jdk-24/test/hotspot/jtreg/compiler/intrinsics/zip/TestCRC32C.java

286 lines
11 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8073583
* @summary C2 support for CRC32C on SPARC
*
* @run main/othervm/timeout=600 -Xbatch compiler.intrinsics.zip.TestCRC32C -m
*/
package compiler.intrinsics.zip;
import java.nio.ByteBuffer;
import java.util.zip.CRC32C;
import java.util.zip.Checksum;
public class TestCRC32C {
// CRC32C (Castagnoli) polynomial
// coefficients in different forms
// normal: polyBits = 0x1edc6f41 = 0b0001 1110 1101 1100 0110 1111 0100 0001
// reversed: polybits = 0x82f63b78 = 0b1000 0010 1111 0110 0011 1011 0111 1000
// reversed reciprocal polybits = 0x8f6e37a0 = 0b1000 1111 0110 1110 0011 0111 1010 0000
//
// 0 5 9 13 17 21 25 29
// | | | | | | | |
// reversed shiftL 1 polyBits = 0x105ec76f1L = 0b1 0000 0101 1110 1100 0111 0110 1111 0001
final static long polyBits = (1L<<(32-32)) + (1L<<(32-28)) + (1L<<(32-27))
+ (1L<<(32-26)) + (1L<<(32-25)) + (1L<<(32-23)) + (1L<<(32-22))
+ (1L<<(32-20)) + (1L<<(32-19)) + (1L<<(32-18)) + (1L<<(32-14))
+ (1L<<(32-13)) + (1L<<(32-11)) + (1L<<(32-10)) + (1L<<(32-9))
+ (1L<<(32-8)) + (1L<<(32-6)) + (1L<<(32-0));
final static long polyBitsShifted = polyBits>>1;
public static void main(String[] args) throws Exception {
int offset = Integer.getInteger("offset", 0);
int msgSize = Integer.getInteger("msgSize", 512);
boolean multi = false;
int iters = 20000;
int warmupIters = 20000;
if (args.length > 0) {
if (args[0].equals("-m")) {
multi = true;
} else {
iters = Integer.valueOf(args[0]);
}
if (args.length > 1) {
warmupIters = Integer.valueOf(args[1]);
}
}
if (multi) {
test_multi(warmupIters);
return;
}
System.out.println(" offset = " + offset);
System.out.println("msgSize = " + msgSize + " bytes");
System.out.println(" iters = " + iters);
byte[] b = initializedBytes(msgSize, offset);
final long crcReference = update_byteLoop(0, b, offset);
CRC32C crc0 = new CRC32C();
CRC32C crc1 = new CRC32C();
CRC32C crc2 = new CRC32C();
crc0.update(b, offset, msgSize);
check(crc0, crcReference);
System.out.println("-------------------------------------------------------");
/* warm up */
for (int i = 0; i < warmupIters; i++) {
crc1.reset();
crc1.update(b, offset, msgSize);
check(crc1, crcReference);
}
/* check correctness
* Do that before measuring performance
* to even better heat up involved methods.
*/
for (int i = 0; i < iters; i++) {
crc1.reset();
crc1.update(b, offset, msgSize);
check(crc1, crcReference);
}
report("CRCs", crc1, crcReference);
/* measure performance
* Don't spoil times with error checking.
*/
long start = System.nanoTime();
for (int i = 0; i < iters; i++) {
crc1.reset();
crc1.update(b, offset, msgSize);
}
long end = System.nanoTime();
double total = (double)(end - start)/1e9; // in seconds
double thruput = (double)msgSize*iters/1e6/total; // in MB/s
System.out.println("CRC32C.update(byte[]) runtime = " + total + " seconds");
System.out.println("CRC32C.update(byte[]) throughput = " + thruput + " MB/s");
report("CRCs", crc1, crcReference);
System.out.println("-------------------------------------------------------");
ByteBuffer buf = ByteBuffer.allocateDirect(msgSize);
buf.put(b, offset, msgSize);
buf.flip();
/* warm up */
for (int i = 0; i < warmupIters; i++) {
crc2.reset();
crc2.update(buf);
buf.rewind();
check(crc2, crcReference);
}
/* check correctness
* Do that before measuring performance
* to even better heat up involved methods.
*/
for (int i = 0; i < iters; i++) {
crc2.reset();
crc2.update(buf);
buf.rewind();
check(crc2, crcReference);
}
report("CRCs", crc2, crcReference);
/* measure performance
* Don't spoil times with error checking.
*/
start = System.nanoTime();
for (int i = 0; i < iters; i++) {
crc2.reset();
crc2.update(buf);
buf.rewind();
}
end = System.nanoTime();
total = (double)(end - start)/1e9; // in seconds
thruput = (double)msgSize*iters/1e6/total; // in MB/s
System.out.println("CRC32C.update(ByteBuffer) runtime = " + total + " seconds");
System.out.println("CRC32C.update(ByteBuffer) throughput = " + thruput + " MB/s");
report("CRCs", crc2, crcReference);
System.out.println("-------------------------------------------------------");
}
// Just a loop over a byte array, updating the CRC byte by byte.
public static long update_byteLoop(long crc, byte[] buf, int offset) {
return update_byteLoop(crc, buf, offset, buf.length-offset);
}
// Just a loop over a byte array, with given length, updating the CRC byte by byte.
public static long update_byteLoop(long crc, byte[] buf, int offset, int length) {
int end = length+offset;
for (int i = offset; i < end; i++) {
crc = update_singlebyte(crc, polyBitsShifted, buf[i]);
}
return crc;
}
// Straight-forward implementation of CRC update by one byte.
// We use this very basic implementation to calculate reference
// results. It is necessary to have full control over how the
// reference results are calculated. It is not sufficient to rely
// on the interpreter (or c1, or c2) to do the right thing.
public static long update_singlebyte(long crc, long polynomial, int val) {
crc = (crc ^ -1L) & 0x00000000ffffffffL; // use 1's complement of crc
crc = crc ^ (val&0xff); // XOR in next byte from stream
for (int i = 0; i < 8; i++) {
boolean bitset = (crc & 0x01L) != 0;
crc = crc>>1;
if (bitset) {
crc = crc ^ polynomial;
crc = crc & 0x00000000ffffffffL;
}
}
crc = (crc ^ -1L) & 0x00000000ffffffffL; // revert taking 1's complement
return crc;
}
private static void report(String s, Checksum crc, long crcReference) {
System.out.printf("%s: crc = %08x, crcReference = %08x\n",
s, crc.getValue(), crcReference);
}
private static void check(Checksum crc, long crcReference) throws Exception {
if (crc.getValue() != crcReference) {
System.err.printf("ERROR: crc = %08x, crcReference = %08x\n",
crc.getValue(), crcReference);
throw new Exception("TestCRC32C Error");
}
}
private static byte[] initializedBytes(int M, int offset) {
byte[] bytes = new byte[M + offset];
for (int i = 0; i < offset; i++) {
bytes[i] = (byte) i;
}
for (int i = offset; i < bytes.length; i++) {
bytes[i] = (byte) (i - offset);
}
return bytes;
}
private static void test_multi(int iters) throws Exception {
int len1 = 8; // the 8B/iteration loop
int len2 = 32; // the 32B/iteration loop
int len3 = 4096; // the 4KB/iteration loop
byte[] b = initializedBytes(len3*16, 0);
int[] offsets = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512 };
int[] sizes = { 0, 1, 2, 3, 4, 5, 6, 7,
len1, len1+1, len1+2, len1+3, len1+4, len1+5, len1+6, len1+7,
len1*2, len1*2+1, len1*2+3, len1*2+5, len1*2+7,
len2, len2+1, len2+3, len2+5, len2+7,
len2*2, len2*4, len2*8, len2*16, len2*32, len2*64,
len3, len3+1, len3+3, len3+5, len3+7,
len3*2, len3*4, len3*8,
len1+len2, len1+len2+1, len1+len2+3, len1+len2+5, len1+len2+7,
len1+len3, len1+len3+1, len1+len3+3, len1+len3+5, len1+len3+7,
len2+len3, len2+len3+1, len2+len3+3, len2+len3+5, len2+len3+7,
len1+len2+len3, len1+len2+len3+1, len1+len2+len3+3,
len1+len2+len3+5, len1+len2+len3+7,
(len1+len2+len3)*2, (len1+len2+len3)*2+1, (len1+len2+len3)*2+3,
(len1+len2+len3)*2+5, (len1+len2+len3)*2+7,
(len1+len2+len3)*3, (len1+len2+len3)*3-1, (len1+len2+len3)*3-3,
(len1+len2+len3)*3-5, (len1+len2+len3)*3-7 };
CRC32C[] crc1 = new CRC32C[offsets.length*sizes.length];
long[] crcReference = new long[offsets.length*sizes.length];
int i, j, k;
System.out.printf("testing %d cases ...\n", offsets.length*sizes.length);
// Initialize CRC32C result arrays, CRC32C reference array.
// Reference is calculated using a very basic Java implementation.
for (i = 0; i < offsets.length; i++) {
for (j = 0; j < sizes.length; j++) {
crc1[i*sizes.length + j] = new CRC32C();
crcReference[i*sizes.length + j] = update_byteLoop(0, b, offsets[i], sizes[j]);
}
}
// Warm up the JIT compiler. Over time, all methods involved will
// be executed by the interpreter, then get compiled by c1 and
// finally by c2. Each calculated CRC value must, in each iteration,
// be equal to the precalculated reference value for the test to pass.
for (k = 0; k < iters; k++) {
for (i = 0; i < offsets.length; i++) {
for (j = 0; j < sizes.length; j++) {
crc1[i*sizes.length + j].reset();
crc1[i*sizes.length + j].update(b, offsets[i], sizes[j]);
check(crc1[i*sizes.length + j], crcReference[i*sizes.length + j]);
}
}
}
}
}