jdk-24/test/hotspot/gtest/utilities/test_nonblockingQueue.cpp

284 lines
8.5 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/nonblockingQueue.inline.hpp"
#include "utilities/pair.hpp"
#include "threadHelper.inline.hpp"
#include "unittest.hpp"
#include <new>
class NonblockingQueueTestElement {
typedef NonblockingQueueTestElement Element;
Element* volatile _entry;
Element* volatile _entry1;
size_t _id;
static Element* volatile* entry_ptr(Element& e) { return &e._entry; }
static Element* volatile* entry1_ptr(Element& e) { return &e._entry1; }
public:
using TestQueue = NonblockingQueue<Element, &entry_ptr>;
using TestQueue1 = NonblockingQueue<Element, &entry1_ptr>;
NonblockingQueueTestElement(size_t id = 0) : _entry(), _entry1(), _id(id) {}
size_t id() const { return _id; }
void set_id(size_t value) { _id = value; }
Element* next() { return _entry; }
Element* next1() { return _entry1; }
};
typedef NonblockingQueueTestElement Element;
typedef Element::TestQueue TestQueue;
typedef Element::TestQueue1 TestQueue1;
static void initialize(Element* elements, size_t size, TestQueue* queue) {
for (size_t i = 0; i < size; ++i) {
elements[i].set_id(i);
}
ASSERT_TRUE(queue->empty());
ASSERT_EQ(0u, queue->length());
ASSERT_TRUE(queue->is_end(queue->first()));
ASSERT_TRUE(queue->pop() == NULL);
for (size_t id = 0; id < size; ++id) {
ASSERT_EQ(id, queue->length());
Element* e = &elements[id];
ASSERT_EQ(id, e->id());
queue->push(*e);
ASSERT_FALSE(queue->empty());
// first() is always the oldest element.
ASSERT_EQ(&elements[0], queue->first());
}
}
class NonblockingQueueTestBasics : public ::testing::Test {
public:
NonblockingQueueTestBasics();
static const size_t nelements = 10;
Element elements[nelements];
TestQueue queue;
};
const size_t NonblockingQueueTestBasics::nelements;
NonblockingQueueTestBasics::NonblockingQueueTestBasics() : queue() {
initialize(elements, nelements, &queue);
}
TEST_F(NonblockingQueueTestBasics, pop) {
for (size_t i = 0; i < nelements; ++i) {
ASSERT_FALSE(queue.empty());
ASSERT_EQ(nelements - i, queue.length());
Element* e = queue.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
}
ASSERT_TRUE(queue.empty());
ASSERT_EQ(0u, queue.length());
ASSERT_TRUE(queue.pop() == NULL);
}
TEST_F(NonblockingQueueTestBasics, append) {
TestQueue other_queue;
ASSERT_TRUE(other_queue.empty());
ASSERT_EQ(0u, other_queue.length());
ASSERT_TRUE(other_queue.is_end(other_queue.first()));
ASSERT_TRUE(other_queue.pop() == NULL);
Pair<Element*, Element*> pair = queue.take_all();
other_queue.append(*pair.first, *pair.second);
ASSERT_EQ(nelements, other_queue.length());
ASSERT_TRUE(queue.empty());
ASSERT_EQ(0u, queue.length());
ASSERT_TRUE(queue.is_end(queue.first()));
ASSERT_TRUE(queue.pop() == NULL);
for (size_t i = 0; i < nelements; ++i) {
ASSERT_EQ(nelements - i, other_queue.length());
Element* e = other_queue.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
}
ASSERT_EQ(0u, other_queue.length());
ASSERT_TRUE(other_queue.pop() == NULL);
}
TEST_F(NonblockingQueueTestBasics, two_queues) {
TestQueue1 queue1;
ASSERT_TRUE(queue1.pop() == NULL);
for (size_t id = 0; id < nelements; ++id) {
queue1.push(elements[id]);
}
ASSERT_EQ(nelements, queue1.length());
Element* e0 = queue.first();
Element* e1 = queue1.first();
ASSERT_TRUE(e0 != NULL);
ASSERT_TRUE(e1 != NULL);
ASSERT_FALSE(queue.is_end(e0));
ASSERT_FALSE(queue1.is_end(e1));
while (!queue.is_end(e0) && !queue1.is_end(e1)) {
ASSERT_EQ(e0, e1);
e0 = e0->next();
e1 = e1->next1();
}
ASSERT_TRUE(queue.is_end(e0));
ASSERT_TRUE(queue1.is_end(e1));
for (size_t i = 0; i < nelements; ++i) {
ASSERT_EQ(nelements - i, queue.length());
ASSERT_EQ(nelements - i, queue1.length());
Element* e = queue.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
Element* e1 = queue1.pop();
ASSERT_TRUE(e1 != NULL);
ASSERT_EQ(&elements[i], e1);
ASSERT_EQ(i, e1->id());
ASSERT_EQ(e, e1);
}
ASSERT_EQ(0u, queue.length());
ASSERT_EQ(0u, queue1.length());
ASSERT_TRUE(queue.pop() == NULL);
ASSERT_TRUE(queue1.pop() == NULL);
}
class NonblockingQueueTestThread : public JavaTestThread {
uint _id;
TestQueue* _from;
TestQueue* _to;
volatile size_t* _processed;
size_t _process_limit;
size_t _local_processed;
volatile bool _ready;
public:
NonblockingQueueTestThread(Semaphore* post,
uint id,
TestQueue* from,
TestQueue* to,
volatile size_t* processed,
size_t process_limit) :
JavaTestThread(post),
_id(id),
_from(from),
_to(to),
_processed(processed),
_process_limit(process_limit),
_local_processed(0),
_ready(false)
{}
virtual void main_run() {
Atomic::release_store_fence(&_ready, true);
while (true) {
Element* e = _from->pop();
if (e != NULL) {
_to->push(*e);
Atomic::inc(_processed);
++_local_processed;
} else if (Atomic::load_acquire(_processed) == _process_limit) {
tty->print_cr("thread %u processed " SIZE_FORMAT, _id, _local_processed);
return;
}
}
}
bool ready() const { return Atomic::load_acquire(&_ready); }
};
TEST_VM(NonblockingQueueTest, stress) {
Semaphore post;
TestQueue initial_queue;
TestQueue start_queue;
TestQueue middle_queue;
TestQueue final_queue;
volatile size_t stage1_processed = 0;
volatile size_t stage2_processed = 0;
const size_t nelements = 10000;
Element* elements = NEW_C_HEAP_ARRAY(Element, nelements, mtOther);
for (size_t id = 0; id < nelements; ++id) {
::new (&elements[id]) Element(id);
initial_queue.push(elements[id]);
}
ASSERT_EQ(nelements, initial_queue.length());
// - stage1 threads pop from start_queue and push to middle_queue.
// - stage2 threads pop from middle_queue and push to final_queue.
// - all threads in a stage count the number of elements processed in
// their corresponding stageN_processed counter.
const uint stage1_threads = 2;
const uint stage2_threads = 2;
const uint nthreads = stage1_threads + stage2_threads;
NonblockingQueueTestThread* threads[nthreads] = {};
for (uint i = 0; i < ARRAY_SIZE(threads); ++i) {
TestQueue* from = &start_queue;
TestQueue* to = &middle_queue;
volatile size_t* processed = &stage1_processed;
if (i >= stage1_threads) {
from = &middle_queue;
to = &final_queue;
processed = &stage2_processed;
}
threads[i] =
new NonblockingQueueTestThread(&post, i, from, to, processed, nelements);
threads[i]->doit();
while (!threads[i]->ready()) {} // Wait until ready to start test.
}
// Transfer elements to start_queue to start test.
Pair<Element*, Element*> pair = initial_queue.take_all();
start_queue.append(*pair.first, *pair.second);
// Wait for all threads to complete.
for (uint i = 0; i < nthreads; ++i) {
post.wait();
}
// Verify expected state.
ASSERT_EQ(nelements, stage1_processed);
ASSERT_EQ(nelements, stage2_processed);
ASSERT_EQ(0u, initial_queue.length());
ASSERT_EQ(0u, start_queue.length());
ASSERT_EQ(0u, middle_queue.length());
ASSERT_EQ(nelements, final_queue.length());
while (final_queue.pop() != NULL) {}
FREE_C_HEAP_ARRAY(Element, elements);
}