jdk-24/src/hotspot/share/oops/compressedOops.cpp

297 lines
9.7 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "aot/aotLoader.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/memRegion.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "runtime/globals.hpp"
// For UseCompressedOops.
NarrowPtrStruct CompressedOops::_narrow_oop = { NULL, 0, true };
MemRegion CompressedOops::_heap_address_range;
// Choose the heap base address and oop encoding mode
// when compressed oops are used:
// Unscaled - Use 32-bits oops without encoding when
// NarrowOopHeapBaseMin + heap_size < 4Gb
// ZeroBased - Use zero based compressed oops with encoding when
// NarrowOopHeapBaseMin + heap_size < 32Gb
// HeapBased - Use compressed oops with heap base + encoding.
void CompressedOops::initialize(const ReservedHeapSpace& heap_space) {
#ifdef _LP64
// Subtract a page because something can get allocated at heap base.
// This also makes implicit null checking work, because the
// memory+1 page below heap_base needs to cause a signal.
// See needs_explicit_null_check.
// Only set the heap base for compressed oops because it indicates
// compressed oops for pstack code.
if ((uint64_t)heap_space.end() > UnscaledOopHeapMax) {
// Didn't reserve heap below 4Gb. Must shift.
set_shift(LogMinObjAlignmentInBytes);
}
if ((uint64_t)heap_space.end() <= OopEncodingHeapMax) {
// Did reserve heap below 32Gb. Can use base == 0;
set_base(0);
} else {
set_base((address)heap_space.compressed_oop_base());
}
AOTLoader::set_narrow_oop_shift();
_heap_address_range = heap_space.region();
LogTarget(Info, gc, heap, coops) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
print_mode(&ls);
}
// Tell tests in which mode we run.
Arguments::PropertyList_add(new SystemProperty("java.vm.compressedOopsMode",
mode_to_string(mode()),
false));
// base() is one page below the heap.
assert((intptr_t)base() <= ((intptr_t)_heap_address_range.start() - os::vm_page_size()) ||
base() == NULL, "invalid value");
assert(shift() == LogMinObjAlignmentInBytes ||
shift() == 0, "invalid value");
#endif
}
void CompressedOops::set_base(address base) {
assert(UseCompressedOops, "no compressed oops?");
_narrow_oop._base = base;
}
void CompressedOops::set_shift(int shift) {
_narrow_oop._shift = shift;
}
void CompressedOops::set_use_implicit_null_checks(bool use) {
assert(UseCompressedOops, "no compressed ptrs?");
_narrow_oop._use_implicit_null_checks = use;
}
bool CompressedOops::is_in(void* addr) {
return _heap_address_range.contains(addr);
}
bool CompressedOops::is_in(MemRegion mr) {
return _heap_address_range.contains(mr);
}
CompressedOops::Mode CompressedOops::mode() {
if (base_disjoint()) {
return DisjointBaseNarrowOop;
}
if (base() != 0) {
return HeapBasedNarrowOop;
}
if (shift() != 0) {
return ZeroBasedNarrowOop;
}
return UnscaledNarrowOop;
}
const char* CompressedOops::mode_to_string(Mode mode) {
switch (mode) {
case UnscaledNarrowOop:
return "32-bit";
case ZeroBasedNarrowOop:
return "Zero based";
case DisjointBaseNarrowOop:
return "Non-zero disjoint base";
case HeapBasedNarrowOop:
return "Non-zero based";
default:
ShouldNotReachHere();
return "";
}
}
// Test whether bits of addr and possible offsets into the heap overlap.
bool CompressedOops::is_disjoint_heap_base_address(address addr) {
return (((uint64_t)(intptr_t)addr) &
(((uint64_t)UCONST64(0xFFFFffffFFFFffff)) >> (32-LogMinObjAlignmentInBytes))) == 0;
}
// Check for disjoint base compressed oops.
bool CompressedOops::base_disjoint() {
return _narrow_oop._base != NULL && is_disjoint_heap_base_address(_narrow_oop._base);
}
// Check for real heapbased compressed oops.
// We must subtract the base as the bits overlap.
// If we negate above function, we also get unscaled and zerobased.
bool CompressedOops::base_overlaps() {
return _narrow_oop._base != NULL && !is_disjoint_heap_base_address(_narrow_oop._base);
}
void CompressedOops::print_mode(outputStream* st) {
st->print("Heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
p2i(_heap_address_range.start()), _heap_address_range.byte_size()/M);
st->print(", Compressed Oops mode: %s", mode_to_string(mode()));
if (base() != 0) {
st->print(": " PTR_FORMAT, p2i(base()));
}
if (shift() != 0) {
st->print(", Oop shift amount: %d", shift());
}
if (!use_implicit_null_checks()) {
st->print(", no protected page in front of the heap");
}
st->cr();
}
// For UseCompressedClassPointers.
NarrowPtrStruct CompressedKlassPointers::_narrow_klass = { NULL, 0, true };
// CompressedClassSpaceSize set to 1GB, but appear 3GB away from _narrow_ptrs_base during CDS dump.
// (Todo: we should #ifdef out CompressedKlassPointers for 32bit completely and fix all call sites which
// are compiled for 32bit to LP64_ONLY).
size_t CompressedKlassPointers::_range = 0;
// Given an address range [addr, addr+len) which the encoding is supposed to
// cover, choose base, shift and range.
// The address range is the expected range of uncompressed Klass pointers we
// will encounter (and the implicit promise that there will be no Klass
// structures outside this range).
void CompressedKlassPointers::initialize(address addr, size_t len) {
#ifdef _LP64
assert(is_valid_base(addr), "Address must be a valid encoding base");
address const end = addr + len;
address base;
int shift;
size_t range;
if (UseSharedSpaces || DumpSharedSpaces) {
// Special requirements if CDS is active:
// Encoding base and shift must be the same between dump and run time.
// CDS takes care that the SharedBaseAddress and CompressedClassSpaceSize
// are the same. Archive size will be probably different at runtime, but
// it can only be smaller than at, never larger, since archives get
// shrunk at the end of the dump process.
// From that it follows that the range [addr, len) we are handed in at
// runtime will start at the same address then at dumptime, and its len
// may be smaller at runtime then it was at dump time.
//
// To be very careful here, we avoid any optimizations and just keep using
// the same address and shift value. Specifically we avoid using zero-based
// encoding. We also set the expected value range to 4G (encoding range
// cannot be larger than that).
base = addr;
shift = LogKlassAlignmentInBytes;
// This must be true since at dumptime cds+ccs is 4G, at runtime it can
// only be smaller, see comment above.
assert(len <= 4 * G, "Encoding range cannot be larger than 4G");
range = 4 * G;
} else {
// Otherwise we attempt to use a zero base if the range fits in lower 32G.
if (end <= (address)KlassEncodingMetaspaceMax) {
base = 0;
} else {
base = addr;
}
// Highest offset a Klass* can ever have in relation to base.
range = end - base;
// We may not even need a shift if the range fits into 32bit:
const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
if (range < UnscaledClassSpaceMax) {
shift = 0;
} else {
shift = LogKlassAlignmentInBytes;
}
}
set_base(base);
set_shift(shift);
set_range(range);
// Note: this may modify our shift.
AOTLoader::set_narrow_klass_shift();
#else
fatal("64bit only.");
#endif
}
// Given an address p, return true if p can be used as an encoding base.
// (Some platforms have restrictions of what constitutes a valid base address).
bool CompressedKlassPointers::is_valid_base(address p) {
#ifdef AARCH64
// Below 32G, base must be aligned to 4G.
// Above that point, base must be aligned to 32G
if (p < (address)(32 * G)) {
return is_aligned(p, 4 * G);
}
return is_aligned(p, (4 << LogKlassAlignmentInBytes) * G);
#else
return true;
#endif
}
void CompressedKlassPointers::print_mode(outputStream* st) {
st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d, "
"Narrow klass range: " SIZE_FORMAT_HEX, p2i(base()), shift(),
range());
}
void CompressedKlassPointers::set_base(address base) {
assert(UseCompressedClassPointers, "no compressed klass ptrs?");
_narrow_klass._base = base;
}
void CompressedKlassPointers::set_shift(int shift) {
assert(shift == 0 || shift == LogKlassAlignmentInBytes, "invalid shift for klass ptrs");
_narrow_klass._shift = shift;
}
void CompressedKlassPointers::set_range(size_t range) {
assert(UseCompressedClassPointers, "no compressed klass ptrs?");
_range = range;
}