2018-03-26 12:59:45 -07:00
/*
* Copyright ( c ) 2018 , Oracle and / or its affiliates . All rights reserved .
* Copyright ( c ) 2018 SAP SE . All rights reserved .
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER .
*
* This code is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License version 2 only , as
* published by the Free Software Foundation .
*
* This code is distributed in the hope that it will be useful , but WITHOUT
* ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License
* version 2 for more details ( a copy is included in the LICENSE file that
* accompanied this code ) .
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work ; if not , write to the Free Software Foundation ,
* Inc . , 51 Franklin St , Fifth Floor , Boston , MA 02110 - 1301 USA .
*
* Please contact Oracle , 500 Oracle Parkway , Redwood Shores , CA 94065 USA
* or visit www . oracle . com if you need additional information or have any
* questions .
*
*/
# include "precompiled.hpp"
# include "code/codeHeapState.hpp"
# include "compiler/compileBroker.hpp"
# include "runtime/sweeper.hpp"
// -------------------------
// | General Description |
// -------------------------
// The CodeHeap state analytics are divided in two parts.
// The first part examines the entire CodeHeap and aggregates all
// information that is believed useful/important.
//
// Aggregation condenses the information of a piece of the CodeHeap
// (4096 bytes by default) into an analysis granule. These granules
// contain enough detail to gain initial insight while keeping the
// internal sttructure sizes in check.
//
// The CodeHeap is a living thing. Therefore, the aggregate is collected
// under the CodeCache_lock. The subsequent print steps are only locked
// against concurrent aggregations. That keeps the impact on
// "normal operation" (JIT compiler and sweeper activity) to a minimum.
//
// The second part, which consists of several, independent steps,
// prints the previously collected information with emphasis on
// various aspects.
//
// Data collection and printing is done on an "on request" basis.
// While no request is being processed, there is no impact on performance.
// The CodeHeap state analytics do have some memory footprint.
// The "aggregate" step allocates some data structures to hold the aggregated
// information for later output. These data structures live until they are
// explicitly discarded (function "discard") or until the VM terminates.
// There is one exception: the function "all" does not leave any data
// structures allocated.
//
// Requests for real-time, on-the-fly analysis can be issued via
// jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
//
// If you are (only) interested in how the CodeHeap looks like after running
// a sample workload, you can use the command line option
// -Xlog:codecache=Trace
//
// To see the CodeHeap state in case of a "CodeCache full" condition, start the
// VM with the
// -Xlog:codecache=Debug
// command line option. It will produce output only for the first time the
// condition is recognized.
//
// Both command line option variants produce output identical to the jcmd function
// jcmd <pid> Compiler.CodeHeap_Analytics all 4096
// ---------------------------------------------------------------------------------
// With this declaration macro, it is possible to switch between
// - direct output into an argument-passed outputStream and
// - buffered output into a bufferedStream with subsequent flush
// of the filled buffer to the outputStream.
# define USE_STRINGSTREAM
# define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times
//
// Writing to a bufferedStream buffer first has a significant advantage:
// It uses noticeably less cpu cycles and reduces (when wirting to a
// network file) the required bandwidth by at least a factor of ten.
// That clearly makes up for the increased code complexity.
# if defined(USE_STRINGSTREAM)
# define STRINGSTREAM_DECL(_anyst, _outst) \
/* _anyst name of the stream as used in the code */ \
/* _outst stream where final output will go to */ \
ResourceMark rm ; \
bufferedStream _sstobj = bufferedStream ( 4 * K ) ; \
bufferedStream * _sstbuf = & _sstobj ; \
outputStream * _outbuf = _outst ; \
bufferedStream * _anyst = & _sstobj ; /* any stream. Use this to just print - no buffer flush. */
# define STRINGSTREAM_FLUSH(termString) \
_sstbuf - > print ( " %s " , termString ) ; \
_outbuf - > print ( " %s " , _sstbuf - > as_string ( ) ) ; \
_sstbuf - > reset ( ) ;
# define STRINGSTREAM_FLUSH_LOCKED(termString) \
{ ttyLocker ttyl ; /* keep this output block together */ \
STRINGSTREAM_FLUSH ( termString ) \
}
# else
# define STRINGSTREAM_DECL(_anyst, _outst) \
outputStream * _outbuf = _outst ; \
outputStream * _anyst = _outst ; /* any stream. Use this to just print - no buffer flush. */
# define STRINGSTREAM_FLUSH(termString) \
_outbuf - > print ( " %s " , termString ) ;
# define STRINGSTREAM_FLUSH_LOCKED(termString) \
_outbuf - > print ( " %s " , termString ) ;
# endif
const char blobTypeChar [ ] = { ' ' , ' N ' , ' I ' , ' X ' , ' Z ' , ' U ' , ' R ' , ' ? ' , ' D ' , ' T ' , ' E ' , ' S ' , ' A ' , ' M ' , ' B ' , ' L ' } ;
const char * blobTypeName [ ] = { " noType "
, " nMethod (active) "
, " nMethod (inactive) "
, " nMethod (deopt) "
, " nMethod (zombie) "
, " nMethod (unloaded) "
, " runtime stub "
, " ricochet stub "
, " deopt stub "
, " uncommon trap stub "
, " exception stub "
, " safepoint stub "
, " adapter blob "
, " MH adapter blob "
, " buffer blob "
, " lastType "
} ;
const char * compTypeName [ ] = { " none " , " c1 " , " c2 " , " jvmci " } ;
// Be prepared for ten different CodeHeap segments. Should be enough for a few years.
const unsigned int nSizeDistElements = 31 ; // logarithmic range growth, max size: 2**32
const unsigned int maxTopSizeBlocks = 50 ;
const unsigned int tsbStopper = 2 * maxTopSizeBlocks ;
const unsigned int maxHeaps = 10 ;
static unsigned int nHeaps = 0 ;
static struct CodeHeapStat CodeHeapStatArray [ maxHeaps ] ;
// static struct StatElement *StatArray = NULL;
static StatElement * StatArray = NULL ;
static int log2_seg_size = 0 ;
static size_t seg_size = 0 ;
static size_t alloc_granules = 0 ;
static size_t granule_size = 0 ;
static bool segment_granules = false ;
static unsigned int nBlocks_t1 = 0 ; // counting "in_use" nmethods only.
static unsigned int nBlocks_t2 = 0 ; // counting "in_use" nmethods only.
static unsigned int nBlocks_alive = 0 ; // counting "not_used" and "not_entrant" nmethods only.
static unsigned int nBlocks_dead = 0 ; // counting "zombie" and "unloaded" methods only.
static unsigned int nBlocks_unloaded = 0 ; // counting "unloaded" nmethods only. This is a transien state.
static unsigned int nBlocks_stub = 0 ;
static struct FreeBlk * FreeArray = NULL ;
static unsigned int alloc_freeBlocks = 0 ;
static struct TopSizeBlk * TopSizeArray = NULL ;
static unsigned int alloc_topSizeBlocks = 0 ;
static unsigned int used_topSizeBlocks = 0 ;
static struct SizeDistributionElement * SizeDistributionArray = NULL ;
// nMethod temperature (hotness) indicators.
static int avgTemp = 0 ;
static int maxTemp = 0 ;
static int minTemp = 0 ;
static unsigned int latest_compilation_id = 0 ;
static volatile bool initialization_complete = false ;
const char * CodeHeapState : : get_heapName ( CodeHeap * heap ) {
if ( SegmentedCodeCache ) {
return heap - > name ( ) ;
} else {
return " CodeHeap " ;
}
}
// returns the index for the heap being processed.
unsigned int CodeHeapState : : findHeapIndex ( outputStream * out , const char * heapName ) {
if ( heapName = = NULL ) {
return maxHeaps ;
}
if ( SegmentedCodeCache ) {
// Search for a pre-existing entry. If found, return that index.
for ( unsigned int i = 0 ; i < nHeaps ; i + + ) {
if ( CodeHeapStatArray [ i ] . heapName ! = NULL & & strcmp ( heapName , CodeHeapStatArray [ i ] . heapName ) = = 0 ) {
return i ;
}
}
// check if there are more code heap segments than we can handle.
if ( nHeaps = = maxHeaps ) {
out - > print_cr ( " Too many heap segments for current limit(%d). " , maxHeaps ) ;
return maxHeaps ;
}
// allocate new slot in StatArray.
CodeHeapStatArray [ nHeaps ] . heapName = heapName ;
return nHeaps + + ;
} else {
nHeaps = 1 ;
CodeHeapStatArray [ 0 ] . heapName = heapName ;
return 0 ; // This is the default index if CodeCache is not segmented.
}
}
void CodeHeapState : : get_HeapStatGlobals ( outputStream * out , const char * heapName ) {
unsigned int ix = findHeapIndex ( out , heapName ) ;
if ( ix < maxHeaps ) {
StatArray = CodeHeapStatArray [ ix ] . StatArray ;
seg_size = CodeHeapStatArray [ ix ] . segment_size ;
log2_seg_size = seg_size = = 0 ? 0 : exact_log2 ( seg_size ) ;
alloc_granules = CodeHeapStatArray [ ix ] . alloc_granules ;
granule_size = CodeHeapStatArray [ ix ] . granule_size ;
segment_granules = CodeHeapStatArray [ ix ] . segment_granules ;
nBlocks_t1 = CodeHeapStatArray [ ix ] . nBlocks_t1 ;
nBlocks_t2 = CodeHeapStatArray [ ix ] . nBlocks_t2 ;
nBlocks_alive = CodeHeapStatArray [ ix ] . nBlocks_alive ;
nBlocks_dead = CodeHeapStatArray [ ix ] . nBlocks_dead ;
nBlocks_unloaded = CodeHeapStatArray [ ix ] . nBlocks_unloaded ;
nBlocks_stub = CodeHeapStatArray [ ix ] . nBlocks_stub ;
FreeArray = CodeHeapStatArray [ ix ] . FreeArray ;
alloc_freeBlocks = CodeHeapStatArray [ ix ] . alloc_freeBlocks ;
TopSizeArray = CodeHeapStatArray [ ix ] . TopSizeArray ;
alloc_topSizeBlocks = CodeHeapStatArray [ ix ] . alloc_topSizeBlocks ;
used_topSizeBlocks = CodeHeapStatArray [ ix ] . used_topSizeBlocks ;
SizeDistributionArray = CodeHeapStatArray [ ix ] . SizeDistributionArray ;
avgTemp = CodeHeapStatArray [ ix ] . avgTemp ;
maxTemp = CodeHeapStatArray [ ix ] . maxTemp ;
minTemp = CodeHeapStatArray [ ix ] . minTemp ;
} else {
StatArray = NULL ;
seg_size = 0 ;
log2_seg_size = 0 ;
alloc_granules = 0 ;
granule_size = 0 ;
segment_granules = false ;
nBlocks_t1 = 0 ;
nBlocks_t2 = 0 ;
nBlocks_alive = 0 ;
nBlocks_dead = 0 ;
nBlocks_unloaded = 0 ;
nBlocks_stub = 0 ;
FreeArray = NULL ;
alloc_freeBlocks = 0 ;
TopSizeArray = NULL ;
alloc_topSizeBlocks = 0 ;
used_topSizeBlocks = 0 ;
SizeDistributionArray = NULL ;
avgTemp = 0 ;
maxTemp = 0 ;
minTemp = 0 ;
}
}
void CodeHeapState : : set_HeapStatGlobals ( outputStream * out , const char * heapName ) {
unsigned int ix = findHeapIndex ( out , heapName ) ;
if ( ix < maxHeaps ) {
CodeHeapStatArray [ ix ] . StatArray = StatArray ;
CodeHeapStatArray [ ix ] . segment_size = seg_size ;
CodeHeapStatArray [ ix ] . alloc_granules = alloc_granules ;
CodeHeapStatArray [ ix ] . granule_size = granule_size ;
CodeHeapStatArray [ ix ] . segment_granules = segment_granules ;
CodeHeapStatArray [ ix ] . nBlocks_t1 = nBlocks_t1 ;
CodeHeapStatArray [ ix ] . nBlocks_t2 = nBlocks_t2 ;
CodeHeapStatArray [ ix ] . nBlocks_alive = nBlocks_alive ;
CodeHeapStatArray [ ix ] . nBlocks_dead = nBlocks_dead ;
CodeHeapStatArray [ ix ] . nBlocks_unloaded = nBlocks_unloaded ;
CodeHeapStatArray [ ix ] . nBlocks_stub = nBlocks_stub ;
CodeHeapStatArray [ ix ] . FreeArray = FreeArray ;
CodeHeapStatArray [ ix ] . alloc_freeBlocks = alloc_freeBlocks ;
CodeHeapStatArray [ ix ] . TopSizeArray = TopSizeArray ;
CodeHeapStatArray [ ix ] . alloc_topSizeBlocks = alloc_topSizeBlocks ;
CodeHeapStatArray [ ix ] . used_topSizeBlocks = used_topSizeBlocks ;
CodeHeapStatArray [ ix ] . SizeDistributionArray = SizeDistributionArray ;
CodeHeapStatArray [ ix ] . avgTemp = avgTemp ;
CodeHeapStatArray [ ix ] . maxTemp = maxTemp ;
CodeHeapStatArray [ ix ] . minTemp = minTemp ;
}
}
//---< get a new statistics array >---
void CodeHeapState : : prepare_StatArray ( outputStream * out , size_t nElem , size_t granularity , const char * heapName ) {
if ( StatArray = = NULL ) {
StatArray = new StatElement [ nElem ] ;
//---< reset some counts >---
alloc_granules = nElem ;
granule_size = granularity ;
}
if ( StatArray = = NULL ) {
//---< just do nothing if allocation failed >---
out - > print_cr ( " Statistics could not be collected for %s, probably out of memory. " , heapName ) ;
out - > print_cr ( " Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity. " , granularity ) ;
alloc_granules = 0 ;
granule_size = 0 ;
} else {
//---< initialize statistics array >---
memset ( ( void * ) StatArray , 0 , nElem * sizeof ( StatElement ) ) ;
}
}
//---< get a new free block array >---
void CodeHeapState : : prepare_FreeArray ( outputStream * out , unsigned int nElem , const char * heapName ) {
if ( FreeArray = = NULL ) {
FreeArray = new FreeBlk [ nElem ] ;
//---< reset some counts >---
alloc_freeBlocks = nElem ;
}
if ( FreeArray = = NULL ) {
//---< just do nothing if allocation failed >---
out - > print_cr ( " Free space analysis cannot be done for %s, probably out of memory. " , heapName ) ;
alloc_freeBlocks = 0 ;
} else {
//---< initialize free block array >---
memset ( ( void * ) FreeArray , 0 , alloc_freeBlocks * sizeof ( FreeBlk ) ) ;
}
}
//---< get a new TopSizeArray >---
void CodeHeapState : : prepare_TopSizeArray ( outputStream * out , unsigned int nElem , const char * heapName ) {
if ( TopSizeArray = = NULL ) {
TopSizeArray = new TopSizeBlk [ nElem ] ;
//---< reset some counts >---
alloc_topSizeBlocks = nElem ;
used_topSizeBlocks = 0 ;
}
if ( TopSizeArray = = NULL ) {
//---< just do nothing if allocation failed >---
out - > print_cr ( " Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory. " , nElem , heapName ) ;
alloc_topSizeBlocks = 0 ;
} else {
//---< initialize TopSizeArray >---
memset ( ( void * ) TopSizeArray , 0 , nElem * sizeof ( TopSizeBlk ) ) ;
used_topSizeBlocks = 0 ;
}
}
//---< get a new SizeDistributionArray >---
void CodeHeapState : : prepare_SizeDistArray ( outputStream * out , unsigned int nElem , const char * heapName ) {
if ( SizeDistributionArray = = NULL ) {
SizeDistributionArray = new SizeDistributionElement [ nElem ] ;
}
if ( SizeDistributionArray = = NULL ) {
//---< just do nothing if allocation failed >---
out - > print_cr ( " Size distribution can not be collected for %s, probably out of memory. " , heapName ) ;
} else {
//---< initialize SizeDistArray >---
memset ( ( void * ) SizeDistributionArray , 0 , nElem * sizeof ( SizeDistributionElement ) ) ;
// Logarithmic range growth. First range starts at _segment_size.
SizeDistributionArray [ log2_seg_size - 1 ] . rangeEnd = 1U ;
for ( unsigned int i = log2_seg_size ; i < nElem ; i + + ) {
SizeDistributionArray [ i ] . rangeStart = 1U < < ( i - log2_seg_size ) ;
SizeDistributionArray [ i ] . rangeEnd = 1U < < ( ( i + 1 ) - log2_seg_size ) ;
}
}
}
//---< get a new SizeDistributionArray >---
void CodeHeapState : : update_SizeDistArray ( outputStream * out , unsigned int len ) {
if ( SizeDistributionArray ! = NULL ) {
for ( unsigned int i = log2_seg_size - 1 ; i < nSizeDistElements ; i + + ) {
if ( ( SizeDistributionArray [ i ] . rangeStart < = len ) & & ( len < SizeDistributionArray [ i ] . rangeEnd ) ) {
SizeDistributionArray [ i ] . lenSum + = len ;
SizeDistributionArray [ i ] . count + + ;
break ;
}
}
}
}
void CodeHeapState : : discard_StatArray ( outputStream * out ) {
if ( StatArray ! = NULL ) {
delete StatArray ;
StatArray = NULL ;
alloc_granules = 0 ;
granule_size = 0 ;
}
}
void CodeHeapState : : discard_FreeArray ( outputStream * out ) {
if ( FreeArray ! = NULL ) {
delete [ ] FreeArray ;
FreeArray = NULL ;
alloc_freeBlocks = 0 ;
}
}
void CodeHeapState : : discard_TopSizeArray ( outputStream * out ) {
if ( TopSizeArray ! = NULL ) {
delete [ ] TopSizeArray ;
TopSizeArray = NULL ;
alloc_topSizeBlocks = 0 ;
used_topSizeBlocks = 0 ;
}
}
void CodeHeapState : : discard_SizeDistArray ( outputStream * out ) {
if ( SizeDistributionArray ! = NULL ) {
delete [ ] SizeDistributionArray ;
SizeDistributionArray = NULL ;
}
}
// Discard all allocated internal data structures.
// This should be done after an analysis session is completed.
void CodeHeapState : : discard ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
if ( nHeaps > 0 ) {
for ( unsigned int ix = 0 ; ix < nHeaps ; ix + + ) {
get_HeapStatGlobals ( out , CodeHeapStatArray [ ix ] . heapName ) ;
discard_StatArray ( out ) ;
discard_FreeArray ( out ) ;
discard_TopSizeArray ( out ) ;
discard_SizeDistArray ( out ) ;
set_HeapStatGlobals ( out , CodeHeapStatArray [ ix ] . heapName ) ;
CodeHeapStatArray [ ix ] . heapName = NULL ;
}
nHeaps = 0 ;
}
}
void CodeHeapState : : aggregate ( outputStream * out , CodeHeap * heap , const char * granularity_request ) {
unsigned int nBlocks_free = 0 ;
unsigned int nBlocks_used = 0 ;
unsigned int nBlocks_zomb = 0 ;
unsigned int nBlocks_disconn = 0 ;
unsigned int nBlocks_notentr = 0 ;
//---< max & min of TopSizeArray >---
// it is sufficient to have these sizes as 32bit unsigned ints.
// The CodeHeap is limited in size to 4GB. Furthermore, the sizes
// are stored in _segment_size units, scaling them down by a factor of 64 (at least).
unsigned int currMax = 0 ;
unsigned int currMin = 0 ;
unsigned int currMin_ix = 0 ;
unsigned long total_iterations = 0 ;
bool done = false ;
const int min_granules = 256 ;
const int max_granules = 512 * K ; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
// results in StatArray size of 20M (= max_granules * 40 Bytes per element)
// For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
const char * heapName = get_heapName ( heap ) ;
STRINGSTREAM_DECL ( ast , out )
if ( ! initialization_complete ) {
memset ( CodeHeapStatArray , 0 , sizeof ( CodeHeapStatArray ) ) ;
initialization_complete = true ;
printBox ( ast , ' = ' , " C O D E H E A P A N A L Y S I S (general remarks) " , NULL ) ;
ast - > print_cr ( " The code heap analysis function provides deep insights into \n "
" the inner workings and the internal state of the Java VM's \n "
" code cache - the place where all the JVM generated machine \n "
" code is stored. \n "
" \n "
" This function is designed and provided for support engineers \n "
" to help them understand and solve issues in customer systems. \n "
" It is not intended for use and interpretation by other persons. \n "
" \n " ) ;
STRINGSTREAM_FLUSH ( " " )
}
get_HeapStatGlobals ( out , heapName ) ;
// Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
// all heap information is "constant" and can be safely extracted/calculated before we
// enter the while() loop. Actually, the loop will only be iterated once.
char * low_bound = heap - > low_boundary ( ) ;
size_t size = heap - > capacity ( ) ;
size_t res_size = heap - > max_capacity ( ) ;
seg_size = heap - > segment_size ( ) ;
log2_seg_size = seg_size = = 0 ? 0 : exact_log2 ( seg_size ) ; // This is a global static value.
if ( seg_size = = 0 ) {
printBox ( ast , ' - ' , " Heap not fully initialized yet, segment size is zero for segment " , heapName ) ;
STRINGSTREAM_FLUSH ( " " )
return ;
}
// Calculate granularity of analysis (and output).
// The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
// The CodeHeap can become fairly large, in particular in productive real-life systems.
//
// It is often neither feasible nor desirable to aggregate the data with the highest possible
// level of detail, i.e. inspecting and printing each segment on its own.
//
// The granularity parameter allows to specify the level of detail available in the analysis.
// It must be a positive multiple of the segment size and should be selected such that enough
// detail is provided while, at the same time, the printed output does not explode.
//
// By manipulating the granularity value, we enforce that at least min_granules units
// of analysis are available. We also enforce an upper limit of max_granules units to
// keep the amount of allocated storage in check.
//
// Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
// This is necessary to prevent an unsigned short overflow while accumulating space information.
//
size_t granularity = strtol ( granularity_request , NULL , 0 ) ;
if ( granularity > size ) {
granularity = size ;
}
if ( size / granularity < min_granules ) {
granularity = size / min_granules ; // at least min_granules granules
}
granularity = granularity & ( ~ ( seg_size - 1 ) ) ; // must be multiple of seg_size
if ( granularity < seg_size ) {
granularity = seg_size ; // must be at least seg_size
}
if ( size / granularity > max_granules ) {
granularity = size / max_granules ; // at most max_granules granules
}
granularity = granularity & ( ~ ( seg_size - 1 ) ) ; // must be multiple of seg_size
if ( granularity > > log2_seg_size > = ( 1L < < sizeof ( unsigned short ) * 8 ) ) {
granularity = ( ( 1L < < ( sizeof ( unsigned short ) * 8 ) ) - 1 ) < < log2_seg_size ; // Limit: (64k-1) * seg_size
}
segment_granules = granularity = = seg_size ;
size_t granules = ( size + ( granularity - 1 ) ) / granularity ;
printBox ( ast , ' = ' , " C O D E H E A P A N A L Y S I S (used blocks) for segment " , heapName ) ;
ast - > print_cr ( " The aggregate step takes an aggregated snapshot of the CodeHeap. \n "
" Subsequent print functions create their output based on this snapshot. \n "
" The CodeHeap is a living thing, and every effort has been made for the \n "
" collected data to be consistent. Only the method names and signatures \n "
" are retrieved at print time. That may lead to rare cases where the \n "
" name of a method is no longer available, e.g. because it was unloaded. \n " ) ;
ast - > print_cr ( " CodeHeap committed size " SIZE_FORMAT " K ( " SIZE_FORMAT " M), reserved size " SIZE_FORMAT " K ( " SIZE_FORMAT " M), %d%% occupied. " ,
size / ( size_t ) K , size / ( size_t ) M , res_size / ( size_t ) K , res_size / ( size_t ) M , ( unsigned int ) ( 100.0 * size / res_size ) ) ;
ast - > print_cr ( " CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity. " , seg_size ) ;
ast - > print_cr ( " CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes. " , granules , granularity ) ;
ast - > print_cr ( " Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT " K in total for statistics data. " , sizeof ( StatElement ) , ( sizeof ( StatElement ) * granules ) / ( size_t ) K ) ;
ast - > print_cr ( " The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap. " , ( unsigned int ) ( max_granules / K ) , ( unsigned int ) ( G / max_granules ) ) ;
STRINGSTREAM_FLUSH ( " \n " )
while ( ! done ) {
//---< reset counters with every aggregation >---
nBlocks_t1 = 0 ;
nBlocks_t2 = 0 ;
nBlocks_alive = 0 ;
nBlocks_dead = 0 ;
nBlocks_unloaded = 0 ;
nBlocks_stub = 0 ;
nBlocks_free = 0 ;
nBlocks_used = 0 ;
nBlocks_zomb = 0 ;
nBlocks_disconn = 0 ;
nBlocks_notentr = 0 ;
//---< discard old arrays if size does not match >---
if ( granules ! = alloc_granules ) {
discard_StatArray ( out ) ;
discard_TopSizeArray ( out ) ;
}
//---< allocate arrays if they don't yet exist, initialize >---
prepare_StatArray ( out , granules , granularity , heapName ) ;
if ( StatArray = = NULL ) {
set_HeapStatGlobals ( out , heapName ) ;
return ;
}
prepare_TopSizeArray ( out , maxTopSizeBlocks , heapName ) ;
prepare_SizeDistArray ( out , nSizeDistElements , heapName ) ;
latest_compilation_id = CompileBroker : : get_compilation_id ( ) ;
unsigned int highest_compilation_id = 0 ;
size_t usedSpace = 0 ;
size_t t1Space = 0 ;
size_t t2Space = 0 ;
size_t aliveSpace = 0 ;
size_t disconnSpace = 0 ;
size_t notentrSpace = 0 ;
size_t deadSpace = 0 ;
size_t unloadedSpace = 0 ;
size_t stubSpace = 0 ;
size_t freeSpace = 0 ;
size_t maxFreeSize = 0 ;
HeapBlock * maxFreeBlock = NULL ;
bool insane = false ;
int64_t hotnessAccumulator = 0 ;
unsigned int n_methods = 0 ;
avgTemp = 0 ;
minTemp = ( int ) ( res_size > M ? ( res_size / M ) * 2 : 1 ) ;
maxTemp = - minTemp ;
for ( HeapBlock * h = heap - > first_block ( ) ; h ! = NULL & & ! insane ; h = heap - > next_block ( h ) ) {
unsigned int hb_len = ( unsigned int ) h - > length ( ) ; // despite being size_t, length can never overflow an unsigned int.
size_t hb_bytelen = ( ( size_t ) hb_len ) < < log2_seg_size ;
unsigned int ix_beg = ( unsigned int ) ( ( ( char * ) h - low_bound ) / granule_size ) ;
unsigned int ix_end = ( unsigned int ) ( ( ( char * ) h - low_bound + ( hb_bytelen - 1 ) ) / granule_size ) ;
unsigned int compile_id = 0 ;
CompLevel comp_lvl = CompLevel_none ;
compType cType = noComp ;
blobType cbType = noType ;
//---< some sanity checks >---
// Do not assert here, just check, print error message and return.
// This is a diagnostic function. It is not supposed to tear down the VM.
2018-04-18 21:10:09 -07:00
if ( ( char * ) h < low_bound ) {
2018-03-26 12:59:45 -07:00
insane = true ; ast - > print_cr ( " Sanity check: HeapBlock @%p below low bound (%p) " , ( char * ) h , low_bound ) ;
}
2018-04-18 21:10:09 -07:00
if ( ( char * ) h > ( low_bound + res_size ) ) {
insane = true ; ast - > print_cr ( " Sanity check: HeapBlock @%p outside reserved range (%p) " , ( char * ) h , low_bound + res_size ) ;
}
if ( ( char * ) h > ( low_bound + size ) ) {
insane = true ; ast - > print_cr ( " Sanity check: HeapBlock @%p outside used range (%p) " , ( char * ) h , low_bound + size ) ;
}
if ( ix_end > = granules ) {
2018-03-26 12:59:45 -07:00
insane = true ; ast - > print_cr ( " Sanity check: end index (%d) out of bounds ( " SIZE_FORMAT " ) " , ix_end , granules ) ;
}
if ( size ! = heap - > capacity ( ) ) {
insane = true ; ast - > print_cr ( " Sanity check: code heap capacity has changed ( " SIZE_FORMAT " K to " SIZE_FORMAT " K) " , size / ( size_t ) K , heap - > capacity ( ) / ( size_t ) K ) ;
}
2018-04-18 21:10:09 -07:00
if ( ix_beg > ix_end ) {
2018-03-26 12:59:45 -07:00
insane = true ; ast - > print_cr ( " Sanity check: end index (%d) lower than begin index (%d) " , ix_end , ix_beg ) ;
}
if ( insane ) {
STRINGSTREAM_FLUSH ( " " )
continue ;
}
if ( h - > free ( ) ) {
nBlocks_free + + ;
freeSpace + = hb_bytelen ;
if ( hb_bytelen > maxFreeSize ) {
maxFreeSize = hb_bytelen ;
maxFreeBlock = h ;
}
} else {
update_SizeDistArray ( out , hb_len ) ;
nBlocks_used + + ;
usedSpace + = hb_bytelen ;
CodeBlob * cb = ( CodeBlob * ) heap - > find_start ( h ) ;
if ( cb ! = NULL ) {
cbType = get_cbType ( cb ) ;
if ( cb - > is_nmethod ( ) ) {
compile_id = ( ( nmethod * ) cb ) - > compile_id ( ) ;
comp_lvl = ( CompLevel ) ( ( nmethod * ) cb ) - > comp_level ( ) ;
if ( ( ( nmethod * ) cb ) - > is_compiled_by_c1 ( ) ) {
cType = c1 ;
}
if ( ( ( nmethod * ) cb ) - > is_compiled_by_c2 ( ) ) {
cType = c2 ;
}
if ( ( ( nmethod * ) cb ) - > is_compiled_by_jvmci ( ) ) {
cType = jvmci ;
}
switch ( cbType ) {
case nMethod_inuse : { // only for executable methods!!!
// space for these cbs is accounted for later.
int temperature = ( ( nmethod * ) cb ) - > hotness_counter ( ) ;
hotnessAccumulator + = temperature ;
n_methods + + ;
maxTemp = ( temperature > maxTemp ) ? temperature : maxTemp ;
minTemp = ( temperature < minTemp ) ? temperature : minTemp ;
break ;
}
case nMethod_notused :
nBlocks_alive + + ;
nBlocks_disconn + + ;
aliveSpace + = hb_bytelen ;
disconnSpace + = hb_bytelen ;
break ;
case nMethod_notentrant : // equivalent to nMethod_alive
nBlocks_alive + + ;
nBlocks_notentr + + ;
aliveSpace + = hb_bytelen ;
notentrSpace + = hb_bytelen ;
break ;
case nMethod_unloaded :
nBlocks_unloaded + + ;
unloadedSpace + = hb_bytelen ;
break ;
case nMethod_dead :
nBlocks_dead + + ;
deadSpace + = hb_bytelen ;
break ;
default :
break ;
}
}
//------------------------------------------
//---< register block in TopSizeArray >---
//------------------------------------------
if ( alloc_topSizeBlocks > 0 ) {
if ( used_topSizeBlocks = = 0 ) {
TopSizeArray [ 0 ] . start = h ;
TopSizeArray [ 0 ] . len = hb_len ;
TopSizeArray [ 0 ] . index = tsbStopper ;
TopSizeArray [ 0 ] . compiler = cType ;
TopSizeArray [ 0 ] . level = comp_lvl ;
TopSizeArray [ 0 ] . type = cbType ;
currMax = hb_len ;
currMin = hb_len ;
currMin_ix = 0 ;
used_topSizeBlocks + + ;
// This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
} else if ( ( used_topSizeBlocks < alloc_topSizeBlocks ) & & ( hb_len < currMin ) ) {
//---< all blocks in list are larger, but there is room left in array >---
TopSizeArray [ currMin_ix ] . index = used_topSizeBlocks ;
TopSizeArray [ used_topSizeBlocks ] . start = h ;
TopSizeArray [ used_topSizeBlocks ] . len = hb_len ;
TopSizeArray [ used_topSizeBlocks ] . index = tsbStopper ;
TopSizeArray [ used_topSizeBlocks ] . compiler = cType ;
TopSizeArray [ used_topSizeBlocks ] . level = comp_lvl ;
TopSizeArray [ used_topSizeBlocks ] . type = cbType ;
currMin = hb_len ;
currMin_ix = used_topSizeBlocks ;
used_topSizeBlocks + + ;
} else {
// This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
// We don't need to search the list if we know beforehand that the current block size is
// smaller than the currently recorded minimum and there is no free entry left in the list.
if ( ! ( ( used_topSizeBlocks = = alloc_topSizeBlocks ) & & ( hb_len < = currMin ) ) ) {
if ( currMax < hb_len ) {
currMax = hb_len ;
}
unsigned int i ;
unsigned int prev_i = tsbStopper ;
unsigned int limit_i = 0 ;
for ( i = 0 ; i ! = tsbStopper ; i = TopSizeArray [ i ] . index ) {
if ( limit_i + + > = alloc_topSizeBlocks ) {
insane = true ; break ; // emergency exit
}
if ( i > = used_topSizeBlocks ) {
insane = true ; break ; // emergency exit
}
total_iterations + + ;
if ( TopSizeArray [ i ] . len < hb_len ) {
//---< We want to insert here, element <i> is smaller than the current one >---
if ( used_topSizeBlocks < alloc_topSizeBlocks ) { // still room for a new entry to insert
// old entry gets moved to the next free element of the array.
// That's necessary to keep the entry for the largest block at index 0.
// This move might cause the current minimum to be moved to another place
if ( i = = currMin_ix ) {
assert ( TopSizeArray [ i ] . len = = currMin , " sort error " ) ;
currMin_ix = used_topSizeBlocks ;
}
memcpy ( ( void * ) & TopSizeArray [ used_topSizeBlocks ] , ( void * ) & TopSizeArray [ i ] , sizeof ( TopSizeBlk ) ) ;
TopSizeArray [ i ] . start = h ;
TopSizeArray [ i ] . len = hb_len ;
TopSizeArray [ i ] . index = used_topSizeBlocks ;
TopSizeArray [ i ] . compiler = cType ;
TopSizeArray [ i ] . level = comp_lvl ;
TopSizeArray [ i ] . type = cbType ;
used_topSizeBlocks + + ;
} else { // no room for new entries, current block replaces entry for smallest block
//---< Find last entry (entry for smallest remembered block) >---
unsigned int j = i ;
unsigned int prev_j = tsbStopper ;
unsigned int limit_j = 0 ;
while ( TopSizeArray [ j ] . index ! = tsbStopper ) {
if ( limit_j + + > = alloc_topSizeBlocks ) {
insane = true ; break ; // emergency exit
}
if ( j > = used_topSizeBlocks ) {
insane = true ; break ; // emergency exit
}
total_iterations + + ;
prev_j = j ;
j = TopSizeArray [ j ] . index ;
}
if ( ! insane ) {
if ( prev_j = = tsbStopper ) {
//---< Above while loop did not iterate, we already are the min entry >---
//---< We have to just replace the smallest entry >---
currMin = hb_len ;
currMin_ix = j ;
TopSizeArray [ j ] . start = h ;
TopSizeArray [ j ] . len = hb_len ;
TopSizeArray [ j ] . index = tsbStopper ; // already set!!
TopSizeArray [ j ] . compiler = cType ;
TopSizeArray [ j ] . level = comp_lvl ;
TopSizeArray [ j ] . type = cbType ;
} else {
//---< second-smallest entry is now smallest >---
TopSizeArray [ prev_j ] . index = tsbStopper ;
currMin = TopSizeArray [ prev_j ] . len ;
currMin_ix = prev_j ;
//---< smallest entry gets overwritten >---
memcpy ( ( void * ) & TopSizeArray [ j ] , ( void * ) & TopSizeArray [ i ] , sizeof ( TopSizeBlk ) ) ;
TopSizeArray [ i ] . start = h ;
TopSizeArray [ i ] . len = hb_len ;
TopSizeArray [ i ] . index = j ;
TopSizeArray [ i ] . compiler = cType ;
TopSizeArray [ i ] . level = comp_lvl ;
TopSizeArray [ i ] . type = cbType ;
}
} // insane
}
break ;
}
prev_i = i ;
}
if ( insane ) {
// Note: regular analysis could probably continue by resetting "insane" flag.
out - > print_cr ( " Possible loop in TopSizeBlocks list detected. Analysis aborted. " ) ;
discard_TopSizeArray ( out ) ;
}
}
}
}
//----------------------------------------------
//---< END register block in TopSizeArray >---
//----------------------------------------------
} else {
nBlocks_zomb + + ;
}
if ( ix_beg = = ix_end ) {
StatArray [ ix_beg ] . type = cbType ;
switch ( cbType ) {
case nMethod_inuse :
highest_compilation_id = ( highest_compilation_id > = compile_id ) ? highest_compilation_id : compile_id ;
if ( comp_lvl < CompLevel_full_optimization ) {
nBlocks_t1 + + ;
t1Space + = hb_bytelen ;
StatArray [ ix_beg ] . t1_count + + ;
StatArray [ ix_beg ] . t1_space + = ( unsigned short ) hb_len ;
StatArray [ ix_beg ] . t1_age = StatArray [ ix_beg ] . t1_age < compile_id ? compile_id : StatArray [ ix_beg ] . t1_age ;
} else {
nBlocks_t2 + + ;
t2Space + = hb_bytelen ;
StatArray [ ix_beg ] . t2_count + + ;
StatArray [ ix_beg ] . t2_space + = ( unsigned short ) hb_len ;
StatArray [ ix_beg ] . t2_age = StatArray [ ix_beg ] . t2_age < compile_id ? compile_id : StatArray [ ix_beg ] . t2_age ;
}
StatArray [ ix_beg ] . level = comp_lvl ;
StatArray [ ix_beg ] . compiler = cType ;
break ;
case nMethod_alive :
StatArray [ ix_beg ] . tx_count + + ;
StatArray [ ix_beg ] . tx_space + = ( unsigned short ) hb_len ;
StatArray [ ix_beg ] . tx_age = StatArray [ ix_beg ] . tx_age < compile_id ? compile_id : StatArray [ ix_beg ] . tx_age ;
StatArray [ ix_beg ] . level = comp_lvl ;
StatArray [ ix_beg ] . compiler = cType ;
break ;
case nMethod_dead :
case nMethod_unloaded :
StatArray [ ix_beg ] . dead_count + + ;
StatArray [ ix_beg ] . dead_space + = ( unsigned short ) hb_len ;
break ;
default :
// must be a stub, if it's not a dead or alive nMethod
nBlocks_stub + + ;
stubSpace + = hb_bytelen ;
StatArray [ ix_beg ] . stub_count + + ;
StatArray [ ix_beg ] . stub_space + = ( unsigned short ) hb_len ;
break ;
}
} else {
unsigned int beg_space = ( unsigned int ) ( granule_size - ( ( char * ) h - low_bound - ix_beg * granule_size ) ) ;
unsigned int end_space = ( unsigned int ) ( hb_bytelen - beg_space - ( ix_end - ix_beg - 1 ) * granule_size ) ;
beg_space = beg_space > > log2_seg_size ; // store in units of _segment_size
end_space = end_space > > log2_seg_size ; // store in units of _segment_size
StatArray [ ix_beg ] . type = cbType ;
StatArray [ ix_end ] . type = cbType ;
switch ( cbType ) {
case nMethod_inuse :
highest_compilation_id = ( highest_compilation_id > = compile_id ) ? highest_compilation_id : compile_id ;
if ( comp_lvl < CompLevel_full_optimization ) {
nBlocks_t1 + + ;
t1Space + = hb_bytelen ;
StatArray [ ix_beg ] . t1_count + + ;
StatArray [ ix_beg ] . t1_space + = ( unsigned short ) beg_space ;
StatArray [ ix_beg ] . t1_age = StatArray [ ix_beg ] . t1_age < compile_id ? compile_id : StatArray [ ix_beg ] . t1_age ;
StatArray [ ix_end ] . t1_count + + ;
StatArray [ ix_end ] . t1_space + = ( unsigned short ) end_space ;
StatArray [ ix_end ] . t1_age = StatArray [ ix_end ] . t1_age < compile_id ? compile_id : StatArray [ ix_end ] . t1_age ;
} else {
nBlocks_t2 + + ;
t2Space + = hb_bytelen ;
StatArray [ ix_beg ] . t2_count + + ;
StatArray [ ix_beg ] . t2_space + = ( unsigned short ) beg_space ;
StatArray [ ix_beg ] . t2_age = StatArray [ ix_beg ] . t2_age < compile_id ? compile_id : StatArray [ ix_beg ] . t2_age ;
StatArray [ ix_end ] . t2_count + + ;
StatArray [ ix_end ] . t2_space + = ( unsigned short ) end_space ;
StatArray [ ix_end ] . t2_age = StatArray [ ix_end ] . t2_age < compile_id ? compile_id : StatArray [ ix_end ] . t2_age ;
}
StatArray [ ix_beg ] . level = comp_lvl ;
StatArray [ ix_beg ] . compiler = cType ;
StatArray [ ix_end ] . level = comp_lvl ;
StatArray [ ix_end ] . compiler = cType ;
break ;
case nMethod_alive :
StatArray [ ix_beg ] . tx_count + + ;
StatArray [ ix_beg ] . tx_space + = ( unsigned short ) beg_space ;
StatArray [ ix_beg ] . tx_age = StatArray [ ix_beg ] . tx_age < compile_id ? compile_id : StatArray [ ix_beg ] . tx_age ;
StatArray [ ix_end ] . tx_count + + ;
StatArray [ ix_end ] . tx_space + = ( unsigned short ) end_space ;
StatArray [ ix_end ] . tx_age = StatArray [ ix_end ] . tx_age < compile_id ? compile_id : StatArray [ ix_end ] . tx_age ;
StatArray [ ix_beg ] . level = comp_lvl ;
StatArray [ ix_beg ] . compiler = cType ;
StatArray [ ix_end ] . level = comp_lvl ;
StatArray [ ix_end ] . compiler = cType ;
break ;
case nMethod_dead :
case nMethod_unloaded :
StatArray [ ix_beg ] . dead_count + + ;
StatArray [ ix_beg ] . dead_space + = ( unsigned short ) beg_space ;
StatArray [ ix_end ] . dead_count + + ;
StatArray [ ix_end ] . dead_space + = ( unsigned short ) end_space ;
break ;
default :
// must be a stub, if it's not a dead or alive nMethod
nBlocks_stub + + ;
stubSpace + = hb_bytelen ;
StatArray [ ix_beg ] . stub_count + + ;
StatArray [ ix_beg ] . stub_space + = ( unsigned short ) beg_space ;
StatArray [ ix_end ] . stub_count + + ;
StatArray [ ix_end ] . stub_space + = ( unsigned short ) end_space ;
break ;
}
for ( unsigned int ix = ix_beg + 1 ; ix < ix_end ; ix + + ) {
StatArray [ ix ] . type = cbType ;
switch ( cbType ) {
case nMethod_inuse :
if ( comp_lvl < CompLevel_full_optimization ) {
StatArray [ ix ] . t1_count + + ;
StatArray [ ix ] . t1_space + = ( unsigned short ) ( granule_size > > log2_seg_size ) ;
StatArray [ ix ] . t1_age = StatArray [ ix ] . t1_age < compile_id ? compile_id : StatArray [ ix ] . t1_age ;
} else {
StatArray [ ix ] . t2_count + + ;
StatArray [ ix ] . t2_space + = ( unsigned short ) ( granule_size > > log2_seg_size ) ;
StatArray [ ix ] . t2_age = StatArray [ ix ] . t2_age < compile_id ? compile_id : StatArray [ ix ] . t2_age ;
}
StatArray [ ix ] . level = comp_lvl ;
StatArray [ ix ] . compiler = cType ;
break ;
case nMethod_alive :
StatArray [ ix ] . tx_count + + ;
StatArray [ ix ] . tx_space + = ( unsigned short ) ( granule_size > > log2_seg_size ) ;
StatArray [ ix ] . tx_age = StatArray [ ix ] . tx_age < compile_id ? compile_id : StatArray [ ix ] . tx_age ;
StatArray [ ix ] . level = comp_lvl ;
StatArray [ ix ] . compiler = cType ;
break ;
case nMethod_dead :
case nMethod_unloaded :
StatArray [ ix ] . dead_count + + ;
StatArray [ ix ] . dead_space + = ( unsigned short ) ( granule_size > > log2_seg_size ) ;
break ;
default :
// must be a stub, if it's not a dead or alive nMethod
StatArray [ ix ] . stub_count + + ;
StatArray [ ix ] . stub_space + = ( unsigned short ) ( granule_size > > log2_seg_size ) ;
break ;
}
}
}
}
}
if ( n_methods > 0 ) {
avgTemp = hotnessAccumulator / n_methods ;
} else {
avgTemp = 0 ;
}
done = true ;
if ( ! insane ) {
// There is a risk for this block (because it contains many print statements) to get
// interspersed with print data from other threads. We take this risk intentionally.
// Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
printBox ( ast , ' - ' , " Global CodeHeap statistics for segment " , heapName ) ;
ast - > print_cr ( " freeSpace = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , freeSpace / ( size_t ) K , nBlocks_free , ( 100.0 * freeSpace ) / size , ( 100.0 * freeSpace ) / res_size ) ;
ast - > print_cr ( " usedSpace = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , usedSpace / ( size_t ) K , nBlocks_used , ( 100.0 * usedSpace ) / size , ( 100.0 * usedSpace ) / res_size ) ;
ast - > print_cr ( " Tier1 Space = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , t1Space / ( size_t ) K , nBlocks_t1 , ( 100.0 * t1Space ) / size , ( 100.0 * t1Space ) / res_size ) ;
ast - > print_cr ( " Tier2 Space = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , t2Space / ( size_t ) K , nBlocks_t2 , ( 100.0 * t2Space ) / size , ( 100.0 * t2Space ) / res_size ) ;
ast - > print_cr ( " Alive Space = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , aliveSpace / ( size_t ) K , nBlocks_alive , ( 100.0 * aliveSpace ) / size , ( 100.0 * aliveSpace ) / res_size ) ;
ast - > print_cr ( " disconnected = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , disconnSpace / ( size_t ) K , nBlocks_disconn , ( 100.0 * disconnSpace ) / size , ( 100.0 * disconnSpace ) / res_size ) ;
ast - > print_cr ( " not entrant = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , notentrSpace / ( size_t ) K , nBlocks_notentr , ( 100.0 * notentrSpace ) / size , ( 100.0 * notentrSpace ) / res_size ) ;
ast - > print_cr ( " unloadedSpace = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , unloadedSpace / ( size_t ) K , nBlocks_unloaded , ( 100.0 * unloadedSpace ) / size , ( 100.0 * unloadedSpace ) / res_size ) ;
ast - > print_cr ( " deadSpace = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , deadSpace / ( size_t ) K , nBlocks_dead , ( 100.0 * deadSpace ) / size , ( 100.0 * deadSpace ) / res_size ) ;
ast - > print_cr ( " stubSpace = " SIZE_FORMAT_W ( 8 ) " k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity " , stubSpace / ( size_t ) K , nBlocks_stub , ( 100.0 * stubSpace ) / size , ( 100.0 * stubSpace ) / res_size ) ;
ast - > print_cr ( " ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs. " , nBlocks_zomb ) ;
2018-04-18 21:10:09 -07:00
ast - > cr ( ) ;
ast - > print_cr ( " Segment start = " INTPTR_FORMAT " , used space = " SIZE_FORMAT_W ( 8 ) " k " , p2i ( low_bound ) , size / K ) ;
ast - > print_cr ( " Segment end (used) = " INTPTR_FORMAT " , remaining space = " SIZE_FORMAT_W ( 8 ) " k " , p2i ( low_bound ) + size , ( res_size - size ) / K ) ;
ast - > print_cr ( " Segment end (reserved) = " INTPTR_FORMAT " , reserved space = " SIZE_FORMAT_W ( 8 ) " k " , p2i ( low_bound ) + res_size , res_size / K ) ;
ast - > cr ( ) ;
2018-03-26 12:59:45 -07:00
ast - > print_cr ( " latest allocated compilation id = %d " , latest_compilation_id ) ;
ast - > print_cr ( " highest observed compilation id = %d " , highest_compilation_id ) ;
ast - > print_cr ( " Building TopSizeList iterations = %ld " , total_iterations ) ;
ast - > cr ( ) ;
int reset_val = NMethodSweeper : : hotness_counter_reset_val ( ) ;
double reverse_free_ratio = ( res_size > size ) ? ( double ) res_size / ( double ) ( res_size - size ) : ( double ) res_size ;
printBox ( ast , ' - ' , " Method hotness information at time of this analysis " , NULL ) ;
ast - > print_cr ( " Highest possible method temperature: %12d " , reset_val ) ;
ast - > print_cr ( " Threshold for method to be considered 'cold': %12.3f " , - reset_val + reverse_free_ratio * NmethodSweepActivity ) ;
ast - > print_cr ( " min. hotness = %6d " , minTemp ) ;
ast - > print_cr ( " avg. hotness = %6d " , avgTemp ) ;
ast - > print_cr ( " max. hotness = %6d " , maxTemp ) ;
STRINGSTREAM_FLUSH ( " \n " )
// This loop is intentionally printing directly to "out".
out - > print ( " Verifying collected data... " ) ;
size_t granule_segs = granule_size > > log2_seg_size ;
for ( unsigned int ix = 0 ; ix < granules ; ix + + ) {
if ( StatArray [ ix ] . t1_count > granule_segs ) {
out - > print_cr ( " t1_count[%d] = %d " , ix , StatArray [ ix ] . t1_count ) ;
}
if ( StatArray [ ix ] . t2_count > granule_segs ) {
out - > print_cr ( " t2_count[%d] = %d " , ix , StatArray [ ix ] . t2_count ) ;
}
if ( StatArray [ ix ] . stub_count > granule_segs ) {
out - > print_cr ( " stub_count[%d] = %d " , ix , StatArray [ ix ] . stub_count ) ;
}
if ( StatArray [ ix ] . dead_count > granule_segs ) {
out - > print_cr ( " dead_count[%d] = %d " , ix , StatArray [ ix ] . dead_count ) ;
}
if ( StatArray [ ix ] . t1_space > granule_segs ) {
out - > print_cr ( " t1_space[%d] = %d " , ix , StatArray [ ix ] . t1_space ) ;
}
if ( StatArray [ ix ] . t2_space > granule_segs ) {
out - > print_cr ( " t2_space[%d] = %d " , ix , StatArray [ ix ] . t2_space ) ;
}
if ( StatArray [ ix ] . stub_space > granule_segs ) {
out - > print_cr ( " stub_space[%d] = %d " , ix , StatArray [ ix ] . stub_space ) ;
}
if ( StatArray [ ix ] . dead_space > granule_segs ) {
out - > print_cr ( " dead_space[%d] = %d " , ix , StatArray [ ix ] . dead_space ) ;
}
// this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
if ( ( size_t ) ( StatArray [ ix ] . t1_count + StatArray [ ix ] . t2_count + StatArray [ ix ] . stub_count + StatArray [ ix ] . dead_count ) > granule_segs ) {
out - > print_cr ( " t1_count[%d] = %d, t2_count[%d] = %d, stub_count[%d] = %d " , ix , StatArray [ ix ] . t1_count , ix , StatArray [ ix ] . t2_count , ix , StatArray [ ix ] . stub_count ) ;
}
if ( ( size_t ) ( StatArray [ ix ] . t1_space + StatArray [ ix ] . t2_space + StatArray [ ix ] . stub_space + StatArray [ ix ] . dead_space ) > granule_segs ) {
out - > print_cr ( " t1_space[%d] = %d, t2_space[%d] = %d, stub_space[%d] = %d " , ix , StatArray [ ix ] . t1_space , ix , StatArray [ ix ] . t2_space , ix , StatArray [ ix ] . stub_space ) ;
}
}
// This loop is intentionally printing directly to "out".
if ( used_topSizeBlocks > 0 ) {
unsigned int j = 0 ;
if ( TopSizeArray [ 0 ] . len ! = currMax ) {
out - > print_cr ( " currMax(%d) differs from TopSizeArray[0].len(%d) " , currMax , TopSizeArray [ 0 ] . len ) ;
}
for ( unsigned int i = 0 ; ( TopSizeArray [ i ] . index ! = tsbStopper ) & & ( j + + < alloc_topSizeBlocks ) ; i = TopSizeArray [ i ] . index ) {
if ( TopSizeArray [ i ] . len < TopSizeArray [ TopSizeArray [ i ] . index ] . len ) {
out - > print_cr ( " sort error at index %d: %d !>= %d " , i , TopSizeArray [ i ] . len , TopSizeArray [ TopSizeArray [ i ] . index ] . len ) ;
}
}
if ( j > = alloc_topSizeBlocks ) {
out - > print_cr ( " Possible loop in TopSizeArray chaining! \n allocBlocks = %d, usedBlocks = %d " , alloc_topSizeBlocks , used_topSizeBlocks ) ;
for ( unsigned int i = 0 ; i < alloc_topSizeBlocks ; i + + ) {
out - > print_cr ( " TopSizeArray[%d].index = %d, len = %d " , i , TopSizeArray [ i ] . index , TopSizeArray [ i ] . len ) ;
}
}
}
out - > print_cr ( " ...done \n \n " ) ;
} else {
// insane heap state detected. Analysis data incomplete. Just throw it away.
discard_StatArray ( out ) ;
discard_TopSizeArray ( out ) ;
}
}
done = false ;
while ( ! done & & ( nBlocks_free > 0 ) ) {
printBox ( ast , ' = ' , " C O D E H E A P A N A L Y S I S (free blocks) for segment " , heapName ) ;
ast - > print_cr ( " The aggregate step collects information about all free blocks in CodeHeap. \n "
" Subsequent print functions create their output based on this snapshot. \n " ) ;
ast - > print_cr ( " Free space in %s is distributed over %d free blocks. " , heapName , nBlocks_free ) ;
ast - > print_cr ( " Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT " K in total. " , sizeof ( FreeBlk ) , ( sizeof ( FreeBlk ) * nBlocks_free ) / K ) ;
STRINGSTREAM_FLUSH ( " \n " )
//----------------------------------------
//-- Prepare the FreeArray of FreeBlks --
//----------------------------------------
//---< discard old array if size does not match >---
if ( nBlocks_free ! = alloc_freeBlocks ) {
discard_FreeArray ( out ) ;
}
prepare_FreeArray ( out , nBlocks_free , heapName ) ;
if ( FreeArray = = NULL ) {
done = true ;
continue ;
}
//----------------------------------------
//-- Collect all FreeBlks in FreeArray --
//----------------------------------------
unsigned int ix = 0 ;
FreeBlock * cur = heap - > freelist ( ) ;
while ( cur ! = NULL ) {
if ( ix < alloc_freeBlocks ) { // don't index out of bounds if _freelist has more blocks than anticipated
FreeArray [ ix ] . start = cur ;
FreeArray [ ix ] . len = ( unsigned int ) ( cur - > length ( ) < < log2_seg_size ) ;
FreeArray [ ix ] . index = ix ;
}
cur = cur - > link ( ) ;
ix + + ;
}
if ( ix ! = alloc_freeBlocks ) {
ast - > print_cr ( " Free block count mismatch. Expected %d free blocks, but found %d. " , alloc_freeBlocks , ix ) ;
ast - > print_cr ( " I will update the counter and retry data collection " ) ;
STRINGSTREAM_FLUSH ( " \n " )
nBlocks_free = ix ;
continue ;
}
done = true ;
}
if ( ! done | | ( nBlocks_free = = 0 ) ) {
if ( nBlocks_free = = 0 ) {
printBox ( ast , ' - ' , " no free blocks found in " , heapName ) ;
} else if ( ! done ) {
ast - > print_cr ( " Free block count mismatch could not be resolved. " ) ;
ast - > print_cr ( " Try to run \" aggregate \" function to update counters " ) ;
}
STRINGSTREAM_FLUSH ( " " )
//---< discard old array and update global values >---
discard_FreeArray ( out ) ;
set_HeapStatGlobals ( out , heapName ) ;
return ;
}
//---< calculate and fill remaining fields >---
if ( FreeArray ! = NULL ) {
// This loop is intentionally printing directly to "out".
for ( unsigned int ix = 0 ; ix < alloc_freeBlocks - 1 ; ix + + ) {
size_t lenSum = 0 ;
FreeArray [ ix ] . gap = ( unsigned int ) ( ( address ) FreeArray [ ix + 1 ] . start - ( ( address ) FreeArray [ ix ] . start + FreeArray [ ix ] . len ) ) ;
for ( HeapBlock * h = heap - > next_block ( FreeArray [ ix ] . start ) ; ( h ! = NULL ) & & ( h ! = FreeArray [ ix + 1 ] . start ) ; h = heap - > next_block ( h ) ) {
CodeBlob * cb = ( CodeBlob * ) ( heap - > find_start ( h ) ) ;
if ( ( cb ! = NULL ) & & ! cb - > is_nmethod ( ) ) {
FreeArray [ ix ] . stubs_in_gap = true ;
}
FreeArray [ ix ] . n_gapBlocks + + ;
lenSum + = h - > length ( ) < < log2_seg_size ;
if ( ( ( address ) h < ( ( address ) FreeArray [ ix ] . start + FreeArray [ ix ] . len ) ) | | ( h > = FreeArray [ ix + 1 ] . start ) ) {
out - > print_cr ( " unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p) " , h , ( address ) FreeArray [ ix ] . start + FreeArray [ ix ] . len , FreeArray [ ix + 1 ] . start ) ;
}
}
if ( lenSum ! = FreeArray [ ix ] . gap ) {
out - > print_cr ( " Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d. " , ix , ix + 1 , FreeArray [ ix ] . gap , ( unsigned int ) lenSum ) ;
}
}
}
set_HeapStatGlobals ( out , heapName ) ;
printBox ( ast , ' = ' , " C O D E H E A P A N A L Y S I S C O M P L E T E for segment " , heapName ) ;
STRINGSTREAM_FLUSH ( " \n " )
}
void CodeHeapState : : print_usedSpace ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( TopSizeArray = = NULL ) | | ( used_topSizeBlocks = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
{
printBox ( ast , ' = ' , " U S E D S P A C E S T A T I S T I C S for " , heapName ) ;
ast - > print_cr ( " Note: The Top%d list of the largest used blocks associates method names \n "
" and other identifying information with the block size data. \n "
" \n "
" Method names are dynamically retrieved from the code cache at print time. \n "
" Due to the living nature of the code cache and because the CodeCache_lock \n "
" is not continuously held, the displayed name might be wrong or no name \n "
" might be found at all. The likelihood for that to happen increases \n "
" over time passed between analysis and print step. \n " , used_topSizeBlocks ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
}
//----------------------------
//-- Print Top Used Blocks --
//----------------------------
{
char * low_bound = heap - > low_boundary ( ) ;
printBox ( ast , ' - ' , " Largest Used Blocks in " , heapName ) ;
print_blobType_legend ( ast ) ;
ast - > fill_to ( 51 ) ;
ast - > print ( " %4s " , " blob " ) ;
ast - > fill_to ( 56 ) ;
ast - > print ( " %9s " , " compiler " ) ;
ast - > fill_to ( 66 ) ;
ast - > print_cr ( " %6s " , " method " ) ;
ast - > print_cr ( " %18s %13s %17s %4s %9s %5s %s " , " Addr(module) " , " offset " , " size " , " type " , " type lvl " , " temp " , " Name " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
//---< print Top Ten Used Blocks >---
if ( used_topSizeBlocks > 0 ) {
unsigned int printed_topSizeBlocks = 0 ;
for ( unsigned int i = 0 ; i ! = tsbStopper ; i = TopSizeArray [ i ] . index ) {
printed_topSizeBlocks + + ;
CodeBlob * this_blob = ( CodeBlob * ) ( heap - > find_start ( TopSizeArray [ i ] . start ) ) ;
nmethod * nm = NULL ;
const char * blob_name = " unnamed blob " ;
if ( this_blob ! = NULL ) {
blob_name = this_blob - > name ( ) ;
nm = this_blob - > as_nmethod_or_null ( ) ;
//---< blob address >---
2018-04-18 21:10:09 -07:00
ast - > print ( INTPTR_FORMAT , p2i ( this_blob ) ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 19 ) ;
//---< blob offset from CodeHeap begin >---
ast - > print ( " (+ " PTR32_FORMAT " ) " , ( unsigned int ) ( ( char * ) this_blob - low_bound ) ) ;
ast - > fill_to ( 33 ) ;
} else {
//---< block address >---
2018-04-18 21:10:09 -07:00
ast - > print ( INTPTR_FORMAT , p2i ( TopSizeArray [ i ] . start ) ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 19 ) ;
//---< block offset from CodeHeap begin >---
ast - > print ( " (+ " PTR32_FORMAT " ) " , ( unsigned int ) ( ( char * ) TopSizeArray [ i ] . start - low_bound ) ) ;
ast - > fill_to ( 33 ) ;
}
//---< print size, name, and signature (for nMethods) >---
if ( ( nm ! = NULL ) & & ( nm - > method ( ) ! = NULL ) ) {
ResourceMark rm ;
//---< nMethod size in hex >---
unsigned int total_size = nm - > total_size ( ) ;
ast - > print ( PTR32_FORMAT , total_size ) ;
2018-03-28 09:16:07 +02:00
ast - > print ( " ( " SIZE_FORMAT_W ( 4 ) " K) " , total_size / K ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 51 ) ;
ast - > print ( " %c " , blobTypeChar [ TopSizeArray [ i ] . type ] ) ;
//---< compiler information >---
ast - > fill_to ( 56 ) ;
ast - > print ( " %5s %3d " , compTypeName [ TopSizeArray [ i ] . compiler ] , TopSizeArray [ i ] . level ) ;
//---< method temperature >---
ast - > fill_to ( 67 ) ;
ast - > print ( " %5d " , nm - > hotness_counter ( ) ) ;
//---< name and signature >---
ast - > fill_to ( 67 + 6 ) ;
if ( nm - > is_in_use ( ) ) { blob_name = nm - > method ( ) - > name_and_sig_as_C_string ( ) ; }
if ( nm - > is_not_entrant ( ) ) { blob_name = nm - > method ( ) - > name_and_sig_as_C_string ( ) ; }
if ( nm - > is_zombie ( ) ) { ast - > print ( " %14s " , " zombie method " ) ; }
ast - > print ( " %s " , blob_name ) ;
} else {
//---< block size in hex >---
ast - > print ( PTR32_FORMAT , ( unsigned int ) ( TopSizeArray [ i ] . len < < log2_seg_size ) ) ;
2018-03-28 09:16:07 +02:00
ast - > print ( " ( " SIZE_FORMAT_W ( 4 ) " K) " , ( TopSizeArray [ i ] . len < < log2_seg_size ) / K ) ;
2018-03-26 12:59:45 -07:00
//---< no compiler information >---
ast - > fill_to ( 56 ) ;
//---< name and signature >---
ast - > fill_to ( 67 + 6 ) ;
ast - > print ( " %s " , blob_name ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
}
if ( used_topSizeBlocks ! = printed_topSizeBlocks ) {
ast - > print_cr ( " used blocks: %d, printed blocks: %d " , used_topSizeBlocks , printed_topSizeBlocks ) ;
STRINGSTREAM_FLUSH ( " " )
for ( unsigned int i = 0 ; i < alloc_topSizeBlocks ; i + + ) {
ast - > print_cr ( " TopSizeArray[%d].index = %d, len = %d " , i , TopSizeArray [ i ] . index , TopSizeArray [ i ] . len ) ;
STRINGSTREAM_FLUSH ( " " )
}
}
STRINGSTREAM_FLUSH_LOCKED ( " \n \n " )
}
}
//-----------------------------
//-- Print Usage Histogram --
//-----------------------------
if ( SizeDistributionArray ! = NULL ) {
unsigned long total_count = 0 ;
unsigned long total_size = 0 ;
const unsigned long pctFactor = 200 ;
for ( unsigned int i = 0 ; i < nSizeDistElements ; i + + ) {
total_count + = SizeDistributionArray [ i ] . count ;
total_size + = SizeDistributionArray [ i ] . lenSum ;
}
if ( ( total_count > 0 ) & & ( total_size > 0 ) ) {
printBox ( ast , ' - ' , " Block count histogram for " , heapName ) ;
ast - > print_cr ( " Note: The histogram indicates how many blocks (as a percentage \n "
" of all blocks) have a size in the given range. \n "
" %ld characters are printed per percentage point. \n " , pctFactor / 100 ) ;
ast - > print_cr ( " total size of all blocks: %7ldM " , ( total_size < < log2_seg_size ) / M ) ;
ast - > print_cr ( " total number of all blocks: %7ld \n " , total_count ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
ast - > print_cr ( " [Size Range)------avg.-size-+----count-+ " ) ;
for ( unsigned int i = 0 ; i < nSizeDistElements ; i + + ) {
if ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size < K ) {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " .. " SIZE_FORMAT_W ( 5 ) " ): "
, ( size_t ) ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size )
, ( size_t ) ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size )
2018-03-26 12:59:45 -07:00
) ;
} else if ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size < M ) {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " K.. " SIZE_FORMAT_W ( 5 ) " K): "
2018-03-26 12:59:45 -07:00
, ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size ) / K
, ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size ) / K
) ;
} else {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " M.. " SIZE_FORMAT_W ( 5 ) " M): "
2018-03-26 12:59:45 -07:00
, ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size ) / M
, ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size ) / M
) ;
}
ast - > print ( " %8d | %8d | " ,
SizeDistributionArray [ i ] . count > 0 ? ( SizeDistributionArray [ i ] . lenSum < < log2_seg_size ) / SizeDistributionArray [ i ] . count : 0 ,
SizeDistributionArray [ i ] . count ) ;
unsigned int percent = pctFactor * SizeDistributionArray [ i ] . count / total_count ;
for ( unsigned int j = 1 ; j < = percent ; j + + ) {
ast - > print ( " %c " , ( j % ( ( pctFactor / 100 ) * 10 ) = = 0 ) ? ( ' 0 ' + j / ( ( ( unsigned int ) pctFactor / 100 ) * 10 ) ) : ' * ' ) ;
}
ast - > cr ( ) ;
}
ast - > print_cr ( " ----------------------------+----------+ \n \n " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
printBox ( ast , ' - ' , " Contribution per size range to total size for " , heapName ) ;
ast - > print_cr ( " Note: The histogram indicates how much space (as a percentage of all \n "
" occupied space) is used by the blocks in the given size range. \n "
" %ld characters are printed per percentage point. \n " , pctFactor / 100 ) ;
ast - > print_cr ( " total size of all blocks: %7ldM " , ( total_size < < log2_seg_size ) / M ) ;
ast - > print_cr ( " total number of all blocks: %7ld \n " , total_count ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
ast - > print_cr ( " [Size Range)------avg.-size-+----count-+ " ) ;
for ( unsigned int i = 0 ; i < nSizeDistElements ; i + + ) {
if ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size < K ) {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " .. " SIZE_FORMAT_W ( 5 ) " ): "
, ( size_t ) ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size )
, ( size_t ) ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size )
2018-03-26 12:59:45 -07:00
) ;
} else if ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size < M ) {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " K.. " SIZE_FORMAT_W ( 5 ) " K): "
2018-03-26 12:59:45 -07:00
, ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size ) / K
, ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size ) / K
) ;
} else {
2018-03-28 09:16:07 +02:00
ast - > print ( " [ " SIZE_FORMAT_W ( 5 ) " M.. " SIZE_FORMAT_W ( 5 ) " M): "
2018-03-26 12:59:45 -07:00
, ( SizeDistributionArray [ i ] . rangeStart < < log2_seg_size ) / M
, ( SizeDistributionArray [ i ] . rangeEnd < < log2_seg_size ) / M
) ;
}
ast - > print ( " %8d | %8d | " ,
SizeDistributionArray [ i ] . count > 0 ? ( SizeDistributionArray [ i ] . lenSum < < log2_seg_size ) / SizeDistributionArray [ i ] . count : 0 ,
SizeDistributionArray [ i ] . count ) ;
unsigned int percent = pctFactor * ( unsigned long ) SizeDistributionArray [ i ] . lenSum / total_size ;
for ( unsigned int j = 1 ; j < = percent ; j + + ) {
ast - > print ( " %c " , ( j % ( ( pctFactor / 100 ) * 10 ) = = 0 ) ? ( ' 0 ' + j / ( ( ( unsigned int ) pctFactor / 100 ) * 10 ) ) : ' * ' ) ;
}
ast - > cr ( ) ;
}
ast - > print_cr ( " ----------------------------+----------+ " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
}
void CodeHeapState : : print_freeSpace ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( FreeArray = = NULL ) | | ( alloc_granules = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
{
printBox ( ast , ' = ' , " F R E E S P A C E S T A T I S T I C S for " , heapName ) ;
ast - > print_cr ( " Note: in this context, a gap is the occupied space between two free blocks. \n "
" Those gaps are of interest if there is a chance that they become \n "
" unoccupied, e.g. by class unloading. Then, the two adjacent free \n "
" blocks, together with the now unoccupied space, form a new, large \n "
" free block. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
}
{
printBox ( ast , ' - ' , " List of all Free Blocks in " , heapName ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
unsigned int ix = 0 ;
for ( ix = 0 ; ix < alloc_freeBlocks - 1 ; ix + + ) {
2018-04-18 21:10:09 -07:00
ast - > print ( INTPTR_FORMAT " : Len[%4d] = " HEX32_FORMAT " , " , p2i ( FreeArray [ ix ] . start ) , ix , FreeArray [ ix ] . len ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 38 ) ;
ast - > print ( " Gap[%4d..%4d]: " HEX32_FORMAT " bytes, " , ix , ix + 1 , FreeArray [ ix ] . gap ) ;
ast - > fill_to ( 71 ) ;
ast - > print ( " block count: %6d " , FreeArray [ ix ] . n_gapBlocks ) ;
if ( FreeArray [ ix ] . stubs_in_gap ) {
ast - > print ( " !! permanent gap, contains stubs and/or blobs !! " ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
}
2018-04-18 21:10:09 -07:00
ast - > print_cr ( INTPTR_FORMAT " : Len[%4d] = " HEX32_FORMAT , p2i ( FreeArray [ ix ] . start ) , ix , FreeArray [ ix ] . len ) ;
2018-03-26 12:59:45 -07:00
STRINGSTREAM_FLUSH_LOCKED ( " \n \n " )
}
//-----------------------------------------
//-- Find and Print Top Ten Free Blocks --
//-----------------------------------------
//---< find Top Ten Free Blocks >---
const unsigned int nTop = 10 ;
unsigned int currMax10 = 0 ;
struct FreeBlk * FreeTopTen [ nTop ] ;
memset ( FreeTopTen , 0 , sizeof ( FreeTopTen ) ) ;
for ( unsigned int ix = 0 ; ix < alloc_freeBlocks ; ix + + ) {
if ( FreeArray [ ix ] . len > currMax10 ) { // larger than the ten largest found so far
unsigned int currSize = FreeArray [ ix ] . len ;
unsigned int iy ;
for ( iy = 0 ; iy < nTop & & FreeTopTen [ iy ] ! = NULL ; iy + + ) {
if ( FreeTopTen [ iy ] - > len < currSize ) {
for ( unsigned int iz = nTop - 1 ; iz > iy ; iz - - ) { // make room to insert new free block
FreeTopTen [ iz ] = FreeTopTen [ iz - 1 ] ;
}
FreeTopTen [ iy ] = & FreeArray [ ix ] ; // insert new free block
if ( FreeTopTen [ nTop - 1 ] ! = NULL ) {
currMax10 = FreeTopTen [ nTop - 1 ] - > len ;
}
break ; // done with this, check next free block
}
}
if ( iy > = nTop ) {
ast - > print_cr ( " Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d " ,
currSize , currMax10 ) ;
continue ;
}
if ( FreeTopTen [ iy ] = = NULL ) {
FreeTopTen [ iy ] = & FreeArray [ ix ] ;
if ( iy = = ( nTop - 1 ) ) {
currMax10 = currSize ;
}
}
}
}
STRINGSTREAM_FLUSH_LOCKED ( " " )
{
printBox ( ast , ' - ' , " Top Ten Free Blocks in " , heapName ) ;
//---< print Top Ten Free Blocks >---
for ( unsigned int iy = 0 ; ( iy < nTop ) & & ( FreeTopTen [ iy ] ! = NULL ) ; iy + + ) {
ast - > print ( " Pos %3d: Block %4d - size " HEX32_FORMAT " , " , iy + 1 , FreeTopTen [ iy ] - > index , FreeTopTen [ iy ] - > len ) ;
ast - > fill_to ( 39 ) ;
if ( FreeTopTen [ iy ] - > index = = ( alloc_freeBlocks - 1 ) ) {
ast - > print ( " last free block in list. " ) ;
} else {
ast - > print ( " Gap (to next) " HEX32_FORMAT " , " , FreeTopTen [ iy ] - > gap ) ;
ast - > fill_to ( 63 ) ;
ast - > print ( " #blocks (in gap) %d " , FreeTopTen [ iy ] - > n_gapBlocks ) ;
}
ast - > cr ( ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n \n " )
}
//--------------------------------------------------------
//-- Find and Print Top Ten Free-Occupied-Free Triples --
//--------------------------------------------------------
//---< find and print Top Ten Triples (Free-Occupied-Free) >---
currMax10 = 0 ;
struct FreeBlk * FreeTopTenTriple [ nTop ] ;
memset ( FreeTopTenTriple , 0 , sizeof ( FreeTopTenTriple ) ) ;
for ( unsigned int ix = 0 ; ix < alloc_freeBlocks - 1 ; ix + + ) {
// If there are stubs in the gap, this gap will never become completely free.
// The triple will thus never merge to one free block.
unsigned int lenTriple = FreeArray [ ix ] . len + ( FreeArray [ ix ] . stubs_in_gap ? 0 : FreeArray [ ix ] . gap + FreeArray [ ix + 1 ] . len ) ;
FreeArray [ ix ] . len = lenTriple ;
if ( lenTriple > currMax10 ) { // larger than the ten largest found so far
unsigned int iy ;
for ( iy = 0 ; ( iy < nTop ) & & ( FreeTopTenTriple [ iy ] ! = NULL ) ; iy + + ) {
if ( FreeTopTenTriple [ iy ] - > len < lenTriple ) {
for ( unsigned int iz = nTop - 1 ; iz > iy ; iz - - ) {
FreeTopTenTriple [ iz ] = FreeTopTenTriple [ iz - 1 ] ;
}
FreeTopTenTriple [ iy ] = & FreeArray [ ix ] ;
if ( FreeTopTenTriple [ nTop - 1 ] ! = NULL ) {
currMax10 = FreeTopTenTriple [ nTop - 1 ] - > len ;
}
break ;
}
}
if ( iy = = nTop ) {
ast - > print_cr ( " Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d " ,
lenTriple , currMax10 ) ;
continue ;
}
if ( FreeTopTenTriple [ iy ] = = NULL ) {
FreeTopTenTriple [ iy ] = & FreeArray [ ix ] ;
if ( iy = = ( nTop - 1 ) ) {
currMax10 = lenTriple ;
}
}
}
}
STRINGSTREAM_FLUSH_LOCKED ( " " )
{
printBox ( ast , ' - ' , " Top Ten Free-Occupied-Free Triples in " , heapName ) ;
ast - > print_cr ( " Use this information to judge how likely it is that a large(r) free block \n "
" might get created by code cache sweeping. \n "
" If all the occupied blocks can be swept, the three free blocks will be \n "
" merged into one (much larger) free block. That would reduce free space \n "
" fragmentation. \n " ) ;
//---< print Top Ten Free-Occupied-Free Triples >---
for ( unsigned int iy = 0 ; ( iy < nTop ) & & ( FreeTopTenTriple [ iy ] ! = NULL ) ; iy + + ) {
ast - > print ( " Pos %3d: Block %4d - size " HEX32_FORMAT " , " , iy + 1 , FreeTopTenTriple [ iy ] - > index , FreeTopTenTriple [ iy ] - > len ) ;
ast - > fill_to ( 39 ) ;
ast - > print ( " Gap (to next) " HEX32_FORMAT " , " , FreeTopTenTriple [ iy ] - > gap ) ;
ast - > fill_to ( 63 ) ;
ast - > print ( " #blocks (in gap) %d " , FreeTopTenTriple [ iy ] - > n_gapBlocks ) ;
ast - > cr ( ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n \n " )
}
}
void CodeHeapState : : print_count ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( alloc_granules = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
unsigned int granules_per_line = 32 ;
char * low_bound = heap - > low_boundary ( ) ;
{
printBox ( ast , ' = ' , " B L O C K C O U N T S for " , heapName ) ;
ast - > print_cr ( " Each granule contains an individual number of heap blocks. Large blocks \n "
" may span multiple granules and are counted for each granule they touch. \n " ) ;
if ( segment_granules ) {
ast - > print_cr ( " You have selected granule size to be as small as segment size. \n "
" As a result, each granule contains exactly one block (or a part of one block) \n "
" or is displayed as empty (' ') if it's BlobType does not match the selection. \n "
" Occupied granules show their BlobType character, see legend. \n " ) ;
print_blobType_legend ( ast ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " " )
}
{
if ( segment_granules ) {
printBox ( ast , ' - ' , " Total (all types) count for granule size == segment size " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
}
} else {
printBox ( ast , ' - ' , " Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
unsigned int count = StatArray [ ix ] . t1_count + StatArray [ ix ] . t2_count + StatArray [ ix ] . tx_count
+ StatArray [ ix ] . stub_count + StatArray [ ix ] . dead_count ;
print_count_single ( ast , count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
{
if ( nBlocks_t1 > 0 ) {
printBox ( ast , ' - ' , " Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . t1_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . t1_count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier1 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_t2 > 0 ) {
printBox ( ast , ' - ' , " Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . t2_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . t2_count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier2 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_alive > 0 ) {
printBox ( ast , ' - ' , " not_used/not_entrant nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . tx_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . tx_count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No not_used/not_entrant nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_stub > 0 ) {
printBox ( ast , ' - ' , " Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . stub_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . stub_count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Stubs and Blobs found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_dead > 0 ) {
printBox ( ast , ' - ' , " Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . dead_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . dead_count ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No dead nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( ! segment_granules ) { // Prevent totally redundant printouts
printBox ( ast , ' - ' , " Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 24 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_count_single ( ast , StatArray [ ix ] . t1_count ) ;
ast - > print ( " : " ) ;
print_count_single ( ast , StatArray [ ix ] . t2_count ) ;
ast - > print ( " : " ) ;
if ( segment_granules & & StatArray [ ix ] . stub_count > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_count_single ( ast , StatArray [ ix ] . stub_count ) ;
}
ast - > print ( " " ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
}
}
void CodeHeapState : : print_space ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( alloc_granules = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
unsigned int granules_per_line = 32 ;
char * low_bound = heap - > low_boundary ( ) ;
{
printBox ( ast , ' = ' , " S P A C E U S A G E & F R A G M E N T A T I O N for " , heapName ) ;
ast - > print_cr ( " The heap space covered by one granule is occupied to a various extend. \n "
" The granule occupancy is displayed by one decimal digit per granule. \n " ) ;
if ( segment_granules ) {
ast - > print_cr ( " You have selected granule size to be as small as segment size. \n "
" As a result, each granule contains exactly one block (or a part of one block) \n "
" or is displayed as empty (' ') if it's BlobType does not match the selection. \n "
" Occupied granules show their BlobType character, see legend. \n " ) ;
print_blobType_legend ( ast ) ;
} else {
ast - > print_cr ( " These digits represent a fill percentage range (see legend). \n " ) ;
print_space_legend ( ast ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " " )
}
{
if ( segment_granules ) {
printBox ( ast , ' - ' , " Total (all types) space consumption for granule size == segment size " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
}
} else {
printBox ( ast , ' - ' , " Total (all types) space consumption. ' ' indicates empty, '*' indicates full. " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
unsigned int space = StatArray [ ix ] . t1_space + StatArray [ ix ] . t2_space + StatArray [ ix ] . tx_space
+ StatArray [ ix ] . stub_space + StatArray [ ix ] . dead_space ;
print_space_single ( ast , space ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
{
if ( nBlocks_t1 > 0 ) {
printBox ( ast , ' - ' , " Tier1 space consumption. ' ' indicates empty, '*' indicates full " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . t1_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . t1_space ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier1 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_t2 > 0 ) {
printBox ( ast , ' - ' , " Tier2 space consumption. ' ' indicates empty, '*' indicates full " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . t2_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . t2_space ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier2 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_alive > 0 ) {
printBox ( ast , ' - ' , " not_used/not_entrant space consumption. ' ' indicates empty, '*' indicates full " , NULL ) ;
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . tx_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . tx_space ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier2 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_stub > 0 ) {
printBox ( ast , ' - ' , " Stub and Blob space consumption. ' ' indicates empty, '*' indicates full " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . stub_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . stub_space ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Stubs and Blobs found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_dead > 0 ) {
printBox ( ast , ' - ' , " Dead space consumption. ' ' indicates empty, '*' indicates full " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_space_single ( ast , StatArray [ ix ] . dead_space ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No dead nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( ! segment_granules ) { // Prevent totally redundant printouts
printBox ( ast , ' - ' , " Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 24 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
if ( segment_granules & & StatArray [ ix ] . t1_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . t1_space ) ;
}
ast - > print ( " : " ) ;
if ( segment_granules & & StatArray [ ix ] . t2_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . t2_space ) ;
}
ast - > print ( " : " ) ;
if ( segment_granules & & StatArray [ ix ] . stub_space > 0 ) {
print_blobType_single ( ast , StatArray [ ix ] . type ) ;
} else {
print_space_single ( ast , StatArray [ ix ] . stub_space ) ;
}
ast - > print ( " " ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
}
}
void CodeHeapState : : print_age ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( alloc_granules = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
unsigned int granules_per_line = 32 ;
char * low_bound = heap - > low_boundary ( ) ;
{
printBox ( ast , ' = ' , " M E T H O D A G E by CompileID for " , heapName ) ;
ast - > print_cr ( " The age of a compiled method in the CodeHeap is not available as a \n "
" time stamp. Instead, a relative age is deducted from the method's compilation ID. \n "
" Age information is available for tier1 and tier2 methods only. There is no \n "
" age information for stubs and blobs, because they have no compilation ID assigned. \n "
" Information for the youngest method (highest ID) in the granule is printed. \n "
" Refer to the legend to learn how method age is mapped to the displayed digit. " ) ;
print_age_legend ( ast ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
}
{
printBox ( ast , ' - ' , " Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
unsigned int age1 = StatArray [ ix ] . t1_age ;
unsigned int age2 = StatArray [ ix ] . t2_age ;
unsigned int agex = StatArray [ ix ] . tx_age ;
unsigned int age = age1 > age2 ? age1 : age2 ;
age = age > agex ? age : agex ;
print_age_single ( ast , age ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
{
if ( nBlocks_t1 > 0 ) {
printBox ( ast , ' - ' , " Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_age_single ( ast , StatArray [ ix ] . t1_age ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier1 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_t2 > 0 ) {
printBox ( ast , ' - ' , " Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_age_single ( ast , StatArray [ ix ] . t2_age ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier2 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( nBlocks_alive > 0 ) {
printBox ( ast , ' - ' , " not_used/not_entrant age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 128 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_age_single ( ast , StatArray [ ix ] . tx_age ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
} else {
ast - > print ( " No Tier2 nMethods found in CodeHeap. " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " \n \n \n " )
}
}
{
if ( ! segment_granules ) { // Prevent totally redundant printouts
printBox ( ast , ' - ' , " age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information " , NULL ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
granules_per_line = 32 ;
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
print_line_delim ( out , ast , low_bound , ix , granules_per_line ) ;
print_age_single ( ast , StatArray [ ix ] . t1_age ) ;
ast - > print ( " : " ) ;
print_age_single ( ast , StatArray [ ix ] . t2_age ) ;
ast - > print ( " " ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " | \n \n \n " )
}
}
}
2018-04-18 21:10:09 -07:00
# define JDK8200450_REMEDY
# define JDK8200450_TRACE
2018-03-26 12:59:45 -07:00
void CodeHeapState : : print_names ( outputStream * out , CodeHeap * heap ) {
if ( ! initialization_complete ) {
return ;
}
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_TRACE
out - > print_cr ( " print_names() entered for heap @ " INTPTR_FORMAT , p2i ( heap ) ) ;
out - > flush ( ) ;
# endif
2018-03-26 12:59:45 -07:00
const char * heapName = get_heapName ( heap ) ;
get_HeapStatGlobals ( out , heapName ) ;
if ( ( StatArray = = NULL ) | | ( alloc_granules = = 0 ) ) {
return ;
}
STRINGSTREAM_DECL ( ast , out )
unsigned int granules_per_line = 128 ;
char * low_bound = heap - > low_boundary ( ) ;
CodeBlob * last_blob = NULL ;
bool name_in_addr_range = true ;
2018-04-18 21:10:09 -07:00
//---< print at least 128K per block (i.e. between headers) >---
2018-03-26 12:59:45 -07:00
if ( granules_per_line * granule_size < 128 * K ) {
granules_per_line = ( unsigned int ) ( ( 128 * K ) / granule_size ) ;
}
printBox ( ast , ' = ' , " M E T H O D N A M E S for " , heapName ) ;
ast - > print_cr ( " Method names are dynamically retrieved from the code cache at print time. \n "
" Due to the living nature of the code heap and because the CodeCache_lock \n "
" is not continuously held, the displayed name might be wrong or no name \n "
" might be found at all. The likelihood for that to happen increases \n "
2018-04-18 21:10:09 -07:00
" over time passed between aggregtion and print steps. \n " ) ;
2018-03-26 12:59:45 -07:00
STRINGSTREAM_FLUSH_LOCKED ( " " )
for ( unsigned int ix = 0 ; ix < alloc_granules ; ix + + ) {
//---< print a new blob on a new line >---
if ( ix % granules_per_line = = 0 ) {
if ( ! name_in_addr_range ) {
ast - > print_cr ( " No methods, blobs, or stubs found in this address range " ) ;
}
name_in_addr_range = false ;
2018-04-18 21:10:09 -07:00
size_t end_ix = ( ix + granules_per_line < = alloc_granules ) ? ix + granules_per_line : alloc_granules ;
2018-03-26 12:59:45 -07:00
ast - > cr ( ) ;
ast - > print_cr ( " -------------------------------------------------------------------- " ) ;
2018-04-18 21:10:09 -07:00
ast - > print_cr ( " Address range [ " INTPTR_FORMAT " , " INTPTR_FORMAT " ), " SIZE_FORMAT " k " , p2i ( low_bound + ix * granule_size ) , p2i ( low_bound + end_ix * granule_size ) , ( end_ix - ix ) * granule_size / ( size_t ) K ) ;
2018-03-26 12:59:45 -07:00
ast - > print_cr ( " -------------------------------------------------------------------- " ) ;
STRINGSTREAM_FLUSH_LOCKED ( " " )
}
2018-03-29 14:53:01 -07:00
// Only check granule if it contains at least one blob.
unsigned int nBlobs = StatArray [ ix ] . t1_count + StatArray [ ix ] . t2_count + StatArray [ ix ] . tx_count +
StatArray [ ix ] . stub_count + StatArray [ ix ] . dead_count ;
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_REMEDY
if ( nBlobs > 0 )
# endif
{
2018-03-26 12:59:45 -07:00
for ( unsigned int is = 0 ; is < granule_size ; is + = ( unsigned int ) seg_size ) {
2018-03-29 14:53:01 -07:00
// heap->find_start() is safe. Only working with _segmap. Returns NULL or void*. Returned CodeBlob may be uninitialized.
2018-03-26 12:59:45 -07:00
CodeBlob * this_blob = ( CodeBlob * ) ( heap - > find_start ( low_bound + ix * granule_size + is ) ) ;
2018-04-18 21:10:09 -07:00
# ifndef JDK8200450_REMEDY
bool blob_initialized = ( this_blob ! = NULL )
# else
# ifndef JDK8200450_TRACE
bool blob_initialized = ( this_blob ! = NULL ) & & ( this_blob - > header_size ( ) > = 0 ) & & ( this_blob - > relocation_size ( ) > = 0 ) & &
( ( address ) this_blob + this_blob - > header_size ( ) = = ( address ) ( this_blob - > relocation_begin ( ) ) ) & &
( ( address ) this_blob + CodeBlob : : align_code_offset ( this_blob - > header_size ( ) + this_blob - > relocation_size ( ) ) = = ( address ) ( this_blob - > content_begin ( ) ) & &
is_readable_pointer ( ( address ) ( this_blob - > relocation_begin ( ) ) & &
is_readable_pointer ( this_blob - > content_begin ( ) ) ;
# else
int hdr_size = 0 ;
int reloc_size = 0 ;
address reloc_begin = NULL ;
address cntnt_begin = NULL ;
if ( this_blob ! = NULL ) {
hdr_size = this_blob - > header_size ( ) ;
reloc_size = this_blob - > relocation_size ( ) ;
reloc_begin = ( address ) ( this_blob - > relocation_begin ( ) ) ;
cntnt_begin = this_blob - > content_begin ( ) ;
}
bool blob_initialized = ( this_blob ! = NULL ) & & ( hdr_size > = 0 ) & & ( reloc_size > = 0 ) & &
( ( address ) this_blob + hdr_size = = reloc_begin ) & &
( ( address ) this_blob + CodeBlob : : align_code_offset ( hdr_size + reloc_size ) = = cntnt_begin ) & &
is_readable_pointer ( reloc_begin ) & &
is_readable_pointer ( cntnt_begin ) ;
# endif
# endif
2018-03-29 14:53:01 -07:00
if ( blob_initialized & & ( this_blob ! = last_blob ) ) {
2018-04-18 21:10:09 -07:00
last_blob = this_blob ;
//---< get type and name >---
blobType cbType = noType ;
if ( segment_granules ) {
cbType = ( blobType ) StatArray [ ix ] . type ;
} else {
cbType = get_cbType ( this_blob ) ; // Is this here safe?
}
// this_blob->name() could return NULL if no name is given to CTOR. Inlined, maybe invisible on stack
const char * blob_name = this_blob - > name ( ) ;
# ifdef JDK8200450_REMEDY
if ( blob_name = = NULL ) {
blob_name = " <unavailable> " ;
}
# endif
//---< print table header for new print range >---
2018-03-26 12:59:45 -07:00
if ( ! name_in_addr_range ) {
name_in_addr_range = true ;
ast - > fill_to ( 51 ) ;
ast - > print ( " %9s " , " compiler " ) ;
ast - > fill_to ( 61 ) ;
ast - > print_cr ( " %6s " , " method " ) ;
ast - > print_cr ( " %18s %13s %17s %9s %5s %18s %s " , " Addr(module) " , " offset " , " size " , " type lvl " , " temp " , " blobType " , " Name " ) ;
2018-04-18 21:10:09 -07:00
STRINGSTREAM_FLUSH_LOCKED ( " " )
2018-03-26 12:59:45 -07:00
}
2018-04-18 21:10:09 -07:00
//---< print line prefix (address and offset from CodeHeap start) >---
ast - > print ( INTPTR_FORMAT , p2i ( this_blob ) ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 19 ) ;
ast - > print ( " (+ " PTR32_FORMAT " ) " , ( unsigned int ) ( ( char * ) this_blob - low_bound ) ) ;
ast - > fill_to ( 33 ) ;
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_TRACE
STRINGSTREAM_FLUSH_LOCKED ( " " ) // Remove before push!!!
# endif
// this_blob->as_nmethod_or_null() is safe. Inlined, maybe invisible on stack.
nmethod * nm = this_blob - > as_nmethod_or_null ( ) ;
Method * method = ( nm = = NULL ) ? NULL : nm - > method ( ) ; // may be uninitialized, i.e. != NULL, but invalid
# ifdef JDK8200450_REMEDY
if ( ( nm ! = NULL ) & & ( method ! = NULL ) & & is_readable_pointer ( method ) & & is_readable_pointer ( method - > constants ( ) ) ) {
# else
if ( ( nm ! = NULL ) & & ( method ! = NULL ) ) {
# endif
2018-03-26 12:59:45 -07:00
ResourceMark rm ;
2018-04-18 21:10:09 -07:00
//---< collect all data to locals as quickly as possible >---
2018-03-26 12:59:45 -07:00
unsigned int total_size = nm - > total_size ( ) ;
2018-04-18 21:10:09 -07:00
int hotness = nm - > hotness_counter ( ) ;
bool nm_zombie = nm - > is_zombie ( ) ;
bool get_name = nm - > is_in_use ( ) | | nm - > is_not_entrant ( ) ;
//---< nMethod size in hex >---
2018-03-26 12:59:45 -07:00
ast - > print ( PTR32_FORMAT , total_size ) ;
2018-03-28 09:16:07 +02:00
ast - > print ( " ( " SIZE_FORMAT_W ( 4 ) " K) " , total_size / K ) ;
2018-03-26 12:59:45 -07:00
//---< compiler information >---
ast - > fill_to ( 51 ) ;
ast - > print ( " %5s %3d " , compTypeName [ StatArray [ ix ] . compiler ] , StatArray [ ix ] . level ) ;
//---< method temperature >---
ast - > fill_to ( 62 ) ;
2018-04-18 21:10:09 -07:00
ast - > print ( " %5d " , hotness ) ;
2018-03-26 12:59:45 -07:00
//---< name and signature >---
ast - > fill_to ( 62 + 6 ) ;
ast - > print ( " %s " , blobTypeName [ cbType ] ) ;
ast - > fill_to ( 82 + 6 ) ;
2018-04-18 21:10:09 -07:00
if ( nm_zombie ) {
2018-03-26 12:59:45 -07:00
ast - > print ( " %14s " , " zombie method " ) ;
}
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_TRACE
STRINGSTREAM_FLUSH_LOCKED ( " " ) // Remove before push!!!
# endif
if ( get_name ) {
# ifdef JDK8200450_REMEDY
Symbol * methName = method - > name ( ) ;
const char * methNameS = ( methName = = NULL ) ? NULL : methName - > as_C_string ( ) ;
methNameS = ( methNameS = = NULL ) ? " <method name unavailable> " : methNameS ;
Symbol * methSig = method - > signature ( ) ;
const char * methSigS = ( methSig = = NULL ) ? NULL : methSig - > as_C_string ( ) ;
methSigS = ( methSigS = = NULL ) ? " <method signature unavailable> " : methSigS ;
ast - > print ( " %s " , methNameS ) ;
ast - > print ( " %s " , methSigS ) ;
# else
blob_name = method - > name_and_sig_as_C_string ( ) ;
ast - > print ( " %s " , blob_name ) ;
# endif
} else {
ast - > print ( " %s " , blob_name ) ;
}
2018-03-26 12:59:45 -07:00
} else {
ast - > fill_to ( 62 + 6 ) ;
ast - > print ( " %s " , blobTypeName [ cbType ] ) ;
ast - > fill_to ( 82 + 6 ) ;
ast - > print ( " %s " , blob_name ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_TRACE
if ( ( nm ! = NULL ) & & ( method ! = NULL ) & & ! ( is_readable_pointer ( method ) & & is_readable_pointer ( method - > constants ( ) ) ) ) {
ast - > print ( " Potential CodeHeap State Analytics issue found. \n " ) ;
if ( is_readable_pointer ( method ) ) {
ast - > print ( " Issue would have been detected by is_readable_pointer( " INTPTR_FORMAT " (method->constants())) check. \n " , p2i ( method - > constants ( ) ) ) ;
} else {
ast - > print ( " Issue would have been detected by is_readable_pointer( " INTPTR_FORMAT " (method)) check. \n " , p2i ( method ) ) ;
}
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
}
# endif
} else if ( ! blob_initialized & & ( this_blob ! = last_blob ) & & ( this_blob ! = NULL ) ) {
2018-03-26 12:59:45 -07:00
last_blob = this_blob ;
2018-04-18 21:10:09 -07:00
# ifdef JDK8200450_TRACE
ast - > print ( " Potential CodeHeap State Analytics issue found. \n " ) ;
if ( nBlobs = = 0 ) {
ast - > print ( " Issue would have been detected by (nBlobs > 0) check. \n " ) ;
} else {
if ( ! ( ( address ) this_blob + hdr_size = = reloc_begin ) ) {
ast - > print ( " Issue would have been detected by (this( " INTPTR_FORMAT " ) + header(%d) == relocation_begin( " INTPTR_FORMAT " )) check. \n " , p2i ( this_blob ) , hdr_size , p2i ( reloc_begin ) ) ;
}
if ( ! ( ( address ) this_blob + CodeBlob : : align_code_offset ( hdr_size + reloc_size ) = = cntnt_begin ) ) {
ast - > print ( " Issue would have been detected by (this( " INTPTR_FORMAT " ) + header(%d) + relocation(%d) == content_begin( " INTPTR_FORMAT " )) check. \n " , p2i ( this_blob ) , hdr_size , reloc_size , p2i ( cntnt_begin ) ) ;
}
if ( hdr_size ! = this_blob - > header_size ( ) ) {
ast - > print ( " header_size meanwhile changed from %d to %d \n " , hdr_size , this_blob - > header_size ( ) ) ;
}
if ( reloc_size ! = this_blob - > relocation_size ( ) ) {
ast - > print ( " relocation_size meanwhile changed from %d to %d \n " , reloc_size , this_blob - > relocation_size ( ) ) ;
}
if ( reloc_begin ! = ( address ) ( this_blob - > relocation_begin ( ) ) ) {
ast - > print ( " relocation_begin meanwhile changed from " INTPTR_FORMAT " to " INTPTR_FORMAT " \n " , p2i ( reloc_begin ) , p2i ( this_blob - > relocation_begin ( ) ) ) ;
}
if ( cntnt_begin ! = this_blob - > content_begin ( ) ) {
ast - > print ( " relocation_begin meanwhile changed from " INTPTR_FORMAT " to " INTPTR_FORMAT " \n " , p2i ( cntnt_begin ) , p2i ( this_blob - > content_begin ( ) ) ) ;
}
}
STRINGSTREAM_FLUSH_LOCKED ( " \n " )
# endif
2018-03-26 12:59:45 -07:00
}
}
2018-04-18 21:10:09 -07:00
} // nBlobs > 0
2018-03-26 12:59:45 -07:00
}
STRINGSTREAM_FLUSH_LOCKED ( " \n \n " )
}
void CodeHeapState : : printBox ( outputStream * ast , const char border , const char * text1 , const char * text2 ) {
unsigned int lineLen = 1 + 2 + 2 + 1 ;
char edge , frame ;
if ( text1 ! = NULL ) {
lineLen + = ( unsigned int ) strlen ( text1 ) ; // text1 is much shorter than MAX_INT chars.
}
if ( text2 ! = NULL ) {
lineLen + = ( unsigned int ) strlen ( text2 ) ; // text2 is much shorter than MAX_INT chars.
}
if ( border = = ' - ' ) {
edge = ' + ' ;
frame = ' | ' ;
} else {
edge = border ;
frame = border ;
}
ast - > print ( " %c " , edge ) ;
for ( unsigned int i = 0 ; i < lineLen - 2 ; i + + ) {
ast - > print ( " %c " , border ) ;
}
ast - > print_cr ( " %c " , edge ) ;
ast - > print ( " %c " , frame ) ;
if ( text1 ! = NULL ) {
ast - > print ( " %s " , text1 ) ;
}
if ( text2 ! = NULL ) {
ast - > print ( " %s " , text2 ) ;
}
ast - > print_cr ( " %c " , frame ) ;
ast - > print ( " %c " , edge ) ;
for ( unsigned int i = 0 ; i < lineLen - 2 ; i + + ) {
ast - > print ( " %c " , border ) ;
}
ast - > print_cr ( " %c " , edge ) ;
}
void CodeHeapState : : print_blobType_legend ( outputStream * out ) {
out - > cr ( ) ;
printBox ( out , ' - ' , " Block types used in the following CodeHeap dump " , NULL ) ;
for ( int type = noType ; type < lastType ; type + = 1 ) {
out - > print_cr ( " %c - %s " , blobTypeChar [ type ] , blobTypeName [ type ] ) ;
}
out - > print_cr ( " ----------------------------------------------------- " ) ;
out - > cr ( ) ;
}
void CodeHeapState : : print_space_legend ( outputStream * out ) {
unsigned int indicator = 0 ;
unsigned int age_range = 256 ;
unsigned int range_beg = latest_compilation_id ;
out - > cr ( ) ;
printBox ( out , ' - ' , " Space ranges, based on granule occupancy " , NULL ) ;
out - > print_cr ( " - 0%% == occupancy " ) ;
for ( int i = 0 ; i < = 9 ; i + + ) {
out - > print_cr ( " %d - %3d%% < occupancy < %3d%% " , i , 10 * i , 10 * ( i + 1 ) ) ;
}
out - > print_cr ( " * - 100%% == occupancy " ) ;
out - > print_cr ( " ---------------------------------------------- " ) ;
out - > cr ( ) ;
}
void CodeHeapState : : print_age_legend ( outputStream * out ) {
unsigned int indicator = 0 ;
unsigned int age_range = 256 ;
unsigned int range_beg = latest_compilation_id ;
out - > cr ( ) ;
printBox ( out , ' - ' , " Age ranges, based on compilation id " , NULL ) ;
while ( age_range > 0 ) {
out - > print_cr ( " %d - %6d to %6d " , indicator , range_beg , latest_compilation_id - latest_compilation_id / age_range ) ;
range_beg = latest_compilation_id - latest_compilation_id / age_range ;
age_range / = 2 ;
indicator + = 1 ;
}
out - > print_cr ( " ----------------------------------------- " ) ;
out - > cr ( ) ;
}
void CodeHeapState : : print_blobType_single ( outputStream * out , u2 /* blobType */ type ) {
out - > print ( " %c " , blobTypeChar [ type ] ) ;
}
void CodeHeapState : : print_count_single ( outputStream * out , unsigned short count ) {
if ( count > = 16 ) out - > print ( " * " ) ;
else if ( count > 0 ) out - > print ( " %1.1x " , count ) ;
else out - > print ( " " ) ;
}
void CodeHeapState : : print_space_single ( outputStream * out , unsigned short space ) {
size_t space_in_bytes = ( ( unsigned int ) space ) < < log2_seg_size ;
char fraction = ( space = = 0 ) ? ' ' : ( space_in_bytes > = granule_size - 1 ) ? ' * ' : char ( ' 0 ' + 10 * space_in_bytes / granule_size ) ;
out - > print ( " %c " , fraction ) ;
}
void CodeHeapState : : print_age_single ( outputStream * out , unsigned int age ) {
unsigned int indicator = 0 ;
unsigned int age_range = 256 ;
if ( age > 0 ) {
while ( ( age_range > 0 ) & & ( latest_compilation_id - age > latest_compilation_id / age_range ) ) {
age_range / = 2 ;
indicator + = 1 ;
}
out - > print ( " %c " , char ( ' 0 ' + indicator ) ) ;
} else {
out - > print ( " " ) ;
}
}
void CodeHeapState : : print_line_delim ( outputStream * out , outputStream * ast , char * low_bound , unsigned int ix , unsigned int gpl ) {
if ( ix % gpl = = 0 ) {
if ( ix > 0 ) {
ast - > print ( " | " ) ;
}
ast - > cr ( ) ;
assert ( out = = ast , " must use the same stream! " ) ;
2018-04-18 21:10:09 -07:00
ast - > print ( INTPTR_FORMAT , p2i ( low_bound + ix * granule_size ) ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 19 ) ;
ast - > print ( " (+ " PTR32_FORMAT " ): | " , ( unsigned int ) ( ix * granule_size ) ) ;
}
}
void CodeHeapState : : print_line_delim ( outputStream * out , bufferedStream * ast , char * low_bound , unsigned int ix , unsigned int gpl ) {
assert ( out ! = ast , " must not use the same stream! " ) ;
if ( ix % gpl = = 0 ) {
if ( ix > 0 ) {
ast - > print ( " | " ) ;
}
ast - > cr ( ) ;
{ // can't use STRINGSTREAM_FLUSH_LOCKED("") here.
ttyLocker ttyl ;
out - > print ( " %s " , ast - > as_string ( ) ) ;
ast - > reset ( ) ;
}
2018-04-18 21:10:09 -07:00
ast - > print ( INTPTR_FORMAT , p2i ( low_bound + ix * granule_size ) ) ;
2018-03-26 12:59:45 -07:00
ast - > fill_to ( 19 ) ;
ast - > print ( " (+ " PTR32_FORMAT " ): | " , ( unsigned int ) ( ix * granule_size ) ) ;
}
}
CodeHeapState : : blobType CodeHeapState : : get_cbType ( CodeBlob * cb ) {
if ( cb ! = NULL ) {
if ( cb - > is_runtime_stub ( ) ) return runtimeStub ;
if ( cb - > is_deoptimization_stub ( ) ) return deoptimizationStub ;
if ( cb - > is_uncommon_trap_stub ( ) ) return uncommonTrapStub ;
if ( cb - > is_exception_stub ( ) ) return exceptionStub ;
if ( cb - > is_safepoint_stub ( ) ) return safepointStub ;
if ( cb - > is_adapter_blob ( ) ) return adapterBlob ;
if ( cb - > is_method_handles_adapter_blob ( ) ) return mh_adapterBlob ;
if ( cb - > is_buffer_blob ( ) ) return bufferBlob ;
if ( cb - > is_nmethod ( ) ) {
if ( ( ( nmethod * ) cb ) - > is_in_use ( ) ) return nMethod_inuse ;
if ( ( ( nmethod * ) cb ) - > is_alive ( ) & & ! ( ( ( nmethod * ) cb ) - > is_not_entrant ( ) ) ) return nMethod_notused ;
if ( ( ( nmethod * ) cb ) - > is_alive ( ) ) return nMethod_alive ;
if ( ( ( nmethod * ) cb ) - > is_unloaded ( ) ) return nMethod_unloaded ;
if ( ( ( nmethod * ) cb ) - > is_zombie ( ) ) return nMethod_dead ;
tty - > print_cr ( " unhandled nmethod state " ) ;
return nMethod_dead ;
}
}
return noType ;
}
2018-04-18 21:10:09 -07:00
// Check if pointer can be read from (4-byte read access).
// Helps to prove validity of a not-NULL pointer.
// Returns true in very early stages of VM life when stub is not yet generated.
# define SAFEFETCH_DEFAULT true
bool CodeHeapState : : is_readable_pointer ( const void * p ) {
if ( ! CanUseSafeFetch32 ( ) ) {
return SAFEFETCH_DEFAULT ;
}
int * const aligned = ( int * ) align_down ( ( intptr_t ) p , 4 ) ;
int cafebabe = 0xcafebabe ; // tester value 1
int deadbeef = 0xdeadbeef ; // tester value 2
return ( SafeFetch32 ( aligned , cafebabe ) ! = cafebabe ) | | ( SafeFetch32 ( aligned , deadbeef ) ! = deadbeef ) ;
}