined input arguments
call->init_req( TypeFunc::Control, ctrl() );
call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
// Narrow memory as only memory input
call->init_req( TypeFunc::Memory , memory(adr_idx));
call->init_req( TypeFunc::FramePtr, top() /* frameptr() */ );
call->init_req( TypeFunc::ReturnAdr, top() );
if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2);
if (parm3 != NULL) call->init_req(TypeFunc::Parms+3, parm3);
2007-12-01 00:00:00 +00:00
// Node *c = _gvn.transform(call);
call = (CallNode *) _gvn.transform(call);
Node *c = call; // dbx gets confused with call call->dump()
// Slow leaf call has no side-effects, sets few values
set_ctrl(transform( new ProjNode(call,TypeFunc::Control) ));
2007-12-01 00:00:00 +00:00
// Make memory for the call
Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2007-12-01 00:00:00 +00:00
// Set the RawPtr memory state only.
set_memory(mem, adr_idx);
assert(C->alias_type(call->adr_type()) == C->alias_type(adr_type),
"call node must be constructed correctly");
}