jdk-24/src/hotspot/share/utilities/concurrentHashTable.inline.hpp

1217 lines
39 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_UTILITIES_CONCURRENT_HASH_TABLE_INLINE_HPP
#define SHARE_UTILITIES_CONCURRENT_HASH_TABLE_INLINE_HPP
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "runtime/prefetch.inline.hpp"
#include "utilities/concurrentHashTable.hpp"
#include "utilities/globalCounter.inline.hpp"
#include "utilities/numberSeq.hpp"
#include "utilities/spinYield.hpp"
// 2^30 = 1G buckets
#define SIZE_BIG_LOG2 30
// 2^5 = 32 buckets
#define SIZE_SMALL_LOG2 5
// Number from spinYield.hpp. In some loops SpinYield would be unfair.
#define SPINPAUSES_PER_YIELD 8192
#ifdef ASSERT
#ifdef _LP64
// Two low bits are not usable.
static const void* POISON_PTR = (void*)UCONST64(0xfbadbadbadbadbac);
#else
// Two low bits are not usable.
static const void* POISON_PTR = (void*)0xffbadbac;
#endif
#endif
// Node
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
ConcurrentHashTable<VALUE, CONFIG, F>::
Node::next() const
{
return OrderAccess::load_acquire(&_next);
}
// Bucket
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::first_raw() const
{
return OrderAccess::load_acquire(&_first);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::release_assign_node_ptr(
typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* const volatile * dst,
typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node) const
{
// Due to this assert this methods is not static.
assert(is_locked(), "Must be locked.");
Node** tmp = (Node**)dst;
OrderAccess::release_store(tmp, clear_set_state(node, *dst));
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::first() const
{
// We strip the states bit before returning the ptr.
return clear_state(OrderAccess::load_acquire(&_first));
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::have_redirect() const
{
return is_state(first_raw(), STATE_REDIRECT_BIT);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::is_locked() const
{
return is_state(first_raw(), STATE_LOCK_BIT);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::lock()
{
int i = 0;
// SpinYield would be unfair here
while (!this->trylock()) {
if ((++i) == SPINPAUSES_PER_YIELD) {
// On contemporary OS yielding will give CPU to another runnable thread if
// there is no CPU available.
os::naked_yield();
i = 0;
} else {
SpinPause();
}
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::release_assign_last_node_next(
typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node)
{
assert(is_locked(), "Must be locked.");
Node* const volatile * ret = first_ptr();
while (clear_state(*ret) != NULL) {
ret = clear_state(*ret)->next_ptr();
}
release_assign_node_ptr(ret, node);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::cas_first(typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node,
typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* expect
)
{
if (is_locked()) {
return false;
}
if (Atomic::cmpxchg(node, &_first, expect) == expect) {
return true;
}
return false;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::trylock()
{
if (is_locked()) {
return false;
}
// We will expect a clean first pointer.
Node* tmp = first();
if (Atomic::cmpxchg(set_state(tmp, STATE_LOCK_BIT), &_first, tmp) == tmp) {
return true;
}
return false;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::unlock()
{
assert(is_locked(), "Must be locked.");
assert(!have_redirect(),
"Unlocking a bucket after it has reached terminal state.");
OrderAccess::release_store(&_first, clear_state(first()));
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
Bucket::redirect()
{
assert(is_locked(), "Must be locked.");
OrderAccess::release_store(&_first, set_state(_first, STATE_REDIRECT_BIT));
}
// InternalTable
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
InternalTable::InternalTable(size_t log2_size)
: _log2_size(log2_size), _size(((size_t)1ul) << _log2_size),
_hash_mask(~(~((size_t)0) << _log2_size))
{
assert(_log2_size >= SIZE_SMALL_LOG2 && _log2_size <= SIZE_BIG_LOG2,
"Bad size");
void* memory = NEW_C_HEAP_ARRAY(Bucket, _size, F);
_buckets = new (memory) Bucket[_size];
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
InternalTable::~InternalTable()
{
FREE_C_HEAP_ARRAY(Bucket, _buckets);
}
// ScopedCS
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
ScopedCS::ScopedCS(Thread* thread, ConcurrentHashTable<VALUE, CONFIG, F>* cht)
: _thread(thread), _cht(cht)
{
GlobalCounter::critical_section_begin(_thread);
// This version is published now.
if (OrderAccess::load_acquire(&_cht->_invisible_epoch) != NULL) {
OrderAccess::release_store_fence(&_cht->_invisible_epoch, (Thread*)NULL);
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
ScopedCS::~ScopedCS()
{
GlobalCounter::critical_section_end(_thread);
}
// BaseConfig
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void* ConcurrentHashTable<VALUE, CONFIG, F>::
BaseConfig::allocate_node(size_t size, const VALUE& value)
{
return AllocateHeap(size, F);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
BaseConfig::free_node(void* memory, const VALUE& value)
{
FreeHeap(memory);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC>
inline VALUE* ConcurrentHashTable<VALUE, CONFIG, F>::
MultiGetHandle::get(LOOKUP_FUNC& lookup_f, bool* grow_hint)
{
return ScopedCS::_cht->internal_get(ScopedCS::_thread, lookup_f, grow_hint);
}
// HaveDeletables
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename EVALUATE_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
HaveDeletables<true, EVALUATE_FUNC>::have_deletable(Bucket* bucket,
EVALUATE_FUNC& eval_f,
Bucket* prefetch_bucket)
{
// Instantiated for pointer type (true), so we can use prefetch.
// When visiting all Nodes doing this prefetch give around 30%.
Node* pref = prefetch_bucket != NULL ? prefetch_bucket->first() : NULL;
for (Node* next = bucket->first(); next != NULL ; next = next->next()) {
if (pref != NULL) {
Prefetch::read(*pref->value(), 0);
pref = pref->next();
}
if (next->next() != NULL) {
Prefetch::read(*next->next()->value(), 0);
}
if (eval_f(next->value())) {
return true;
}
}
return false;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <bool b, typename EVALUATE_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
HaveDeletables<b, EVALUATE_FUNC>::have_deletable(Bucket* bucket,
EVALUATE_FUNC& eval_f,
Bucket* preb)
{
for (Node* next = bucket->first(); next != NULL ; next = next->next()) {
if (eval_f(next->value())) {
return true;
}
}
return false;
}
// ConcurrentHashTable
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
write_synchonize_on_visible_epoch(Thread* thread)
{
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
OrderAccess::fence(); // Prevent below load from floating up.
// If no reader saw this version we can skip write_synchronize.
if (OrderAccess::load_acquire(&_invisible_epoch) == thread) {
return;
}
assert(_invisible_epoch == NULL, "Two thread doing bulk operations");
// We set this/next version that we are synchronizing for to not published.
// A reader will zero this flag if it reads this/next version.
OrderAccess::release_store(&_invisible_epoch, thread);
GlobalCounter::write_synchronize();
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
try_resize_lock(Thread* locker)
{
if (_resize_lock->try_lock()) {
if (_resize_lock_owner != NULL) {
assert(locker != _resize_lock_owner, "Already own lock");
// We got mutex but internal state is locked.
_resize_lock->unlock();
return false;
}
} else {
return false;
}
_invisible_epoch = 0;
_resize_lock_owner = locker;
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
lock_resize_lock(Thread* locker)
{
size_t i = 0;
// If lock is hold by some other thread, the chances that it is return quick
// is low. So we will prefer yielding.
SpinYield yield(1, 512);
do {
_resize_lock->lock_without_safepoint_check();
// If holder of lock dropped mutex for safepoint mutex might be unlocked,
// and _resize_lock_owner will contain the owner.
if (_resize_lock_owner != NULL) {
assert(locker != _resize_lock_owner, "Already own lock");
// We got mutex but internal state is locked.
_resize_lock->unlock();
yield.wait();
} else {
break;
}
} while(true);
_resize_lock_owner = locker;
_invisible_epoch = 0;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
unlock_resize_lock(Thread* locker)
{
_invisible_epoch = 0;
assert(locker == _resize_lock_owner, "Not unlocked by locker.");
_resize_lock_owner = NULL;
_resize_lock->unlock();
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
free_nodes()
{
// We assume we are not MT during freeing.
for (size_t node_it = 0; node_it < _table->_size; node_it++) {
Bucket* bucket = _table->get_buckets() + node_it;
Node* node = bucket->first();
while (node != NULL) {
Node* free_node = node;
node = node->next();
Node::destroy_node(free_node);
}
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
ConcurrentHashTable<VALUE, CONFIG, F>::
get_table() const
{
return OrderAccess::load_acquire(&_table);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
ConcurrentHashTable<VALUE, CONFIG, F>::
get_new_table() const
{
return OrderAccess::load_acquire(&_new_table);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
ConcurrentHashTable<VALUE, CONFIG, F>::
set_table_from_new()
{
InternalTable* old_table = _table;
// Publish the new table.
OrderAccess::release_store(&_table, _new_table);
// All must see this.
GlobalCounter::write_synchronize();
// _new_table not read any more.
_new_table = NULL;
DEBUG_ONLY(_new_table = (InternalTable*)POISON_PTR;)
return old_table;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
internal_grow_range(Thread* thread, size_t start, size_t stop)
{
assert(stop <= _table->_size, "Outside backing array");
assert(_new_table != NULL, "Grow not proper setup before start");
// The state is also copied here. Hence all buckets in new table will be
// locked. I call the siblings odd/even, where even have high bit 0 and odd
// have high bit 1.
for (size_t even_index = start; even_index < stop; even_index++) {
Bucket* bucket = _table->get_bucket(even_index);
bucket->lock();
size_t odd_index = even_index + _table->_size;
_new_table->get_buckets()[even_index] = *bucket;
_new_table->get_buckets()[odd_index] = *bucket;
// Moves lockers go to new table, where they will wait until unlock() below.
bucket->redirect(); /* Must release stores above */
// When this is done we have separated the nodes into corresponding buckets
// in new table.
if (!unzip_bucket(thread, _table, _new_table, even_index, odd_index)) {
// If bucket is empty, unzip does nothing.
// We must make sure readers go to new table before we poison the bucket.
DEBUG_ONLY(GlobalCounter::write_synchronize();)
}
// Unlock for writes into the new table buckets.
_new_table->get_bucket(even_index)->unlock();
_new_table->get_bucket(odd_index)->unlock();
DEBUG_ONLY(
bucket->release_assign_node_ptr(
_table->get_bucket(even_index)->first_ptr(), (Node*)POISON_PTR);
)
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC, typename DELETE_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_remove(Thread* thread, LOOKUP_FUNC& lookup_f, DELETE_FUNC& delete_f)
{
Bucket* bucket = get_bucket_locked(thread, lookup_f.get_hash());
assert(bucket->is_locked(), "Must be locked.");
Node* const volatile * rem_n_prev = bucket->first_ptr();
Node* rem_n = bucket->first();
bool have_dead = false;
while (rem_n != NULL) {
if (lookup_f.equals(rem_n->value(), &have_dead)) {
bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
break;
} else {
rem_n_prev = rem_n->next_ptr();
rem_n = rem_n->next();
}
}
bucket->unlock();
if (rem_n == NULL) {
return false;
}
// Publish the deletion.
GlobalCounter::write_synchronize();
delete_f(rem_n->value());
Node::destroy_node(rem_n);
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
do_bulk_delete_locked_for(Thread* thread, size_t start_idx, size_t stop_idx,
EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
{
// Here we have resize lock so table is SMR safe, and there is no new
// table. Can do this in parallel if we want.
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
Node* ndel[BULK_DELETE_LIMIT];
InternalTable* table = get_table();
assert(start_idx < stop_idx, "Must be");
assert(stop_idx <= _table->_size, "Must be");
// Here manual do critical section since we don't want to take the cost of
// locking the bucket if there is nothing to delete. But we can have
// concurrent single deletes. The _invisible_epoch can only be used by the
// owner of _resize_lock, us here. There we should not changed it in our
// own read-side.
GlobalCounter::critical_section_begin(thread);
for (size_t bucket_it = start_idx; bucket_it < stop_idx; bucket_it++) {
Bucket* bucket = _table->get_bucket(bucket_it);
Bucket* prefetch_bucket = (bucket_it+1) < stop_idx ?
_table->get_bucket(bucket_it+1) : NULL;
if (!HaveDeletables<IsPointer<VALUE>::value, EVALUATE_FUNC>::
have_deletable(bucket, eval_f, prefetch_bucket)) {
// Nothing to remove in this bucket.
continue;
}
GlobalCounter::critical_section_end(thread);
// We left critical section but the bucket cannot be removed while we hold
// the _resize_lock.
bucket->lock();
size_t nd = delete_check_nodes(bucket, eval_f, BULK_DELETE_LIMIT, ndel);
bucket->unlock();
write_synchonize_on_visible_epoch(thread);
for (size_t node_it = 0; node_it < nd; node_it++) {
del_f(ndel[node_it]->value());
Node::destroy_node(ndel[node_it]);
DEBUG_ONLY(ndel[node_it] = (Node*)POISON_PTR;)
}
GlobalCounter::critical_section_begin(thread);
}
GlobalCounter::critical_section_end(thread);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
delete_in_bucket(Thread* thread, Bucket* bucket, LOOKUP_FUNC& lookup_f)
{
size_t dels = 0;
Node* ndel[BULK_DELETE_LIMIT];
Node* const volatile * rem_n_prev = bucket->first_ptr();
Node* rem_n = bucket->first();
while (rem_n != NULL) {
bool is_dead = false;
lookup_f.equals(rem_n->value(), &is_dead);
if (is_dead) {
ndel[dels++] = rem_n;
bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
rem_n = rem_n->next();
if (dels == BULK_DELETE_LIMIT) {
break;
}
} else {
rem_n_prev = rem_n->next_ptr();
rem_n = rem_n->next();
}
}
if (dels > 0) {
GlobalCounter::write_synchronize();
for (size_t node_it = 0; node_it < dels; node_it++) {
Node::destroy_node(ndel[node_it]);
DEBUG_ONLY(ndel[node_it] = (Node*)POISON_PTR;)
}
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Bucket*
ConcurrentHashTable<VALUE, CONFIG, F>::
get_bucket(uintx hash) const
{
InternalTable* table = get_table();
Bucket* bucket = get_bucket_in(table, hash);
if (bucket->have_redirect()) {
table = get_new_table();
bucket = get_bucket_in(table, hash);
}
return bucket;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Bucket*
ConcurrentHashTable<VALUE, CONFIG, F>::
get_bucket_locked(Thread* thread, const uintx hash)
{
Bucket* bucket;
int i = 0;
// SpinYield would be unfair here
while(true) {
{
// We need a critical section to protect the table itself. But if we fail
// we must leave critical section otherwise we would deadlock.
ScopedCS cs(thread, this);
bucket = get_bucket(hash);
if (bucket->trylock()) {
break; /* ends critical section */
}
} /* ends critical section */
if ((++i) == SPINPAUSES_PER_YIELD) {
// On contemporary OS yielding will give CPU to another runnable thread if
// there is no CPU available.
os::naked_yield();
i = 0;
} else {
SpinPause();
}
}
return bucket;
}
// Always called within critical section
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC>
typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
ConcurrentHashTable<VALUE, CONFIG, F>::
get_node(const Bucket* const bucket, LOOKUP_FUNC& lookup_f,
bool* have_dead, size_t* loops) const
{
size_t loop_count = 0;
Node* node = bucket->first();
while (node != NULL) {
bool is_dead = false;
++loop_count;
if (lookup_f.equals(node->value(), &is_dead)) {
break;
}
if (is_dead && !(*have_dead)) {
*have_dead = true;
}
node = node->next();
}
if (loops != NULL) {
*loops = loop_count;
}
return node;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
unzip_bucket(Thread* thread, InternalTable* old_table,
InternalTable* new_table, size_t even_index, size_t odd_index)
{
Node* aux = old_table->get_bucket(even_index)->first();
if (aux == NULL) {
// This is an empty bucket and in debug we poison first ptr in bucket.
// Therefore we must make sure no readers are looking at this bucket.
// If we don't do a write_synch here, caller must do it.
return false;
}
Node* delete_me = NULL;
Node* const volatile * even = new_table->get_bucket(even_index)->first_ptr();
Node* const volatile * odd = new_table->get_bucket(odd_index)->first_ptr();
while (aux != NULL) {
bool dead_hash = false;
size_t aux_hash = CONFIG::get_hash(*aux->value(), &dead_hash);
if (dead_hash) {
delete_me = aux;
// This item is dead, move both list to next
new_table->get_bucket(odd_index)->release_assign_node_ptr(odd,
aux->next());
new_table->get_bucket(even_index)->release_assign_node_ptr(even,
aux->next());
} else {
size_t aux_index = bucket_idx_hash(new_table, aux_hash);
if (aux_index == even_index) {
// This is a even, so move odd to aux/even next
new_table->get_bucket(odd_index)->release_assign_node_ptr(odd,
aux->next());
// Keep in even list
even = aux->next_ptr();
} else if (aux_index == odd_index) {
// This is a odd, so move odd to aux/odd next
new_table->get_bucket(even_index)->release_assign_node_ptr(even,
aux->next());
// Keep in odd list
odd = aux->next_ptr();
} else {
fatal("aux_index does not match even or odd indices");
}
}
aux = aux->next();
// We can only move 1 pointer otherwise a reader might be moved to the wrong
// chain. E.g. looking for even hash value but got moved to the odd bucket
// chain.
write_synchonize_on_visible_epoch(thread);
if (delete_me != NULL) {
Node::destroy_node(delete_me);
delete_me = NULL;
}
}
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_shrink_prolog(Thread* thread, size_t log2_size)
{
if (!try_resize_lock(thread)) {
return false;
}
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
if (_table->_log2_size == _log2_start_size ||
_table->_log2_size <= log2_size) {
unlock_resize_lock(thread);
return false;
}
_new_table = new InternalTable(_table->_log2_size - 1);
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
internal_shrink_epilog(Thread* thread)
{
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
assert(_resize_lock_owner, "Should be locked");
InternalTable* old_table = set_table_from_new();
_size_limit_reached = false;
unlock_resize_lock(thread);
#ifdef ASSERT
for (size_t i = 0; i < old_table->_size; i++) {
assert(old_table->get_bucket(i++)->first() == POISON_PTR,
"No poison found");
}
#endif
// ABA safe, old_table not visible to any other threads.
delete old_table;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
internal_shrink_range(Thread* thread, size_t start, size_t stop)
{
// The state is also copied here.
// Hence all buckets in new table will be locked.
for (size_t bucket_it = start; bucket_it < stop; bucket_it++) {
size_t even_hash_index = bucket_it; // High bit 0
size_t odd_hash_index = bucket_it + _new_table->_size; // High bit 1
Bucket* b_old_even = _table->get_bucket(even_hash_index);
Bucket* b_old_odd = _table->get_bucket(odd_hash_index);
b_old_even->lock();
b_old_odd->lock();
_new_table->get_buckets()[bucket_it] = *b_old_even;
// Put chains together.
_new_table->get_bucket(bucket_it)->
release_assign_last_node_next(*(b_old_odd->first_ptr()));
b_old_even->redirect();
b_old_odd->redirect();
write_synchonize_on_visible_epoch(thread);
// Unlock for writes into new smaller table.
_new_table->get_bucket(bucket_it)->unlock();
DEBUG_ONLY(b_old_even->release_assign_node_ptr(b_old_even->first_ptr(),
(Node*)POISON_PTR);)
DEBUG_ONLY(b_old_odd->release_assign_node_ptr(b_old_odd->first_ptr(),
(Node*)POISON_PTR);)
}
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_shrink(Thread* thread, size_t log2_size)
{
if (!internal_shrink_prolog(thread, log2_size)) {
assert(!_resize_lock->owned_by_self(), "Re-size lock held");
return false;
}
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
assert(_resize_lock_owner == thread, "Should be locked by me");
internal_shrink_range(thread, 0, _new_table->_size);
internal_shrink_epilog(thread);
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_grow_prolog(Thread* thread, size_t log2_size)
{
// This double checking of _size_limit_reached/is_max_size_reached()
// we only do in grow path, since grow means high load on table
// while shrink means low load.
if (is_max_size_reached()) {
return false;
}
if (!try_resize_lock(thread)) {
// Either we have an ongoing resize or an operation which doesn't want us
// to resize now.
return false;
}
if (is_max_size_reached() || _table->_log2_size >= log2_size) {
unlock_resize_lock(thread);
return false;
}
_new_table = new InternalTable(_table->_log2_size + 1);
if (_new_table->_log2_size == _log2_size_limit) {
_size_limit_reached = true;
}
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
internal_grow_epilog(Thread* thread)
{
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
assert(_resize_lock_owner, "Should be locked");
InternalTable* old_table = set_table_from_new();
unlock_resize_lock(thread);
#ifdef ASSERT
for (size_t i = 0; i < old_table->_size; i++) {
assert(old_table->get_bucket(i++)->first() == POISON_PTR,
"No poison found");
}
#endif
// ABA safe, old_table not visible to any other threads.
delete old_table;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_grow(Thread* thread, size_t log2_size)
{
if (!internal_grow_prolog(thread, log2_size)) {
assert(!_resize_lock->owned_by_self(), "Re-size lock held");
return false;
}
assert(_resize_lock->owned_by_self(), "Re-size lock not held");
assert(_resize_lock_owner == thread, "Should be locked by me");
internal_grow_range(thread, 0, _table->_size);
internal_grow_epilog(thread);
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
return true;
}
// Always called within critical section
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC>
inline VALUE* ConcurrentHashTable<VALUE, CONFIG, F>::
internal_get(Thread* thread, LOOKUP_FUNC& lookup_f, bool* grow_hint)
{
bool clean = false;
size_t loops = 0;
VALUE* ret = NULL;
const Bucket* bucket = get_bucket(lookup_f.get_hash());
Node* node = get_node(bucket, lookup_f, &clean, &loops);
if (node != NULL) {
ret = node->value();
}
if (grow_hint != NULL) {
*grow_hint = loops > _grow_hint;
}
return ret;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC, typename VALUE_FUNC, typename CALLBACK_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
internal_insert(Thread* thread, LOOKUP_FUNC& lookup_f, VALUE_FUNC& value_f,
CALLBACK_FUNC& callback, bool* grow_hint)
{
bool ret = false;
bool clean = false;
bool locked;
size_t loops = 0;
size_t i = 0;
Node* new_node = NULL;
uintx hash = lookup_f.get_hash();
while (true) {
{
ScopedCS cs(thread, this); /* protected the table/bucket */
Bucket* bucket = get_bucket(hash);
Node* first_at_start = bucket->first();
Node* old = get_node(bucket, lookup_f, &clean, &loops);
if (old == NULL) {
// No duplicate found.
if (new_node == NULL) {
new_node = Node::create_node(value_f(), first_at_start);
} else {
new_node->set_next(first_at_start);
}
if (bucket->cas_first(new_node, first_at_start)) {
callback(true, new_node->value());
new_node = NULL;
ret = true;
break; /* leave critical section */
}
// CAS failed we must leave critical section and retry.
locked = bucket->is_locked();
} else {
// There is a duplicate.
callback(false, old->value());
break; /* leave critical section */
}
} /* leave critical section */
i++;
if (locked) {
os::naked_yield();
} else {
SpinPause();
}
}
if (new_node != NULL) {
// CAS failed and a duplicate was inserted, we must free this node.
Node::destroy_node(new_node);
} else if (i == 0 && clean) {
// We only do cleaning on fast inserts.
Bucket* bucket = get_bucket_locked(thread, lookup_f.get_hash());
assert(bucket->is_locked(), "Must be locked.");
delete_in_bucket(thread, bucket, lookup_f);
bucket->unlock();
}
if (grow_hint != NULL) {
*grow_hint = loops > _grow_hint;
}
return ret;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
visit_nodes(Bucket* bucket, FUNC& visitor_f)
{
Node* current_node = bucket->first();
while (current_node != NULL) {
if (!visitor_f(current_node->value())) {
return false;
}
current_node = current_node->next();
}
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
do_scan_locked(Thread* thread, FUNC& scan_f)
{
assert(_resize_lock->owned_by_self() ||
(thread->is_VM_thread() && SafepointSynchronize::is_at_safepoint()),
"Re-size lock not held or not VMThread at safepoint");
// We can do a critical section over the entire loop but that would block
// updates for a long time. Instead we choose to block resizes.
InternalTable* table = get_table();
for (size_t bucket_it = 0; bucket_it < _table->_size; bucket_it++) {
ScopedCS cs(thread, this);
if (!visit_nodes(_table->get_bucket(bucket_it), scan_f)) {
break; /* ends critical section */
}
} /* ends critical section */
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename EVALUATE_FUNC>
inline size_t ConcurrentHashTable<VALUE, CONFIG, F>::
delete_check_nodes(Bucket* bucket, EVALUATE_FUNC& eval_f,
size_t num_del, Node** ndel)
{
size_t dels = 0;
Node* const volatile * rem_n_prev = bucket->first_ptr();
Node* rem_n = bucket->first();
while (rem_n != NULL) {
if (eval_f(rem_n->value())) {
ndel[dels++] = rem_n;
bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
rem_n = rem_n->next();
if (dels == num_del) {
break;
}
} else {
rem_n_prev = rem_n->next_ptr();
rem_n = rem_n->next();
}
}
return dels;
}
// Constructor
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
ConcurrentHashTable(size_t log2size, size_t log2size_limit, size_t grow_hint)
: _new_table(NULL), _log2_start_size(log2size),
_log2_size_limit(log2size_limit), _grow_hint(grow_hint),
_size_limit_reached(false), _resize_lock_owner(NULL),
_invisible_epoch(0)
{
_resize_lock =
new Mutex(Mutex::leaf, "ConcurrentHashTable", false,
Monitor::_safepoint_check_never);
_table = new InternalTable(log2size);
assert(log2size_limit >= log2size, "bad ergo");
_size_limit_reached = _table->_log2_size == _log2_size_limit;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline ConcurrentHashTable<VALUE, CONFIG, F>::
~ConcurrentHashTable()
{
delete _resize_lock;
free_nodes();
delete _table;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline size_t ConcurrentHashTable<VALUE, CONFIG, F>::
get_size_log2(Thread* thread)
{
ScopedCS cs(thread, this);
return _table->_log2_size;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
shrink(Thread* thread, size_t size_limit_log2)
{
size_t tmp = size_limit_log2 == 0 ? _log2_start_size : size_limit_log2;
bool ret = internal_shrink(thread, tmp);
return ret;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
grow(Thread* thread, size_t size_limit_log2)
{
size_t tmp = size_limit_log2 == 0 ? _log2_size_limit : size_limit_log2;
return internal_grow(thread, tmp);
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC, typename FOUND_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
get(Thread* thread, LOOKUP_FUNC& lookup_f, FOUND_FUNC& found_f, bool* grow_hint)
{
bool ret = false;
ScopedCS cs(thread, this);
VALUE* val = internal_get(thread, lookup_f, grow_hint);
if (val != NULL) {
found_f(val);
ret = true;
}
return ret;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename LOOKUP_FUNC>
inline VALUE ConcurrentHashTable<VALUE, CONFIG, F>::
get_copy(Thread* thread, LOOKUP_FUNC& lookup_f, bool* grow_hint)
{
ScopedCS cs(thread, this);
VALUE* val = internal_get(thread, lookup_f, grow_hint);
return val != NULL ? *val : CONFIG::notfound();
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
unsafe_insert(const VALUE& value) {
bool dead_hash = false;
size_t hash = CONFIG::get_hash(value, &dead_hash);
if (dead_hash) {
return false;
}
// This is an unsafe operation.
InternalTable* table = get_table();
Bucket* bucket = get_bucket_in(table, hash);
assert(!bucket->have_redirect() && !bucket->is_locked(), "bad");
Node* new_node = Node::create_node(value, bucket->first());
if (!bucket->cas_first(new_node, bucket->first())) {
assert(false, "bad");
}
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename SCAN_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
try_scan(Thread* thread, SCAN_FUNC& scan_f)
{
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
bool vm_and_safepoint = thread->is_VM_thread() &&
SafepointSynchronize::is_at_safepoint();
if (!vm_and_safepoint && !try_resize_lock(thread)) {
return false;
}
do_scan_locked(thread, scan_f);
if (!vm_and_safepoint) {
unlock_resize_lock(thread);
}
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename SCAN_FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
do_scan(Thread* thread, SCAN_FUNC& scan_f)
{
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
lock_resize_lock(thread);
do_scan_locked(thread, scan_f);
unlock_resize_lock(thread);
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
try_bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
{
if (!try_resize_lock(thread)) {
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
return false;
}
do_bulk_delete_locked(thread, eval_f, del_f);
unlock_resize_lock(thread);
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
return true;
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
{
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
lock_resize_lock(thread);
do_bulk_delete_locked(thread, eval_f, del_f);
unlock_resize_lock(thread);
assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
}
template <typename VALUE, typename CONFIG, MEMFLAGS F>
template <typename VALUE_SIZE_FUNC>
inline void ConcurrentHashTable<VALUE, CONFIG, F>::
statistics_to(Thread* thread, VALUE_SIZE_FUNC& vs_f,
outputStream* st, const char* table_name)
{
NumberSeq summary;
size_t literal_bytes = 0;
if ((thread->is_VM_thread() && !SafepointSynchronize::is_at_safepoint()) ||
(!thread->is_VM_thread() && !try_resize_lock(thread))) {
st->print_cr("statistics unavailable at this moment");
return;
}
InternalTable* table = get_table();
for (size_t bucket_it = 0; bucket_it < _table->_size; bucket_it++) {
ScopedCS cs(thread, this);
size_t count = 0;
Bucket* bucket = _table->get_bucket(bucket_it);
if (bucket->have_redirect() || bucket->is_locked()) {
continue;
}
Node* current_node = bucket->first();
while (current_node != NULL) {
++count;
literal_bytes += vs_f(current_node->value());
current_node = current_node->next();
}
summary.add((double)count);
}
double num_buckets = summary.num();
double num_entries = summary.sum();
size_t bucket_bytes = num_buckets * sizeof(Bucket);
size_t entry_bytes = num_entries * sizeof(Node);
size_t total_bytes = literal_bytes + bucket_bytes + entry_bytes;
size_t bucket_size = (num_buckets <= 0) ? 0 : (bucket_bytes / num_buckets);
size_t entry_size = (num_entries <= 0) ? 0 : (entry_bytes / num_entries);
st->print_cr("%s statistics:", table_name);
st->print_cr("Number of buckets : %9" PRIuPTR " = %9" PRIuPTR
" bytes, each " SIZE_FORMAT,
(size_t)num_buckets, bucket_bytes, bucket_size);
st->print_cr("Number of entries : %9" PRIuPTR " = %9" PRIuPTR
" bytes, each " SIZE_FORMAT,
(size_t)num_entries, entry_bytes, entry_size);
if (literal_bytes != 0) {
double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
st->print_cr("Number of literals : %9" PRIuPTR " = %9" PRIuPTR
" bytes, avg %7.3f",
(size_t)num_entries, literal_bytes, literal_avg);
}
st->print_cr("Total footprsize_t : %9s = %9" PRIuPTR " bytes", ""
, total_bytes);
st->print_cr("Average bucket size : %9.3f", summary.avg());
st->print_cr("Variance of bucket size : %9.3f", summary.variance());
st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
st->print_cr("Maximum bucket size : %9" PRIuPTR,
(size_t)summary.maximum());
if (!thread->is_VM_thread()) {
unlock_resize_lock(thread);
}
}
#endif // include guard