513 lines
20 KiB
C++
513 lines
20 KiB
C++
|
/*
|
||
|
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "precompiled.hpp"
|
||
|
#include "gc/shared/cardTable.hpp"
|
||
|
#include "gc/shared/collectedHeap.hpp"
|
||
|
#include "gc/shared/space.inline.hpp"
|
||
|
#include "logging/log.hpp"
|
||
|
#include "memory/virtualspace.hpp"
|
||
|
#include "runtime/java.hpp"
|
||
|
#include "runtime/os.hpp"
|
||
|
#include "services/memTracker.hpp"
|
||
|
#include "utilities/align.hpp"
|
||
|
|
||
|
size_t CardTable::compute_byte_map_size() {
|
||
|
assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
|
||
|
"uninitialized, check declaration order");
|
||
|
assert(_page_size != 0, "uninitialized, check declaration order");
|
||
|
const size_t granularity = os::vm_allocation_granularity();
|
||
|
return align_up(_guard_index + 1, MAX2(_page_size, granularity));
|
||
|
}
|
||
|
|
||
|
CardTable::CardTable(MemRegion whole_heap, bool conc_scan) :
|
||
|
_scanned_concurrently(conc_scan),
|
||
|
_whole_heap(whole_heap),
|
||
|
_guard_index(0),
|
||
|
_guard_region(),
|
||
|
_last_valid_index(0),
|
||
|
_page_size(os::vm_page_size()),
|
||
|
_byte_map_size(0),
|
||
|
_covered(NULL),
|
||
|
_committed(NULL),
|
||
|
_cur_covered_regions(0),
|
||
|
_byte_map(NULL),
|
||
|
_byte_map_base(NULL)
|
||
|
{
|
||
|
assert((uintptr_t(_whole_heap.start()) & (card_size - 1)) == 0, "heap must start at card boundary");
|
||
|
assert((uintptr_t(_whole_heap.end()) & (card_size - 1)) == 0, "heap must end at card boundary");
|
||
|
|
||
|
assert(card_size <= 512, "card_size must be less than 512"); // why?
|
||
|
|
||
|
_covered = new MemRegion[_max_covered_regions];
|
||
|
if (_covered == NULL) {
|
||
|
vm_exit_during_initialization("Could not allocate card table covered region set.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CardTable::~CardTable() {
|
||
|
if (_covered) {
|
||
|
delete[] _covered;
|
||
|
_covered = NULL;
|
||
|
}
|
||
|
if (_committed) {
|
||
|
delete[] _committed;
|
||
|
_committed = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CardTable::initialize() {
|
||
|
_guard_index = cards_required(_whole_heap.word_size()) - 1;
|
||
|
_last_valid_index = _guard_index - 1;
|
||
|
|
||
|
_byte_map_size = compute_byte_map_size();
|
||
|
|
||
|
HeapWord* low_bound = _whole_heap.start();
|
||
|
HeapWord* high_bound = _whole_heap.end();
|
||
|
|
||
|
_cur_covered_regions = 0;
|
||
|
_committed = new MemRegion[_max_covered_regions];
|
||
|
if (_committed == NULL) {
|
||
|
vm_exit_during_initialization("Could not allocate card table committed region set.");
|
||
|
}
|
||
|
|
||
|
const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
|
||
|
MAX2(_page_size, (size_t) os::vm_allocation_granularity());
|
||
|
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
|
||
|
|
||
|
MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
|
||
|
|
||
|
os::trace_page_sizes("Card Table", _guard_index + 1, _guard_index + 1,
|
||
|
_page_size, heap_rs.base(), heap_rs.size());
|
||
|
if (!heap_rs.is_reserved()) {
|
||
|
vm_exit_during_initialization("Could not reserve enough space for the "
|
||
|
"card marking array");
|
||
|
}
|
||
|
|
||
|
// The assembler store_check code will do an unsigned shift of the oop,
|
||
|
// then add it to _byte_map_base, i.e.
|
||
|
//
|
||
|
// _byte_map = _byte_map_base + (uintptr_t(low_bound) >> card_shift)
|
||
|
_byte_map = (jbyte*) heap_rs.base();
|
||
|
_byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
|
||
|
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
|
||
|
assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
|
||
|
|
||
|
jbyte* guard_card = &_byte_map[_guard_index];
|
||
|
HeapWord* guard_page = align_down((HeapWord*)guard_card, _page_size);
|
||
|
_guard_region = MemRegion(guard_page, _page_size);
|
||
|
os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
|
||
|
!ExecMem, "card table last card");
|
||
|
*guard_card = last_card;
|
||
|
|
||
|
log_trace(gc, barrier)("CardTable::CardTable: ");
|
||
|
log_trace(gc, barrier)(" &_byte_map[0]: " INTPTR_FORMAT " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
|
||
|
p2i(&_byte_map[0]), p2i(&_byte_map[_last_valid_index]));
|
||
|
log_trace(gc, barrier)(" _byte_map_base: " INTPTR_FORMAT, p2i(_byte_map_base));
|
||
|
}
|
||
|
|
||
|
int CardTable::find_covering_region_by_base(HeapWord* base) {
|
||
|
int i;
|
||
|
for (i = 0; i < _cur_covered_regions; i++) {
|
||
|
if (_covered[i].start() == base) return i;
|
||
|
if (_covered[i].start() > base) break;
|
||
|
}
|
||
|
// If we didn't find it, create a new one.
|
||
|
assert(_cur_covered_regions < _max_covered_regions,
|
||
|
"too many covered regions");
|
||
|
// Move the ones above up, to maintain sorted order.
|
||
|
for (int j = _cur_covered_regions; j > i; j--) {
|
||
|
_covered[j] = _covered[j-1];
|
||
|
_committed[j] = _committed[j-1];
|
||
|
}
|
||
|
int res = i;
|
||
|
_cur_covered_regions++;
|
||
|
_covered[res].set_start(base);
|
||
|
_covered[res].set_word_size(0);
|
||
|
jbyte* ct_start = byte_for(base);
|
||
|
HeapWord* ct_start_aligned = align_down((HeapWord*)ct_start, _page_size);
|
||
|
_committed[res].set_start(ct_start_aligned);
|
||
|
_committed[res].set_word_size(0);
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
int CardTable::find_covering_region_containing(HeapWord* addr) {
|
||
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
||
|
if (_covered[i].contains(addr)) {
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
assert(0, "address outside of heap?");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
HeapWord* CardTable::largest_prev_committed_end(int ind) const {
|
||
|
HeapWord* max_end = NULL;
|
||
|
for (int j = 0; j < ind; j++) {
|
||
|
HeapWord* this_end = _committed[j].end();
|
||
|
if (this_end > max_end) max_end = this_end;
|
||
|
}
|
||
|
return max_end;
|
||
|
}
|
||
|
|
||
|
MemRegion CardTable::committed_unique_to_self(int self, MemRegion mr) const {
|
||
|
MemRegion result = mr;
|
||
|
for (int r = 0; r < _cur_covered_regions; r += 1) {
|
||
|
if (r != self) {
|
||
|
result = result.minus(_committed[r]);
|
||
|
}
|
||
|
}
|
||
|
// Never include the guard page.
|
||
|
result = result.minus(_guard_region);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
void CardTable::resize_covered_region(MemRegion new_region) {
|
||
|
// We don't change the start of a region, only the end.
|
||
|
assert(_whole_heap.contains(new_region),
|
||
|
"attempt to cover area not in reserved area");
|
||
|
debug_only(verify_guard();)
|
||
|
// collided is true if the expansion would push into another committed region
|
||
|
debug_only(bool collided = false;)
|
||
|
int const ind = find_covering_region_by_base(new_region.start());
|
||
|
MemRegion const old_region = _covered[ind];
|
||
|
assert(old_region.start() == new_region.start(), "just checking");
|
||
|
if (new_region.word_size() != old_region.word_size()) {
|
||
|
// Commit new or uncommit old pages, if necessary.
|
||
|
MemRegion cur_committed = _committed[ind];
|
||
|
// Extend the end of this _committed region
|
||
|
// to cover the end of any lower _committed regions.
|
||
|
// This forms overlapping regions, but never interior regions.
|
||
|
HeapWord* const max_prev_end = largest_prev_committed_end(ind);
|
||
|
if (max_prev_end > cur_committed.end()) {
|
||
|
cur_committed.set_end(max_prev_end);
|
||
|
}
|
||
|
// Align the end up to a page size (starts are already aligned).
|
||
|
HeapWord* new_end = (HeapWord*) byte_after(new_region.last());
|
||
|
HeapWord* new_end_aligned = align_up(new_end, _page_size);
|
||
|
assert(new_end_aligned >= new_end, "align up, but less");
|
||
|
// Check the other regions (excludes "ind") to ensure that
|
||
|
// the new_end_aligned does not intrude onto the committed
|
||
|
// space of another region.
|
||
|
int ri = 0;
|
||
|
for (ri = ind + 1; ri < _cur_covered_regions; ri++) {
|
||
|
if (new_end_aligned > _committed[ri].start()) {
|
||
|
assert(new_end_aligned <= _committed[ri].end(),
|
||
|
"An earlier committed region can't cover a later committed region");
|
||
|
// Any region containing the new end
|
||
|
// should start at or beyond the region found (ind)
|
||
|
// for the new end (committed regions are not expected to
|
||
|
// be proper subsets of other committed regions).
|
||
|
assert(_committed[ri].start() >= _committed[ind].start(),
|
||
|
"New end of committed region is inconsistent");
|
||
|
new_end_aligned = _committed[ri].start();
|
||
|
// new_end_aligned can be equal to the start of its
|
||
|
// committed region (i.e., of "ind") if a second
|
||
|
// region following "ind" also start at the same location
|
||
|
// as "ind".
|
||
|
assert(new_end_aligned >= _committed[ind].start(),
|
||
|
"New end of committed region is before start");
|
||
|
debug_only(collided = true;)
|
||
|
// Should only collide with 1 region
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#ifdef ASSERT
|
||
|
for (++ri; ri < _cur_covered_regions; ri++) {
|
||
|
assert(!_committed[ri].contains(new_end_aligned),
|
||
|
"New end of committed region is in a second committed region");
|
||
|
}
|
||
|
#endif
|
||
|
// The guard page is always committed and should not be committed over.
|
||
|
// "guarded" is used for assertion checking below and recalls the fact
|
||
|
// that the would-be end of the new committed region would have
|
||
|
// penetrated the guard page.
|
||
|
HeapWord* new_end_for_commit = new_end_aligned;
|
||
|
|
||
|
DEBUG_ONLY(bool guarded = false;)
|
||
|
if (new_end_for_commit > _guard_region.start()) {
|
||
|
new_end_for_commit = _guard_region.start();
|
||
|
DEBUG_ONLY(guarded = true;)
|
||
|
}
|
||
|
|
||
|
if (new_end_for_commit > cur_committed.end()) {
|
||
|
// Must commit new pages.
|
||
|
MemRegion const new_committed =
|
||
|
MemRegion(cur_committed.end(), new_end_for_commit);
|
||
|
|
||
|
assert(!new_committed.is_empty(), "Region should not be empty here");
|
||
|
os::commit_memory_or_exit((char*)new_committed.start(),
|
||
|
new_committed.byte_size(), _page_size,
|
||
|
!ExecMem, "card table expansion");
|
||
|
// Use new_end_aligned (as opposed to new_end_for_commit) because
|
||
|
// the cur_committed region may include the guard region.
|
||
|
} else if (new_end_aligned < cur_committed.end()) {
|
||
|
// Must uncommit pages.
|
||
|
MemRegion const uncommit_region =
|
||
|
committed_unique_to_self(ind, MemRegion(new_end_aligned,
|
||
|
cur_committed.end()));
|
||
|
if (!uncommit_region.is_empty()) {
|
||
|
// It is not safe to uncommit cards if the boundary between
|
||
|
// the generations is moving. A shrink can uncommit cards
|
||
|
// owned by generation A but being used by generation B.
|
||
|
if (!UseAdaptiveGCBoundary) {
|
||
|
if (!os::uncommit_memory((char*)uncommit_region.start(),
|
||
|
uncommit_region.byte_size())) {
|
||
|
assert(false, "Card table contraction failed");
|
||
|
// The call failed so don't change the end of the
|
||
|
// committed region. This is better than taking the
|
||
|
// VM down.
|
||
|
new_end_aligned = _committed[ind].end();
|
||
|
}
|
||
|
} else {
|
||
|
new_end_aligned = _committed[ind].end();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// In any case, we can reset the end of the current committed entry.
|
||
|
_committed[ind].set_end(new_end_aligned);
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// Check that the last card in the new region is committed according
|
||
|
// to the tables.
|
||
|
bool covered = false;
|
||
|
for (int cr = 0; cr < _cur_covered_regions; cr++) {
|
||
|
if (_committed[cr].contains(new_end - 1)) {
|
||
|
covered = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
assert(covered, "Card for end of new region not committed");
|
||
|
#endif
|
||
|
|
||
|
// The default of 0 is not necessarily clean cards.
|
||
|
jbyte* entry;
|
||
|
if (old_region.last() < _whole_heap.start()) {
|
||
|
entry = byte_for(_whole_heap.start());
|
||
|
} else {
|
||
|
entry = byte_after(old_region.last());
|
||
|
}
|
||
|
assert(index_for(new_region.last()) < _guard_index,
|
||
|
"The guard card will be overwritten");
|
||
|
// This line commented out cleans the newly expanded region and
|
||
|
// not the aligned up expanded region.
|
||
|
// jbyte* const end = byte_after(new_region.last());
|
||
|
jbyte* const end = (jbyte*) new_end_for_commit;
|
||
|
assert((end >= byte_after(new_region.last())) || collided || guarded,
|
||
|
"Expect to be beyond new region unless impacting another region");
|
||
|
// do nothing if we resized downward.
|
||
|
#ifdef ASSERT
|
||
|
for (int ri = 0; ri < _cur_covered_regions; ri++) {
|
||
|
if (ri != ind) {
|
||
|
// The end of the new committed region should not
|
||
|
// be in any existing region unless it matches
|
||
|
// the start of the next region.
|
||
|
assert(!_committed[ri].contains(end) ||
|
||
|
(_committed[ri].start() == (HeapWord*) end),
|
||
|
"Overlapping committed regions");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
if (entry < end) {
|
||
|
memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
|
||
|
}
|
||
|
}
|
||
|
// In any case, the covered size changes.
|
||
|
_covered[ind].set_word_size(new_region.word_size());
|
||
|
|
||
|
log_trace(gc, barrier)("CardTable::resize_covered_region: ");
|
||
|
log_trace(gc, barrier)(" _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT,
|
||
|
ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
|
||
|
log_trace(gc, barrier)(" _committed[%d].start(): " INTPTR_FORMAT " _committed[%d].last(): " INTPTR_FORMAT,
|
||
|
ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
|
||
|
log_trace(gc, barrier)(" byte_for(start): " INTPTR_FORMAT " byte_for(last): " INTPTR_FORMAT,
|
||
|
p2i(byte_for(_covered[ind].start())), p2i(byte_for(_covered[ind].last())));
|
||
|
log_trace(gc, barrier)(" addr_for(start): " INTPTR_FORMAT " addr_for(last): " INTPTR_FORMAT,
|
||
|
p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last())));
|
||
|
|
||
|
// Touch the last card of the covered region to show that it
|
||
|
// is committed (or SEGV).
|
||
|
debug_only((void) (*byte_for(_covered[ind].last()));)
|
||
|
debug_only(verify_guard();)
|
||
|
}
|
||
|
|
||
|
// Note that these versions are precise! The scanning code has to handle the
|
||
|
// fact that the write barrier may be either precise or imprecise.
|
||
|
void CardTable::dirty_MemRegion(MemRegion mr) {
|
||
|
assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
|
||
|
assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
|
||
|
jbyte* cur = byte_for(mr.start());
|
||
|
jbyte* last = byte_after(mr.last());
|
||
|
while (cur < last) {
|
||
|
*cur = dirty_card;
|
||
|
cur++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CardTable::clear_MemRegion(MemRegion mr) {
|
||
|
// Be conservative: only clean cards entirely contained within the
|
||
|
// region.
|
||
|
jbyte* cur;
|
||
|
if (mr.start() == _whole_heap.start()) {
|
||
|
cur = byte_for(mr.start());
|
||
|
} else {
|
||
|
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
|
||
|
cur = byte_after(mr.start() - 1);
|
||
|
}
|
||
|
jbyte* last = byte_after(mr.last());
|
||
|
memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
|
||
|
}
|
||
|
|
||
|
void CardTable::clear(MemRegion mr) {
|
||
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
||
|
MemRegion mri = mr.intersection(_covered[i]);
|
||
|
if (!mri.is_empty()) clear_MemRegion(mri);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CardTable::dirty(MemRegion mr) {
|
||
|
jbyte* first = byte_for(mr.start());
|
||
|
jbyte* last = byte_after(mr.last());
|
||
|
memset(first, dirty_card, last-first);
|
||
|
}
|
||
|
|
||
|
// Unlike several other card table methods, dirty_card_iterate()
|
||
|
// iterates over dirty cards ranges in increasing address order.
|
||
|
void CardTable::dirty_card_iterate(MemRegion mr, MemRegionClosure* cl) {
|
||
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
||
|
MemRegion mri = mr.intersection(_covered[i]);
|
||
|
if (!mri.is_empty()) {
|
||
|
jbyte *cur_entry, *next_entry, *limit;
|
||
|
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
||
|
cur_entry <= limit;
|
||
|
cur_entry = next_entry) {
|
||
|
next_entry = cur_entry + 1;
|
||
|
if (*cur_entry == dirty_card) {
|
||
|
size_t dirty_cards;
|
||
|
// Accumulate maximal dirty card range, starting at cur_entry
|
||
|
for (dirty_cards = 1;
|
||
|
next_entry <= limit && *next_entry == dirty_card;
|
||
|
dirty_cards++, next_entry++);
|
||
|
MemRegion cur_cards(addr_for(cur_entry),
|
||
|
dirty_cards*card_size_in_words);
|
||
|
cl->do_MemRegion(cur_cards);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MemRegion CardTable::dirty_card_range_after_reset(MemRegion mr,
|
||
|
bool reset,
|
||
|
int reset_val) {
|
||
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
||
|
MemRegion mri = mr.intersection(_covered[i]);
|
||
|
if (!mri.is_empty()) {
|
||
|
jbyte* cur_entry, *next_entry, *limit;
|
||
|
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
||
|
cur_entry <= limit;
|
||
|
cur_entry = next_entry) {
|
||
|
next_entry = cur_entry + 1;
|
||
|
if (*cur_entry == dirty_card) {
|
||
|
size_t dirty_cards;
|
||
|
// Accumulate maximal dirty card range, starting at cur_entry
|
||
|
for (dirty_cards = 1;
|
||
|
next_entry <= limit && *next_entry == dirty_card;
|
||
|
dirty_cards++, next_entry++);
|
||
|
MemRegion cur_cards(addr_for(cur_entry),
|
||
|
dirty_cards*card_size_in_words);
|
||
|
if (reset) {
|
||
|
for (size_t i = 0; i < dirty_cards; i++) {
|
||
|
cur_entry[i] = reset_val;
|
||
|
}
|
||
|
}
|
||
|
return cur_cards;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return MemRegion(mr.end(), mr.end());
|
||
|
}
|
||
|
|
||
|
uintx CardTable::ct_max_alignment_constraint() {
|
||
|
return card_size * os::vm_page_size();
|
||
|
}
|
||
|
|
||
|
void CardTable::verify_guard() {
|
||
|
// For product build verification
|
||
|
guarantee(_byte_map[_guard_index] == last_card,
|
||
|
"card table guard has been modified");
|
||
|
}
|
||
|
|
||
|
void CardTable::invalidate(MemRegion mr) {
|
||
|
assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
|
||
|
assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
|
||
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
||
|
MemRegion mri = mr.intersection(_covered[i]);
|
||
|
if (!mri.is_empty()) dirty_MemRegion(mri);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CardTable::verify() {
|
||
|
verify_guard();
|
||
|
}
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
void CardTable::verify_region(MemRegion mr,
|
||
|
jbyte val, bool val_equals) {
|
||
|
jbyte* start = byte_for(mr.start());
|
||
|
jbyte* end = byte_for(mr.last());
|
||
|
bool failures = false;
|
||
|
for (jbyte* curr = start; curr <= end; ++curr) {
|
||
|
jbyte curr_val = *curr;
|
||
|
bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
|
||
|
if (failed) {
|
||
|
if (!failures) {
|
||
|
log_error(gc, verify)("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
|
||
|
log_error(gc, verify)("== %sexpecting value: %d", (val_equals) ? "" : "not ", val);
|
||
|
failures = true;
|
||
|
}
|
||
|
log_error(gc, verify)("== card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], val: %d",
|
||
|
p2i(curr), p2i(addr_for(curr)),
|
||
|
p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
|
||
|
(int) curr_val);
|
||
|
}
|
||
|
}
|
||
|
guarantee(!failures, "there should not have been any failures");
|
||
|
}
|
||
|
|
||
|
void CardTable::verify_not_dirty_region(MemRegion mr) {
|
||
|
verify_region(mr, dirty_card, false /* val_equals */);
|
||
|
}
|
||
|
|
||
|
void CardTable::verify_dirty_region(MemRegion mr) {
|
||
|
verify_region(mr, dirty_card, true /* val_equals */);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void CardTable::print_on(outputStream* st) const {
|
||
|
st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] _byte_map_base: " INTPTR_FORMAT,
|
||
|
p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(_byte_map_base));
|
||
|
}
|