jdk-24/jdk/test/java/util/concurrent/locks/ReentrantLock/LockOncePerThreadLoops.java

133 lines
4.5 KiB
Java
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 4486658
* @compile LockOncePerThreadLoops.java
2007-12-01 00:00:00 +00:00
* @run main/timeout=15000 LockOncePerThreadLoops
* @summary Checks for missed signals by locking and unlocking each of an array of locks once per thread
*/
import java.util.concurrent.*;
import java.util.concurrent.locks.*;
import java.util.*;
public final class LockOncePerThreadLoops {
static final ExecutorService pool = Executors.newCachedThreadPool();
static final LoopHelpers.SimpleRandom rng = new LoopHelpers.SimpleRandom();
static boolean print = false;
static int nlocks = 50000;
static int nthreads = 100;
static int replications = 5;
public static void main(String[] args) throws Exception {
if (args.length > 0)
replications = Integer.parseInt(args[0]);
if (args.length > 1)
nlocks = Integer.parseInt(args[1]);
print = true;
for (int i = 0; i < replications; ++i) {
System.out.print("Iteration: " + i);
new ReentrantLockLoop().test();
Thread.sleep(100);
}
pool.shutdown();
if (! pool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS))
throw new Error();
}
static final class ReentrantLockLoop implements Runnable {
private int v = rng.next();
private volatile int result = 17;
final ReentrantLock[]locks = new ReentrantLock[nlocks];
private final ReentrantLock lock = new ReentrantLock();
private final LoopHelpers.BarrierTimer timer = new LoopHelpers.BarrierTimer();
private final CyclicBarrier barrier;
ReentrantLockLoop() {
barrier = new CyclicBarrier(nthreads+1, timer);
for (int i = 0; i < nlocks; ++i)
locks[i] = new ReentrantLock();
}
final void test() throws Exception {
for (int i = 0; i < nthreads; ++i)
pool.execute(this);
barrier.await();
barrier.await();
if (print) {
long time = timer.getTime();
double secs = (double)(time) / 1000000000.0;
System.out.println("\t " + secs + "s run time");
}
int r = result;
if (r == 0) // avoid overoptimization
System.out.println("useless result: " + r);
}
public final void run() {
try {
barrier.await();
int sum = v;
int x = 0;
for (int i = 0; i < locks.length; ++i) {
locks[i].lock();
try {
v = x += ~(v - i);
}
finally {
locks[i].unlock();
}
// Once in a while, do something more expensive
if ((~i & 255) == 0) {
sum += LoopHelpers.compute1(LoopHelpers.compute2(x));
}
else
sum += sum ^ x;
}
barrier.await();
result += sum;
}
catch (Exception ie) {
return;
}
}
}
}